1
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
2
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Resilience to Pain-Related Depression in σ 1 Receptor Knockout Mice Is Associated with the Reversal of Pain-Induced Brain Changes in Affect-Related Genes. ACS Chem Neurosci 2023; 14:3714-3725. [PMID: 37738096 DOI: 10.1021/acschemneuro.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Mice lacking the σ1 receptor chaperone (σ1R-/-) are resilient to depressive-like behaviors secondary to neuropathic pain. Examining the resilience's brain mechanisms could help develop conceptually novel therapeutic strategies. We explored the diminished motivation for a natural reinforcer (white chocolate) in the partial sciatic nerve ligation (PSNL) model in wild-type (WT) and σ1R-/- mice. In the same mice, we performed a comprehensive reverse transcription quantitative PCR (qPCR) analysis across ten brain regions of seven genes implicated in pain regulation and associated affective disorders, such as anxiety and depression. PSNL induced anhedonic-like behavior in WT but not in σ1R-/- mice. In WT mice, PSNL up-regulated dopamine transporter (DAT) and its rate-limiting enzyme, tyrosine hydroxylase (Th), in the ventral tegmental area (VTA) and periaqueductal gray (PAG) as well as the serotonin transporters (SERT) and its rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) in VTA. In addition, μ-opioid receptor (MOR) and σ1R were up-regulated in PAG, and MOR was also elevated in the somatosensory cortex (SS) but down-regulated in the striatum (STR). Finally, increased BDNF was found in the medial prefrontal cortex (mPFC) and hypothalamus (HPT). Sham surgery also produced PSNL-like expression changes in VTA, HPT, and STR. Genetic deletion of the σ1R in mice submitted to PSNL or sham surgery prevented changes in the expression of most of these genes. σ1R is critically involved in the supraspinal gene expression changes produced by PSNL and sham surgery. The changes in gene expression observed in WT mice may be related to pain-related depression, and the absence of these changes observed in σ1R-/- mice may be related to resilience.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
3
|
Zhang XY, Diaz-delCastillo M, Kong L, Daniels N, MacIntosh-Smith W, Abdallah A, Domanski D, Sofrenovic D, Yeung TP(S, Valiente D, Vollert J, Sena E, Rice AS, Soliman N. A systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain. PLoS One 2023; 18:e0290382. [PMID: 37682863 PMCID: PMC10490990 DOI: 10.1371/journal.pone.0290382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Thigmotaxis is an innate predator avoidance behaviour of rodents. To gain insight into how injury and disease models, and analgesic drug treatments affect thigmotaxis, we performed a systematic review and meta-analysis of studies that assessed thigmotaxis in the open field test. Systematic searches were conducted of 3 databases in October 2020, March and August 2022. Study design characteristics and experimental data were extracted and analysed using a random-effects meta-analysis. We also assessed the correlation between thigmotaxis and stimulus-evoked limb withdrawal. This review included the meta-analysis of 165 studies We report thigmotaxis was increased in injury and disease models associated with persistent pain and this increase was attenuated by analgesic drug treatments in both rat and mouse experiments. Its usefulness, however, may be limited in certain injury and disease models because our analysis suggested that thigmotaxis may be associated with the locomotor function. We also conducted subgroup analyses and meta-regression, but our findings on sources of heterogeneity are inconclusive because analyses were limited by insufficient available data. It was difficult to assess internal validity because reporting of methodological quality measures was poor, therefore, the studies have an unclear risk of bias. The correlation between time in the centre (type of a thigmotactic metric) and types of stimulus-evoked limb withdrawal was inconsistent. Therefore, stimulus-evoked and ethologically relevant behavioural paradigms should be viewed as two separate entities as they are conceptually and methodologically different from each other.
Collapse
Affiliation(s)
- Xue Ying Zhang
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Natasha Daniels
- Bart’s Health NHS Trust Whipps Cross Hospital, London, United Kingdom
| | - William MacIntosh-Smith
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Aya Abdallah
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominik Domanski
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Denis Sofrenovic
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Diego Valiente
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Emily Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew S. Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
4
|
Noble DJ, Dongmo R, Parvin S, Martin KK, Garraway SM. C-low threshold mechanoreceptor activation becomes sufficient to trigger affective pain in spinal cord-injured mice in association with increased respiratory rates. Front Integr Neurosci 2022; 16:1081172. [PMID: 36619238 PMCID: PMC9811591 DOI: 10.3389/fnint.2022.1081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The mechanisms of neuropathic pain after spinal cord injury (SCI) are not fully understood. In addition to the plasticity that occurs within the injured spinal cord, peripheral processes, such as hyperactivity of primary nociceptors, are critical to the expression of pain after SCI. In adult rats, truncal stimulation within the tuning range of C-low threshold mechanoreceptors (C-LTMRs) contributes to pain hypersensitivity and elevates respiratory rates (RRs) after SCI. This suggests that C-LTMRs, which normally encode pleasant, affiliative touch, undergo plasticity to transmit pain sensation following injury. Because tyrosine hydroxylase (TH) expression is a specific marker of C-LTMRs, in the periphery, here we used TH-Cre adult mice to investigate more specifically the involvement of C-LTMRs in at-level pain after thoracic contusion SCI. Using a modified light-dark chamber conditioned place aversion (CPA) paradigm, we assessed chamber preferences and transitions between chambers at baseline, and in response to mechanical and optogenetic stimulation of C-LTMRs. In parallel, at baseline and select post-surgical timepoints, mice underwent non-contact RR recordings and von Frey assessment of mechanical hypersensitivity. The results showed that SCI mice avoided the chamber associated with C-LTMR stimulation, an effect that was more pronounced with optical stimulation. They also displayed elevated RRs at rest and during CPA training sessions. Importantly, these changes were restricted to chronic post-surgery timepoints, when hindpaw mechanical hypersensitivity was also evident. Together, these results suggest that C-LTMR afferent plasticity, coexisting with potentially facilitatory changes in breathing, drives at-level affective pain following SCI in adult mice.
Collapse
|
5
|
Manning CE, Fritz M, Kauer JA. Function of Excitatory Periaqueductal Gray Synapses in the Ventral Tegmental Area following Inflammatory Injury. eNeuro 2022; 9:ENEURO.0324-22.2022. [PMID: 36635253 PMCID: PMC9797208 DOI: 10.1523/eneuro.0324-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Manipulating the activity of ventral tegmental area (VTA) dopamine (DA) neurons can drive nocifensive reflexes, and their firing rates are reduced following noxious stimuli. However, the pain-relevant inputs to the VTA remain incompletely understood. In this study, we used male and female mice in combination with identified dopamine and GABA neurons in the VTA that receive excitatory inputs from the periaqueductal gray (PAG), a nexus of ascending pain information. We tested whether PAG-VTA synapses undergo functional plasticity in response to a pain model using optical stimulation in conjunction with slice electrophysiology. We found that acute carrageenan inflammation does not significantly affect the strength of excitatory PAG synapses onto VTA DA neurons. However, at the PAG synapses on VTA GABA neurons, the subunit composition of NMDA receptors is altered; the complement of NR2D subunits at synaptic sites appears to be lost. Thus, our data support a model in which injury initially alters synapses on VTA GABA neurons. Over time, these alterations may increase tonic inhibition of VTA DA neurons leading to their reduced firing.
Collapse
Affiliation(s)
- Claire Elena Manning
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305-5101
| | - Michael Fritz
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305-5101
| | - Julie Ann Kauer
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305-5101
| |
Collapse
|
6
|
Martin KK, Noble DJ, Parvin S, Jang K, Garraway SM. Pharmacogenetic inhibition of TrkB signaling in adult mice attenuates mechanical hypersensitivity and improves locomotor function after spinal cord injury. Front Cell Neurosci 2022; 16:987236. [PMID: 36226073 PMCID: PMC9548551 DOI: 10.3389/fncel.2022.987236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through tropomyosin receptor kinase B (TrkB), to exert various types of plasticity. The exact involvement of BDNF and TrkB in neuropathic pain states after spinal cord injury (SCI) remains unresolved. This study utilized transgenic TrkBF616 mice to examine the effect of pharmacogenetic inhibition of TrkB signaling, induced by treatment with 1NM-PP1 (1NMP) in drinking water for 5 days, on formalin-induced inflammatory pain, pain hypersensitivity, and locomotor dysfunction after thoracic spinal contusion. We also examined TrkB, ERK1/2, and pERK1/2 expression in the lumbar spinal cord and trunk skin. The results showed that formalin-induced pain responses were robustly attenuated in 1NMP-treated mice. Weekly assessment of tactile sensitivity with the von Frey test showed that treatment with 1NMP immediately after SCI blocked the development of mechanical hypersensitivity up to 4 weeks post-SCI. Contrastingly, when treatment started 2 weeks after SCI, 1NMP reversibly and partially attenuated hind-paw hypersensitivity. Locomotor scores were significantly improved in the early-treated 1NMP mice compared to late-treated or vehicle-treated SCI mice. 1NMP treatment attenuated SCI-induced increases in TrkB and pERK1/2 levels in the lumbar cord but failed to exert similar effects in the trunk skin. These results suggest that early onset TrkB signaling after SCI contributes to maladaptive plasticity that leads to spinal pain hypersensitivity and impaired locomotor function.
Collapse
Affiliation(s)
| | | | | | | | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Wilson LL, Alleyne AR, Eans SO, Cirino TJ, Stacy HM, Mottinelli M, Intagliata S, McCurdy CR, McLaughlin JP. Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain. Molecules 2022; 27:molecules27113617. [PMID: 35684553 PMCID: PMC9182558 DOI: 10.3390/molecules27113617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10–45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED50 (and 95% C.I.) = 14.7 (10.6–20) mg/kg, i.p.) and the formalin assay (ED50 (and 95% C.I.) = 0.86 (0.44–1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.
Collapse
Affiliation(s)
- Lisa L. Wilson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Amy R. Alleyne
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Thomas J. Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.M.); (S.I.); (C.R.M.)
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (L.L.W.); (A.R.A.); (S.O.E.); (T.J.C.); (H.M.S.)
- Correspondence: ; Tel.: +1-352-273-7207
| |
Collapse
|
8
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Comprehensive Preclinical Assessment of Sensory, Functional, Motivational-Affective, and Neurochemical Outcomes in Neuropathic Pain: The Case of the Sigma-1 Receptor. ACS Pharmacol Transl Sci 2022; 5:240-254. [PMID: 35434530 PMCID: PMC9003638 DOI: 10.1021/acsptsci.2c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Chronic pain remains a major health problem and is currently facing slow drug innovation. New drug treatments should address not only the sensory-discriminative but also functional and motivational-affective components of chronic pain. In a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSNL), we analyzed sensory and functional-like outcomes by hindpaw mechanical stimulation and automated gait analysis (CatWalk). We characterized over time a reward-seeking task based on diminished motivation for natural reinforcers (anhedonic-like behavior). To differentiate the appetitive ("wanting") and consummatory ("liking") aspects of motivational behavior, we quantified the latency and number of approaches to eat white chocolate, as well as the eating duration and amount consumed. We explored a putative chronic pain-induced dysregulation of monoamine function by measuring monoamine levels in the nucleus accumbens (NAc), a well-known brain reward area. Finally, we investigated the role of sigma-1 receptor (σ1R) modulation, a nonopioid target, in these multiple dimensions by genetic deletion and pharmacological dose-response studies. After 6 weeks, PSNL increased the approach latency and reduced the consumption of white chocolate in 20-25% of the mice, while around 50-60% had one or the other parameter affected independently. After 10 weeks, sham-operated mice also displayed anhedonic-like behavior. PSNL was associated with reduced extracellular baseline dopamine and increased norepinephrine in the NAc and with a suppression of increased dopamine and serotonin efflux in response to the rewarding stimulus. Genetic and pharmacological blockade of σ1R relieved these multiple alterations in nerve-injured mice. We comprehensively describe sensory, functional, and depression-like impairment of key components of motivated behavior associated with nerve injury. We provide a neurochemical substrate for the depressed mesocorticolimbic reward processing in chronic pain, with a potentially increased translational value. Our results also highlight σ1R for the therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
9
|
Zhang XY, Vollert J, Sena ES, Rice AS, Soliman N. A protocol for the systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain. BMJ OPEN SCIENCE 2022; 5:e100135. [PMID: 35047702 PMCID: PMC8647568 DOI: 10.1136/bmjos-2020-100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/09/2022] Open
Abstract
Objective Thigmotaxis is an innate predator avoidance behaviour of rodents and is enhanced when animals are under stress. It is characterised by the preference of a rodent to seek shelter, rather than expose itself to the aversive open area. The behaviour has been proposed to be a measurable construct that can address the impact of pain on rodent behaviour. This systematic review will assess whether thigmotaxis can be influenced by experimental persistent pain and attenuated by pharmacological interventions in rodents. Search strategy We will conduct search on three electronic databases to identify studies in which thigmotaxis was used as an outcome measure contextualised to a rodent model associated with persistent pain. All studies published until the date of the search will be considered. Screening and annotation Two independent reviewers will screen studies based on the order of (1) titles and abstracts, and (2) full texts. Data management and reporting For meta-analysis, we will extract thigmotactic behavioural data and calculate effect sizes. Effect sizes will be combined using a random-effects model. We will assess heterogeneity and identify sources of heterogeneity. A risk-of-bias assessment will be conducted to evaluate study quality. Publication bias will be assessed using funnel plots, Egger’s regression and trim-and-fill analysis. We will also extract stimulus-evoked limb withdrawal data to assess its correlation with thigmotaxis in the same animals. The evidence obtained will provide a comprehensive understanding of the strengths and limitations of using thigmotactic outcome measure in animal pain research so that future experimental designs can be optimised. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and disseminate the review findings through publication and conference presentation.
Collapse
Affiliation(s)
| | - Jan Vollert
- Musculoskeletal, Imperial College London, London, UK
| | - Emily S Sena
- Clinical Neurosciences, University of Edinburgh, Edinburgh, UK
| | | | - Nadia Soliman
- Musculoskeletal, Imperial College London, London, UK
| |
Collapse
|
10
|
Histone deacetylase 3 in hippocampus contributes to memory impairment after chronic constriction injury of sciatic nerve in mice. Pain 2021; 162:382-395. [PMID: 32868749 DOI: 10.1097/j.pain.0000000000002056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic neuropathic pain is frequently accompanied by memory impairment, yet the underlying mechanisms remain unclear. Here, we showed that mice displayed memory impairment starting at 14 days and lasting for at least 21 days after chronic constriction injury (CCI) of unilateral sciatic nerve in mice. Systemic administration of the pan histone deacetylase (HDAC) inhibitor sodium butyrate attenuated this memory impairment. More specifically, we found that hippocampus HDAC3 was involved in this process because the levels of its mRNA and protein increased significantly in the hippocampus at 14 and 21 days after CCI, but not sham surgery. Systemic administration of the selective HDAC3 antagonist RGFP966 attenuated CCI-induced memory impairment, improved hippocampal long-term potentiation impairment, and rescued reductions of dendritic spine density and synaptic plasticity-associated protein in the hippocampus. In addition, HDAC3 overexpression in the hippocampus led to memory impairment without affecting basal nociceptive responses in naive mice. Our findings suggest that HDAC3 contributes to memory impairment after CCI by impairing synaptic plasticity in hippocampus. Histone deacetylase 3 might serve as a potential molecular target for therapeutic treatment of memory impairment under neuropathic pain conditions.
Collapse
|
11
|
Yeung SC, Ganesan K, Wong SSC, Chung SK, Cheung CW. Characterization of acute pain-induced behavioral passivity in mice: Insights from statistical modeling. Eur J Neurosci 2021; 53:3072-3092. [PMID: 33675141 DOI: 10.1111/ejn.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Affective-motivational disturbances are highly inconsistent in animal pain models. The reproducibility of the open-field test in assessing anxiety, malaise or disability remains controversial despite its popularity. While traumatic, persistent or multiregional pain models are commonly considered more effective in inducing negative affect or functional impairment, the early psychobehavioral changes before pain chronification are often underexplored. Here, we aimed to clarify the fundamental relationship between hypernociception and passive distress-like behavior using a model of transient inflammatory pain. To minimize latent confounders and increase data consistency, male C57BL/6N mice were habituated to the open-field arena 6 times before receiving the unilateral intraplantar injection of prostaglandin E2 (PGE2) or vehicle. Open-field (40-min exploration) and nociceptive behavior were evaluated repeatedly along the course of hypernociception in both wild-type and transgenic mice with a known pronociceptive phenotype. To reduce subjectivity, multivariate open-field behavioral outcomes were analyzed by statistical modeling based on exploratory factor analyses, which yielded a 2-factor solution. Within 3 hr after PGE2 injection, mice developed significantly reduced center exploration (factor 1) and a marginally significant increase in their habituation tendency (factor 2), which were not apparent in vehicle-injected mice. The behavioral passivity generally improved as hypernociception subsided. Therefore, transient inflammatory irritation is sufficient to suppress mouse open-field exploratory activity. The apparent absence of late affective-motivational changes in some rodents with prolonged hypernociception may not imply a lack of preceding or underlying neuropsychological alterations. Procedural pain after invasive animal experiments, however small, should be assessed and adequately controlled as a potential research confounder.
Collapse
Affiliation(s)
- Sung Ching Yeung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Donnelly CR, Jiang C, Andriessen AS, Wang K, Wang Z, Ding H, Zhao J, Luo X, Lee MS, Lei YL, Maixner W, Ko MC, Ji RR. STING controls nociception via type I interferon signalling in sensory neurons. Nature 2021; 591:275-280. [PMID: 33442058 PMCID: PMC7977781 DOI: 10.1038/s41586-020-03151-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
The innate immune regulator STING is a critical sensor of self- and pathogen-derived DNA. DNA sensing by STING leads to the induction of type-I interferons (IFN-I) and other cytokines, which promote immune-cell-mediated eradication of pathogens and neoplastic cells1,2. STING is also a robust driver of antitumour immunity, which has led to the development of STING activators and small-molecule agonists as adjuvants for cancer immunotherapy3. Pain, transmitted by peripheral nociceptive sensory neurons (nociceptors), also aids in host defence by alerting organisms to the presence of potentially damaging stimuli, including pathogens and cancer cells4,5. Here we demonstrate that STING is a critical regulator of nociception through IFN-I signalling in peripheral nociceptors. We show that mice lacking STING or IFN-I signalling exhibit hypersensitivity to nociceptive stimuli and heightened nociceptor excitability. Conversely, intrathecal activation of STING produces robust antinociception in mice and non-human primates. STING-mediated antinociception is governed by IFN-Is, which rapidly suppress excitability of mouse, monkey and human nociceptors. Our findings establish the STING-IFN-I signalling axis as a critical regulator of physiological nociception and a promising new target for treating chronic pain.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Amanda S Andriessen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Kaiyuan Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael S Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Abstract
Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.
Collapse
|
14
|
Comparative analysis of acute and chronic stress-induced neurobehavioral alteration and liver injury in mice. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Bembrick AL, Boorman DC, Keay KA. Disability-specific genes GRIN1, GRIN2 and CNR1 show injury-dependent protein expression in the lumbar spinal cord of CCI rats. Neurosci Lett 2020; 728:134982. [PMID: 32320718 DOI: 10.1016/j.neulet.2020.134982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 11/28/2022]
Abstract
The sensory changes triggered by peripheral nerve injury result from functional changes in both neurons and glia in the dorsal horn of the spinal cord. Whether the disrupted affective-motivational states often comorbid with injury-evoked changes in sensation are driven directly by these functional changes is a question only recently investigated. Using a combination of GeneChip microarrays and RT-PCR techniques we identified differences in mRNA expression unique to rats with sustained changes to their social behaviour following sciatic nerve chronic constriction injury (CCI). Amongst these changes were the mRNAs encoding several of the NMDA subunits and the CB1 receptor. However, as protein translation is not a necessary consequence of the upregulation or downregulation of genes we decided to evaluate the functional significance of our initial observations using immunohistochemical detection of their translated protein products to determine their location and abundance in the lumbar spinal cord. Spinal cord tissue from rats with ('Affected'), and without ('Unaffected') changes in social behaviour after CCI was compared with tissue from uninjured controls. The expression of NMDA-1 (NR1) subunit, NMDA-2D subunit, Cannabinoid Receptor 1 (CB1), Glucocorticoid Receptor (GR) and Glial Fibrillary Acidic Protein (GFAP) immunoreactivities was quantified for these rats and revealed that nerve injury increased the expression of NMDA-2D, CB1 and GFAP immunoreactivity compared to uninjured controls. However, these changes were not specific to rats whose social behaviours were 'Affected' or 'Unaffected' by the nerve injury. Our data thus suggest that the development and expression of changes in social behaviour seen in a proportion of rats following CCI are unlikely to be directly related to the spinal changes in NMDA-2D, CB1 and GFAP expression induced by the nerve injury.
Collapse
Affiliation(s)
- Alison L Bembrick
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW, 2006, Australia
| | - Damien C Boorman
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW, 2006, Australia
| | - Kevin A Keay
- School of Medical Sciences, Discipline of Anatomy & Histology, Faculty of Medicine and Health, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Yang X, Liu S, Wang D, Liu G, Harrison P. Differential effects of state and trait social anhedonia on suicidal ideation at 3-months follow up. J Affect Disord 2020; 262:23-30. [PMID: 31706156 DOI: 10.1016/j.jad.2019.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Recent work suggests that the social component of anhedonia is more associated with suicide ideation than the other component of pleasure. The present study investigated the differential effects of state and trait social anhedonia on suicidal ideation across two undergraduate samples based on the Interpersonal Theory and Three-Step Theory of Suicide. METHODS State social anhedonia was assessed with a single item (Loss of Interest in People) extracted from the Beck Depression Inventory, while trait social anhedonia was assessed using the Anticipatory and Consummatory Interpersonal Pleasure Scale. Suicidal ideation was re-administered at a 3-month follow-up. RESULTS In Study 1, higher state social anhedonia was associated with greater levels of suicidal ideation, while trait social anhedonia moderated the relationship between thwarted belongingness, perceived burdensomeness and suicidal ideation. In Study 2, state social anhedonia was margin significant predictor of suicidal ideation, while trait social anhedonia moderated the relationship between psychological pain and suicidal ideation. CONCLUSIONS These findings confirmed the presence of two different effects on suicidal ideation in state and trait social anhedonia: state social anhedonia directly was associated with suicidal ideation, while trait social anhedonia was indirectly related through their effects on other risk factors of suicidality.
Collapse
Affiliation(s)
- Xinhua Yang
- Department of Psychology, Institute of Education, Rural Children and Adolescents Research Center for Health Promotion, Hunan Agricultural University, Changsha, Hunan, China; Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sixun Liu
- Department of Psychology, Institute of Education, Rural Children and Adolescents Research Center for Health Promotion, Hunan Agricultural University, Changsha, Hunan, China
| | - Dongfang Wang
- Department of Psychology, Institute of Education, Rural Children and Adolescents Research Center for Health Promotion, Hunan Agricultural University, Changsha, Hunan, China
| | - Guangya Liu
- Department of psychiatry, Brains Hospital of Hunan province, Changsha, Hunan, China
| | - Phillippa Harrison
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
17
|
Hou YY, Cai YQ, Pan ZZ. GluA1 in Central Amygdala Promotes Opioid Use and Reverses Inhibitory Effect of Pain. Neuroscience 2019; 426:141-153. [PMID: 31863796 DOI: 10.1016/j.neuroscience.2019.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023]
Abstract
Increasing evidence suggests that long-term opioids and pain induce similar adaptive changes in the brain's reward circuits, however, how pain alters the addictive properties of opioids remains poorly understood. In this study using a rat model of morphine self-administration (MSA), we found that short-term pain, induced by an intraplantar injection of complete Freund's adjuvant (CFA), acutely decreased voluntary morphine intake, but not food intake, only at a morphine dose that did not affect pain itself. Pre-treatment with indomethacin, a non-opioid inhibitor of pain, before the pain induction blocked the decrease in morphine intake. In rats with steady MSA, the protein level of GluA1 subunits of glutamate AMPA receptors (AMPARs) was significantly increased, but that of GluA2 was decreased, resulting in an increased GluA1/GluA2 ratio in central nucleus of the amygdala (CeA). In contrast, pain decreased the GluA1/GluA2 ratio in the CeA of rats with MSA. Microinjection of NASPM, a selective inhibitor of homomeric GluA1-AMPARs, into CeA inhibited morphine intake. Furthermore, viral overexpression of GluA1 protein in CeA maintained morphine intake at a higher level than controls and reversed the pain-induced reduction in morphine intake. These findings suggest that CeA GluA1 promotes opioid use and its upregulation is sufficient to increase opioid consumption, which counteracts the acute inhibitory effect of pain on opioid intake. These results demonstrate that the CeA GluA1 is a shared target of opioid and pain in regulation of opioid use, which may aid in future development of therapeutic applications in opioid abuse.
Collapse
Affiliation(s)
- Yuan-Yuan Hou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - You-Qing Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Bilbao A, Leixner S, Wei S, Cantacorps L, Valverde O, Spanagel R. Reduced sensitivity to ethanol and excessive drinking in a mouse model of neuropathic pain. Addict Biol 2019; 24:1008-1018. [PMID: 31237390 DOI: 10.1111/adb.12784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The co-occurrence of chronic pain and alcohol use disorders (AUDs) involves complex interactions between genetic and neurophysiological aspects, and the research has reported mixed findings when they both co-occur. There is also an indication of a gender-dependent effect; males are more likely to use alcohol to cope with chronic pain problems than females. Recently, a new conceptualization has emerged, proposing that the negative affective component of pain drives and maintains alcohol-related behaviors. We studied in a longitudinal fashion alterations in alcohol drinking patterns and pain thresholds in a mouse model of chronic neuropathic pain in a sex-dependent manner. Following partial denervation (spared nerve injury [SNI]), stimulus-evoked pain responses were measured before chronic alcohol consumption, during drinking, during a deprivation phase, and following an episode of excessive drinking. During the course of alcohol drinking, we observed pronounced sex differences in pain thresholds. Male mice showed a strong increase in pain thresholds, suggesting an analgesic effect induced by alcohol over time, an effect that was not observed in female mice. SNI mice did not differ from sham-operated controls in baseline alcohol consumption. However, following a deprivation phase and the reintroduction of ethanol, male SNI mice but not female mice showed more pronounced excessive drinking than controls. Finally, we observed decreased central ethanol sensitivity in male SNI mice but not in females. Together with our finding, that ethanol is able to decrease a pain-induced negative affective memory we come to following conclusion. We propose that a lower sensitivity to the intoxicating effects of alcohol together with the ability of alcohol to reduce the negative affective component of pain may explain the higher co-occurrence of AUD in male chronic pain patients.
Collapse
Affiliation(s)
- Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; Heidelberg University; Mannheim Germany
| | - Sarah Leixner
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; Heidelberg University; Mannheim Germany
| | - Shoupeng Wei
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; Heidelberg University; Mannheim Germany
| | - Lídia Cantacorps
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; Heidelberg University; Mannheim Germany
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, IMIM (Hospital del Mar Medical Research Institute); Pompeu Fabra University; Barcelona Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, IMIM (Hospital del Mar Medical Research Institute); Pompeu Fabra University; Barcelona Spain
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; Heidelberg University; Mannheim Germany
| |
Collapse
|
19
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
20
|
Noble DJ, Martin KK, Parvin S, Garraway SM. Spontaneous and Stimulus-Evoked Respiratory Rate Elevation Corresponds to Development of Allodynia in Spinal Cord-Injured Rats. J Neurotrauma 2019; 36:1909-1922. [PMID: 30489202 DOI: 10.1089/neu.2018.5936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory complications frequently accompany spinal cord injury (SCI) and slowed breathing has been shown to mitigate pain sensitivity. It is possible that elevated respiratory rates (RRs) signal the emergence of chronic pain after SCI. We previously validated the use of remote electric field sensors to noninvasively track breathing in freely behaving rodents. Here, we examined spontaneous (resting) and stimulus-evoked RRs as potential indices of mechanical hypersensitivity following SCI. Adult male Long-Evans rats received a lower thoracic hemisection or contusion SCI, or sham surgery, and underwent weekly assessments of mechanical and thermal sensitivity using the von Frey and Hargreaves tests, respectively. Resting RRs were recorded with remote sensors prior to nociception assays as well as 1 day post-surgery. Evoked RRs were quantified weekly in response to at-level mechanical stimulation provided by a small brush at various stimulation speeds, including those corresponding to the distinct tuning properties of a sub-population of cutaneous afferents known as C-low threshold mechanoreceptors. SCI rats developed mechanical hypersensitivity, which peaked 2-3 weeks after SCI. Compared with at baseline, hemisection SCI rats showed significantly heightened resting RRs at 1 day and 7 days post-injury, and the latter predicted development of pain hypersensitivity. In contusion SCI rats, resting RR increases were less substantial but occurred at all weekly time-points. Increases in brush-evoked RR coincided with full expression of hypersensitivity at 14 (hemisection) or 21 (contusion) days after SCI, and these effects were restricted to the lowest brush speeds. Our results support the possibility that early changes in RR may convey pain information in rats.
Collapse
Affiliation(s)
- Donald J Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Karmarcha K Martin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Effects of Electroacupuncture on Pain Memory-Related Behaviors and Synchronous Neural Oscillations in the Rostral Anterior Cingulate Cortex in Freely Moving Rats. Neural Plast 2019; 2019:2057308. [PMID: 31223307 PMCID: PMC6541966 DOI: 10.1155/2019/2057308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Our previous studies have confirmed that electroacupuncture (EA) can effectively intervene in pain memory, but the neural mechanism involved remains unclear. In this study, we observed the effects of EA in regulating pain memory-related behaviors and synchronous neural oscillations in the rostral anterior cingulate cortex (rACC). During nociceptive behavioral testing, pain memory induced a nonpain stimulus that spurred a neural oscillatory reaction similar to that caused by pain stimuli in the rACC. After EA, nonpain stimuli did not induce decreased neural oscillatory activity in the rACC until the presentation of pain stimuli. During aversive behavioral testing, EA, through the downregulation of theta power, inhibited the retrieval of aversive memory and relieved pain memory-induced aversive behaviors. These changes of oscillatory activity may be the hallmarks of EA therapy for pain memory.
Collapse
|
22
|
Abstract
All preclinical procedures for analgesic drug discovery involve two components: 1) a "pain stimulus" (the principal independent variable), which is delivered to an experimental subject with the intention of producing a pain state; and 2) a "pain behavior" (the principal dependent variable), which is measured as evidence of that pain state. Candidate analgesics are then evaluated for their effectiveness to reduce the pain behavior, and results are used to prioritize drugs for advancement to clinical testing. This review describes a taxonomy of preclinical procedures organized into an "antinociception matrix" by reference to their types of pain stimulus (noxious, inflammatory, neuropathic, disease related) and pain behavior (unconditioned, classically conditioned, operant conditioned). Particular emphasis is devoted to pain behaviors and the behavioral principals that govern their expression, pharmacological modulation, and preclinical-to-clinical translation. Strengths and weaknesses are compared and contrasted for procedures using each type of behavioral outcome measure, and the following four recommendations are offered to promote strategic use of these procedures for preclinical-to-clinical analgesic drug testing. First, attend to the degree of homology between preclinical and clinical outcome measures, and use preclinical procedures with behavioral outcome measures homologous to clinically relevant outcomes in humans. Second, use combinations of preclinical procedures with complementary strengths and weaknesses to optimize both sensitivity and selectivity of preclinical testing. Third, take advantage of failed clinical translation to identify drugs that can be back-translated preclinically as active negative controls. Finally, increase precision of procedure labels by indicating both the pain stimulus and the pain behavior in naming preclinical procedures.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Wang H, Yang G, Wang S, Zheng X, Zhang W, Li Y. The Most Commonly Treated Acupuncture Indications in the United States: A Cross-Sectional Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-33. [PMID: 30298749 DOI: 10.1142/s0192415x18500738] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Acupuncture has been a popular alternative medicine in the United States for several decades. Its therapeutic effects on pain have been validated by both basic and clinical researches, and it is currently emerging as a unique non-pharmaceutical choice for pain against opioid crisis. However, the full spectrum of acupuncture indications remains unexplored. In this study, we conducted a cross-sectional survey among 419 acupuncturists nation-wide to investigate the top 10 and top 99 acupuncture indications in private clinics in the United States. We found the top 10 indications to be: lower back pain, depression, anxiety, headache, arthritis, allergies, general pain, female infertility, insomnia, neck pain and frozen shoulder. Among the top 99 indications, pain represents the largest category; and mental health management, especially for mood disorders, is in greatest demand. The following popular groups are: immune system dysfunctions, gastrointestinal diseases, gynecology and neurology. In addition, specialty index, commonality index, and the potential to become medical specialties were estimated for each indication. Demographic analysis suggests that China trained acupuncturists tend to have broader indication spectrums, but the top conditions treated are primarily decided by local needs. Also, gender, resident states, age and clinical experience all affect indication distributions. Our data for the first time outlines the profile of acupuncture treatable conditions in the US and is valuable for strategic planning in acupuncture training, healthcare administration and public education.
Collapse
Affiliation(s)
- Haiyi Wang
- * School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
- ∥ American TCM Society, New York City, New York, USA
| | - Guanhu Yang
- † Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Shaobai Wang
- ‡ New York Acupuncture & Chinese Herbs Clinic, New York City, New York, USA
- ∥ American TCM Society, New York City, New York, USA
| | - Xin Zheng
- § Pacific College of Oriental Medicine, New York City, New York, USA
- ∥ American TCM Society, New York City, New York, USA
| | - Wei Zhang
- ¶ Center for Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yongming Li
- ∥ American TCM Society, New York City, New York, USA
| |
Collapse
|
24
|
Abstract
We assessed aversion to injections using an avoidance-learning paradigm. Holstein calves (n = 24) were randomly assigned to one of four routes of administration for 0.5 ml of saline: intramuscular (IM), intranasal (IN), subcutaneous (SC) and a null control. Calves were first trained to approach a milk reward of 1 L. Once the latency to approach the reward was consistent, calves received their assigned treatment when approaching the bottle. For the first 3 treatment sessions calves received a 1 L milk reward. This reward was then reduced to 500 mL, and then to 250 mL, and finally to 0 mL, each for 3 sessions. Compared to control calves, calves receiving the intramuscular injections showed a longer latency to approach the milk reward, but only when the milk reward was 0.25 L (P = 0.05) and 0 L (P < 0.01). Calves receiving the intranasal injections showed longer latencies relative to the controls only for the 0 L reward (P = 0.01). Calves receiving the subcutaneous injections did not differ from controls for any of the milk rewards (P > 0.2). We conclude that IM injections are aversive and that SC and IN routes are a refinement to be considered when feasible.
Collapse
|
25
|
Abstract
Opioids are the most commonly used and effective analgesic treatments for severe pain, but they have recently come under scrutiny owing to epidemic levels of abuse and overdose. These compounds act on the endogenous opioid system, which comprises four G protein-coupled receptors (mu, delta, kappa, and nociceptin) and four major peptide families (β-endorphin, enkephalins, dynorphins, and nociceptin/orphanin FQ). In this review, we first describe the functional organization and pharmacology of the endogenous opioid system. We then summarize current knowledge on the signaling mechanisms by which opioids regulate neuronal function and neurotransmission. Finally, we discuss the loci of opioid analgesic action along peripheral and central pain pathways, emphasizing the pain-relieving properties of opioids against the affective dimension of the pain experience.
Collapse
Affiliation(s)
- Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA
| | - Daniel C Castro
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA; .,Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA.,New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
26
|
Bagdas D, Meade JA, Alkhlaif Y, Muldoon PP, Carroll FI, Damaj MI. Effect of nicotine and alpha-7 nicotinic modulators on visceral pain-induced conditioned place aversion in mice. Eur J Pain 2018; 22:10.1002/ejp.1231. [PMID: 29633429 PMCID: PMC6179949 DOI: 10.1002/ejp.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical assays of affective and sensorial aspects of nociception play a key role in research on both the neurobiology of pain and the development of novel analgesics. Therefore, we investigated the effects of nicotine and alpha-7 nicotinic acetylcholine receptor (nAChR) modulators in the negative affective and sensory components of visceral pain in mice. METHODS AND RESULTS Intraperitoneal acetic acid (AA) administration resulted in a robust stretching behaviour and conditioned place aversion (CPA) in mice. We observed a dose-dependent reduction in AA-induced stretching and CPA by the nonselective nAChRs agonist nicotine. Mecamylamine, a nonselective nAChRs agonist, was able to block its effects; however, hexamethonium, a peripherally restricted nonselective nicotinic antagonist, was able to block nicotine's effect on stretching behaviour but not on CPA. In addition, systemic administration of α7 nAChR full agonists PHA543613 and PNU282987 was failed to block stretching and CPA behaviour induced by AA. However, the α7 nAChR-positive allosteric modulator PNU120596 blocked AA-induced CPA in a dose-dependent manner without reducing stretching behaviours. CONCLUSIONS Our data revealed that while nonselective nAChR activation induces antinociceptive properties on the sensorial and affective signs of visceral pain in mice, α7 nAChRS activation has no effect on these responses. In addition, nonselective nAChR activation-induced antinociceptive effect on stretching behaviour was mediated by central and peripheral mechanisms. However, the effect of nonselective nAChR activation on CPA was mediated centrally. Furthermore, our data suggest a pivotal role of allosteric modulation of α7 nAChRS in the negative affective, but not sensory, component of visceral pain. SIGNIFICANCE The present results suggest that allosteric modulation of α7 nAChR may provide new strategies in affective aspects of nociception.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie A. Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Pretal P. Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - F. Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| |
Collapse
|
27
|
Cockburn A, Smith M, Rusbridge C, Fowler C, Paul ES, Murrell JC, Blackwell EJ, Casey RA, Whay HR, Mendl M. Evidence of negative affective state in Cavalier King Charles Spaniels with syringomyelia. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Bagdas D, Gurun MS, Flood P, Papke RL, Damaj MI. New Insights on Neuronal Nicotinic Acetylcholine Receptors as Targets for Pain and Inflammation: A Focus on α7 nAChRs. Curr Neuropharmacol 2018; 16:415-425. [PMID: 28820052 PMCID: PMC6018191 DOI: 10.2174/1570159x15666170818102108] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nicotine and nicotinic acetylcholine receptors (nAChRs) have been explored for the past three decades as targets for pain control. The aim of this review is to introduce readers particularly to α7 nAChRs in a perspective of pain and its modulation. METHODS Developments for α7 nAChR modulators and recent animal studies related to pain are reviewed. RESULTS Accumulating evidences suggest that selective ligands for α7 nAChRs hold promise in the treatment of chronic pain conditions as they lack many of side effects associated with other nicotinic receptor types. CONCLUSION This review provides the reader recent insights on α7 nAChRs from structure and function to the latest findings on the pharmacology and therapeutic targeting of these receptors for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Deniz Bagdas
- Address correspondence to this author at the Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613; Tel/Fax: +1-804-828-9256; E-mail:
| | | | | | | | | |
Collapse
|
29
|
Mindfulness is Associated With Increased Hedonic Capacity Among Chronic Pain Patients Receiving Extended Opioid Pharmacotherapy. Clin J Pain 2017; 33:166-173. [PMID: 28060783 DOI: 10.1097/ajp.0000000000000379] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Chronic pain and long-term opioid use may lead to a persistent deficit in hedonic capacity, characterized by increased sensitivity to aversive states and insensitivity to natural rewards. Dispositional mindfulness has been linked with improved emotion regulation and pain coping. The aim of the current study was to examine associations between dispositional mindfulness, hedonic capacity, and pain-related interference in an opioid-using chronic pain sample. METHODS Data were obtained from a sample of 115 chronic pain patients on long-term opioid therapy (68% females, M age=48.3, SD=13.6) who completed the Five Facet Mindfulness Questionnaire (FFMQ), the Snaith-Hamilton Anhedonia and Pleasure Scale (SHAPS), the Brief Pain Inventory, and a psychiatric assessment of major depression. Bivariate correlations, hierarchical multiple regression, and path analysis were used to determine whether dispositional mindfulness scores (FFMQ) predicted variance in hedonic capacity (SHAPS), and whether hedonic capacity mediated the association between mindfulness and pain interference. RESULTS We observed a significant positive correlation between dispositional mindfulness and hedonic capacity scores (r=0.33, P<0.001). Hierarchical regression indicated that after controlling for pain interference and major depressive disorder diagnosis, dispositional mindfulness explained a significant portion of variance in hedonic capacity (β=0.30, P<0.01). The association between dispositional mindfulness and pain interference was mediated by hedonic capacity (b=-0.011, SE=0.005; 95% CI, -0.004 to -0.024, full model R=0.39). DISCUSSION Findings indicate that dispositional mindfulness was associated with hedonic capacity among this chronic pain sample. In light of this association, it is plausible that interventions that increase mindfulness may reduce pain-related impairment among opioid-using patients by enhancing hedonic capacity.
Collapse
|
30
|
Maruyama C, Deyama S, Nagano Y, Ide S, Kaneda K, Yoshioka M, Minami M. Suppressive effects of morphine injected into the ventral bed nucleus of the stria terminalis on the affective, but not sensory, component of pain in rats. Eur J Neurosci 2017; 47:40-47. [PMID: 29131433 DOI: 10.1111/ejn.13776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Pain is a complex experience with both sensory and affective components. Clinical and preclinical studies have shown that the affective component of pain can be reduced by doses of morphine lower than those necessary to reduce the sensory component. Although the neural mechanisms underlying the effects of morphine on the sensory component of pain have been investigated extensively, those influencing the affective component remain to be elucidated. The bed nucleus of the stria terminalis (BNST) has been implicated in the regulation of various negative emotional states, including aversion, anxiety and fear. Thus, this study aimed to clarify the role of the ventral part of the BNST (vBNST) in the actions of morphine on the affective and sensory components of pain. First, the effects of intra-vBNST injections of morphine on intraplantar formalin-induced conditioned place aversion (CPA) and nociceptive behaviors were investigated. Intra-vBNST injections of morphine reduced CPA without affecting nociceptive behaviors, which suggests that intra-vBNST morphine alters the affective, but not sensory, component of pain. Next, to examine the effects of morphine on neuronal excitability in type II vBNST neurons, whole-cell patch-clamp recordings were performed in brain slices. Bath application of morphine hyperpolarized type II vBNST neurons. Thus, the suppressive effects of intra-vBNST morphine on pain-induced aversion may be due to its inhibitory effects on neuronal excitability in type II vBNST neurons. These results suggest that the vBNST is a key brain region involved in the suppressive effects of morphine on the affective component of pain.
Collapse
Affiliation(s)
- Chikashi Maruyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoshi Deyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Nagano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
31
|
Astroglial MicroRNA-219-5p in the Ventral Tegmental Area Regulates Nociception in Rats. Anesthesiology 2017; 127:548-564. [PMID: 28582325 DOI: 10.1097/aln.0000000000001720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The authors previously reported that noncoding microRNA miR-219-5p is down-regulated in the spinal cord in a nociceptive state. The ventral tegmental area also plays critical roles in modulating nociception, although the underlying mechanism remains unknown. The authors hypothesized that miR-219-5p in the ventral tegmental area also may modulate nociception. METHODS The authors studied the bidirectional regulatory role of ventral tegmental area miR-219-5p in a rat complete Freund's adjuvant model of inflammatory nociception by measuring paw withdrawal latencies. Using molecular biology technologies, the authors measured the effects of astroglial coiled-coil and C2 domain containing 1A/nuclear factor κB cascade and dopamine neuron activity on the down-regulation of ventral tegmental area miR-219-5p-induced nociceptive responses. RESULTS MiR-219-5p expression in the ventral tegmental area was reduced in rats with thermal hyperalgesia. Viral overexpression of ventral tegmental area miR-219-5p attenuated complete Freund's adjuvant-induced nociception from 7 days after complete Freund's adjuvant injection (paw withdrawal latencies: 6.09 ± 0.83 s vs. 3.96 ± 0.76 s; n = 6/group). Down-regulation of ventral tegmental area miR-219-5p in naïve rats was sufficient to induce thermal hyperalgesia from 7 days after lentivirus injection (paw withdrawal latencies: 7.09 ± 1.54 s vs. 11.75 ± 2.15 s; n = 8/group), which was accompanied by increased glial fibrillary acidic protein (fold change: 2.81 ± 0.38; n = 3/group) and reversed by intraventral tegmental area injection of the astroglial inhibitor fluorocitrate. The nociceptive responses induced by astroglial miR-219-5p down-regulation were inhibited by interfering with astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling. Finally, pharmacologic inhibition of ventral tegmental area dopamine neurons alleviated this hyperalgesia. CONCLUSIONS Down-regulation of astroglial miR-219-5p in ventral tegmental area induced nociceptive responses are mediated by astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling and elevated dopamine neuron activity.
Collapse
|
32
|
López-de-Uralde-Villanueva I, Beltran-Alacreu H, Fernández-Carnero J, Gil-Martínez A, La Touche R. Differences in Neural Mechanosensitivity Between Patients with Chronic Nonspecific Neck Pain With and Without Neuropathic Features. A Descriptive Cross-Sectional Study. PAIN MEDICINE 2016; 17:136-48. [PMID: 26179341 DOI: 10.1111/pme.12856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To assess differences in neural mechanosensitivity between patients with chronic nonspecific neck pain with and without neuropathic features (NF and No-NF, respectively). DESIGN Descriptive, cross-sectional study. SETTING A primary care center, a hospital physiotherapy outpatient department, and a university campus. SUBJECTS Chronic nonspecific neck pain patients classified by the self-completed leeds assessment of neuropathic symptoms and signs pain scale (S-LANSS; 49 patients with NF [S-LANSS ≥ 12] and 50 patients with No-NF [S-LANSS < 12]) and a healthy control group (n = 48). METHODS The primary measurements were the mechanosensitivity of the median nerve and cervical region, specifically the assessment of the onset of symptoms and submaximal pain intensity according to the upper limb neural test 1 (ULNT1) for the median nerve and the modified passive neck flexion test (MPNFT) for the cervical region; secondary measurements included pain intensity, neck disability, kinesiophobia, and pain catastrophizing. RESULTS Statistically significant differences between the NF and No-NF groups were found with respect to the onset of symptoms of ULNT1 (-15.11 [-23.19 to -7.03]) and MPNFT (-6.58 [-11.54 to -1.62]), as well as the outcomes of the visual analogue scale (Mean difference [95% Confidence Interval]; 7.12 [1.81-12.42]) and neck disability index (3.72 [1.72-5.71]). Both chronic nonspecific neck pain groups showed statistically significant differences compared with the control group for all outcomes assessed (P < 0.01) except for the onset of symptoms of ULNT1 in the No-NF group. CONCLUSIONS The findings of this study suggest that chronic nonspecific neck pain patients with NF have greater neural mechanosensitivity, pain intensity, and neck disability than those with No-NF.
Collapse
|
33
|
Erfanparast A, Tamaddonfard E, Nemati S. Effects of intra-hippocampal microinjection of vitamin B 12 on the orofacial pain and memory impairments induced by scopolamine and orofacial pain in rats. Physiol Behav 2016; 170:68-77. [PMID: 27998753 DOI: 10.1016/j.physbeh.2016.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/05/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
In the present study, we investigated the effects of microinjection of vitamin B12 into the hippocampus on the orofacial pain and memory impairments induced by scopolamine and orofacial pain. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50μl) into the right vibrissa pad, and the durations of face rubbing were recorded at 3-min blocks for 45min. Morris water maze (MWM) was used for evaluation of learning and memory. Finally, locomotor activity was assessed using an open-field test. Vitamin B12 attenuated both phases of formalin-induced orofacial pain. Prior administration of naloxone and naloxonazine, but not naltrindole and nor-binaltorphimine, prevented this effect. Vitamin B12 and physostigmine decreased latency time as well as traveled distance in Morris water maze. In addition, these chemicals improved scopolamine-induced memory impairment. The memory impairment induced by orofacial pain was improved by vitamin B12 and physostigmine used alone. Naloxone prevented, whereas physostigmine enhanced the memory improving effect of vitamin B12 in the pain-induced memory impairment. All the above-mentioned chemicals did not alter locomotor activity. The results of the present study showed that at the level of the dorsal hippocampus, vitamin B12 modulated orofacial pain through a mu-opioid receptor mechanism. In addition, vitamin B12 contributed to hippocampal cholinergic system in processing of memory. Moreover, cholinergic and opioid systems may be involved in improving effect of vitamin B12 on pain-induced memory impairment.
Collapse
Affiliation(s)
- Amir Erfanparast
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran.
| | - Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| | - Shaghayegh Nemati
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran
| |
Collapse
|
34
|
Neelakantan H, Ward SJ, Walker EA. Effects of paclitaxel on mechanical sensitivity and morphine reward in male and female C57Bl6 mice. Exp Clin Psychopharmacol 2016; 24:485-495. [PMID: 27929349 PMCID: PMC5157702 DOI: 10.1037/pha0000097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study evaluated the hypothesis that a paclitaxel treatment regimen sufficient to produce mechanical allodynia would alter sensitivities of male and female mice to the conditioned rewarding and reinforcing effects of morphine. Saline or paclitaxel were administered on Days 1, 3, 5, and 7 in male and female C57Bl/6 mice to induce morphine-reversible mechanical allodynia as measured by the Von Frey filament test. Paclitaxel treatment did not change sensitivity to morphine conditioned place preference (CPP) relative to saline treatment in either male or female mice. Morphine produced peak self-administration under a fixed ratio-1 (FR1) schedule of reinforcement for 0.03 mg/kg morphine per infusion in female mice and 0.1 mg/kg morphine per infusion in male mice. During the progressive ratio experiments, saline treatment in male mice decreased the number of morphine infusions for 12 days whereas the paclitaxel-treated male mice maintained responding for morphine similar to baseline levels during the same time period. However, paclitaxel did not have an overall effect on the reinforcing efficacy of morphine assessed over a limited dose range during the course of the repeated self-administration. These results suggest that the reward-related behavioral effects of morphine are overall not robustly altered by the presence of paclitaxel treatment under the current dosing regimen, with the exception of maintaining a small yet significant higher baseline than saline treatment during the development of allodynia in male mice. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | - Ellen Ann Walker
- Department of Pharmaceutical Sciences & Center for Substance Abuse Research, Temple University
| |
Collapse
|
35
|
Bagdas D, Muldoon PP, AlSharari S, Carroll FI, Negus SS, Damaj MI. Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice. Neuropharmacology 2016; 102:236-43. [PMID: 26639043 PMCID: PMC5574195 DOI: 10.1016/j.neuropharm.2015.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 02/01/2023]
Abstract
Pain encompasses both a sensory as well as an affective dimension and these are differentially processed in the brain and periphery. It is therefore important to develop animal models to reflect the non-reflexive assays in pain. In this study, we compared effects of the mu opioid receptor agonist morphine, the nonsteroidal anti-inflammatory drug ketoprofen and the kappa receptor opioid agonist U50,488H and antagonist JDTic on acetic acid-induced stretching and acetic acid-induced aversion in the condition place aversion (CPA) test in male ICR mice. Intraperitoneal administration of acetic acid (0.32-1%) was equipotent in stimulating stretching and CPA. Ketoprofen, morphine and U50,488H all inhibited the acid-induced stretching. Ketoprofen and morphine also blocked the acid-induced CPA but U50,488H failed to do so. The reversal ability of ketoprofen and morphine on acid-induced CPA is unique to pain-stimulated place aversion since these drugs failed to reduce non-noxious LiCl-induced CPA. Overall, this study characterized and validated a preclinical mouse model of pain-related aversive behavior that can be used to assess genetic and biological mechanisms of pain as well as improving the predictive validity of preclinical studies on candidate analgesics.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Behavior, Animal/drug effects
- Ketoprofen/pharmacology
- Male
- Mice
- Mice, Inbred ICR
- Morphine/pharmacology
- Piperidines/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Tetrahydroisoquinolines/pharmacology
- Visceral Pain/physiopathology
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa 16059, Turkey.
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - F Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
36
|
Whiteside GT, Pomonis JD, Kennedy JD. Preclinical Pharmacological Approaches in Drug Discovery for Chronic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:303-23. [PMID: 26920017 DOI: 10.1016/bs.apha.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, animal behavioral models, particularly those used in pain research, have been increasingly scrutinized and criticized for their role in the poor translation of novel pharmacotherapies for chronic pain. This chapter addresses the use of animal models of pain used in drug discovery research. It highlights how, when, and why animal models of pain are used as one of the many experimental tools used to gain better understanding of target mechanisms and rank-order compounds in the iterative process of establishing structure-activity relationship. Together, these models help create an "analgesic signature" for a compound and inform the indications most likely to yield success in clinical trials. In addition, the authors discuss some often underappreciated aspects of currently used (traditional) animal models of pain, including simply applying basic pharmacological principles to study design and data interpretation as well as consideration of efficacy alongside side effect measures as part of the overall conclusion of efficacy. This is provided to add perspective regarding current efforts to develop new models and endpoints both in rodents and in larger animal species as well as assess cognitive and/or affective aspects of pain. Finally, the authors suggest ways in which efficacy evaluation in animal models of pain, whether traditional or new, might better align with clinical standards of analysis, citing examples where applying effect size and number needed to treat estimations to animal model data suggest that the efficacy bar often may be set too low preclinically to allow successful translation to the clinical setting.
Collapse
Affiliation(s)
| | - James D Pomonis
- American Preclinical Services, LLC, Minneapolis, Minnesota, USA
| | | |
Collapse
|
37
|
de la Puente B, Romero-Alejo E, Vela JM, Merlos M, Zamanillo D, Portillo-Salido E. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice. J Pain Res 2015; 8:663-73. [PMID: 26504405 PMCID: PMC4605237 DOI: 10.2147/jpr.s91230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu) and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA) served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA) in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg) – inactive to reduce AA-induced abdominal writhing – administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion – but not saccharin preference – in AA-treated mice, thus suggesting that the reduction in saccharin preference – but not in locomotion – was specifically sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be used as a more sensitive and translational model to evaluate analgesics.
Collapse
Affiliation(s)
- Beatriz de la Puente
- Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Elizabeth Romero-Alejo
- Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - José Miguel Vela
- Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Enrique Portillo-Salido
- Department of Pharmacology, Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| |
Collapse
|
38
|
Abstract
Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness.
Collapse
|
39
|
Persistent pain maintains morphine-seeking behavior after morphine withdrawal through reduced MeCP2 repression of GluA1 in rat central amygdala. J Neurosci 2015; 35:3689-700. [PMID: 25716866 DOI: 10.1523/jneurosci.3453-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As long-term opioids are increasingly used for control of chronic pain, how pain affects the rewarding effect of opioids and hence risk of prescription opioid misuse and abuse remains a healthcare concern and a challenging issue in current pain management. In this study, using a rat model of morphine self-administration, we investigated the molecular mechanisms underlying the impact of pain on operant behavior of morphine intake and morphine seeking before and after morphine withdrawal. We found that rats with persistent pain consumed a similar amount of daily morphine to that in control rats without pain, but maintained their level-pressing behavior of morphine seeking after abstinence of morphine at 0.2 mg/kg, whereas this behavior was gradually diminished in control rats. In the central nucleus of amygdala (CeA), a limbic structure critically involved in the affective dimension of pain, proteins of GluA1 subunits of glutamate AMPA receptors were upregulated during morphine withdrawal, and viral knockdown of CeA GluA1 eliminated the morphine-seeking behavior in withdrawn rats of the pain group. Chromatin immunoprecipitation analysis revealed that the methyl CpG-binding protein 2 (MeCP2) was enriched in the promoter region of Gria1 encoding GluA1 and this enrichment was significantly attenuated in withdrawn rats of the pain group. Furthermore, viral overexpression of CeA MeCP2 repressed the GluA1 level and eliminated the maintenance of morphine-seeking behavior after morphine withdrawal. These results suggest direct MeCp2 repression of GluA1 function as a likely mechanism for morphine-seeking behavior maintained by long-lasting affective pain after morphine withdrawal.
Collapse
|
40
|
Higgins GA, Silenieks LB, Van Niekerk A, Desnoyer J, Patrick A, Lau W, Thevarkunnel S. Enduring attentional deficits in rats treated with a peripheral nerve injury. Behav Brain Res 2015; 286:347-55. [DOI: 10.1016/j.bbr.2015.02.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/01/2022]
|
41
|
Morland RH, Novejarque A, Huang W, Wodarski R, Denk F, Dawes JD, Pheby T, McMahon SB, Rice AS. Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat. F1000Res 2015; 4:109. [PMID: 27158443 PMCID: PMC4850861 DOI: 10.12688/f1000research.6255.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the non-sensory components of the pain experience is crucial to developing effective treatments for pain conditions. Chronic pain is associated with increased incidence of anxio-depressive disorders, and patients often report feelings of vulnerability which can decrease quality of life. In animal models of pain, observation of behaviours such as thigmotaxis can be used to detect such affective disturbances by exploiting the influence of nociceptive stimuli on the innate behavioural conflict between exploration of a novel space and predator avoidance behaviour. This study investigates whether acute and repeated bladder inflammation in adult female Wistar rats increases thigmotactic behaviour in the open field paradigm, and aims to determine whether this correlates with activation in the central amygdala, as measured by c-Fos immunoreactivity. Additionally, up-regulation of inflammatory mediators in the urinary bladder was measured using RT-qPCR array featuring 92 transcripts to examine how local mediators change under experimental conditions. We found acute but not repeated turpentine inflammation of the bladder increased thigmotactic behaviour (decreased frequency of entry to the inner zone) in the open field paradigm, a result that was also observed in the catheter-only instrumentation group. Decreases in locomotor activity were also observed in both models in turpentine and instrumentation groups. No differences were observed in c-Fos activation, although a general increased in activation along the rostro-caudal axis was seen. Inflammatory mediator up-regulation was greatest following acute inflammation, with CCL12, CCL7, and IL-1β significantly up-regulated in both conditions when compared to naïve tissue. These results suggest that acute catheterisation, with or without turpentine inflammation, induces affective alterations detectable in the open field paradigm accompanied by up-regulation of multiple inflammatory mediators.
Collapse
Affiliation(s)
- Rosemary H Morland
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Amparo Novejarque
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Wenlong Huang
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Rachel Wodarski
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Franziska Denk
- Wolfson Centre for Age Related Disease, King's College London, London, UK
| | - John D Dawes
- The Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Tim Pheby
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| | - Stephen B McMahon
- Wolfson Centre for Age Related Disease, King's College London, London, UK
| | - Andrew Sc Rice
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College , London, UK
| |
Collapse
|
42
|
Austin PJ, Bembrick AL, Denyer GS, Keay KA. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat. PLoS One 2015; 10:e0124755. [PMID: 25905723 PMCID: PMC4408097 DOI: 10.1371/journal.pone.0124755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022] Open
Abstract
Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four ‘disability-specific’ genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways.
Collapse
Affiliation(s)
- Paul J. Austin
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Alison L. Bembrick
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Gareth S. Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Kevin A. Keay
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
43
|
Anxiety- and depression-like behavior and impaired neurogenesis evoked by peripheral neuropathy persist following resolution of prolonged tactile hypersensitivity. J Neurosci 2015; 34:12304-12. [PMID: 25209272 DOI: 10.1523/jneurosci.0312-14.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pain and depression are frequently associated with and often persist after resolution of an initial injury. Identifying the extent to which depression remains causally associated with ongoing physical discomfort during chronic pain, or becomes independent of it, is an important problem for basic neuroscience and psychiatry. Difficulty in distinguishing between effects of ongoing aversive sensory input and its long-term consequences is a significant roadblock, especially in animal models. To address this relationship between localized physical discomfort and its more global consequences, we investigated cellular and behavioral changes during and after reversing a mouse model of neuropathic pain. Tactile allodynia produced by placing a plastic cuff around the sciatic nerve resolved within several days when the cuff was removed. In contrast, the changes in elevated O-maze, forced-swim, Y-maze spontaneous alternation and novel-object recognition test performance that developed after nerve cuff placement remained for at least 3 weeks after the nerve cuffs were removed, or 10-15 d following complete normalization of mechanical sensitivity. Hippocampal neurogenesis, measured by doublecortin and proliferating cell nuclear antigen expression, was also suppressed after nerve cuff placement and remained suppressed 3 weeks after cuff removal. FosB expression was elevated in the central nucleus of the amygdala and spinal cord dorsal horn only in mice with ongoing allodynia. In contrast, FosB remained elevated in the basolateral amygdala of mice with resolved nociception and persisting behavioral effects. These observations suggest that different processes control tactile hypersensitivity and the behavioral changes and impaired neurogenesis that are associated with neuropathic allodynia.
Collapse
|
44
|
Pradhan AA, Smith ML, Zyuzin J, Charles A. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 2014; 171:2375-84. [PMID: 24467301 DOI: 10.1111/bph.12591] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/10/2013] [Accepted: 01/10/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. EXPERIMENTAL APPROACH Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. KEY RESULTS NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. CONCLUSIONS AND IMPLICATIONS These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Semel Institute for Neuropsychiatry & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Headache Research and Treatment Program, Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Shirley and Stefan Hatos Center for Neuropharmacology, UCLA, Los Angeles, CA, USA; Department of Psychiatry, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
46
|
Jiang H, Fang D, Kong LY, Jin ZR, Cai J, Kang XJ, Wan Y, Xing GG. Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats. Mol Brain 2014; 7:72. [PMID: 25277376 PMCID: PMC4201706 DOI: 10.1186/s13041-014-0072-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/18/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Despite high prevalence of anxiety accompanying with chronic pain, the mechanisms underlying pain-related anxiety are largely unknown. With its well-documented role in pain and emotion processing, the amygdala may act as a key player in pathogenesis of neuropathic pain-related anxiety. Pain-related plasticity and sensitization of CeA (central nucleus of the amygdala) neurons have been shown in several models of chronic pain. In addition, firing pattern of neurons with spike output can powerfully affect functional output of the brain nucleus, and GABAergic neurons are crucial in the modulation of neuronal excitability. In this study, we first investigated whether pain-related plasticity (e.g. alteration of neuronal firing patterns) and sensitization of CeA neurons contribute to nerve injury-evoked anxiety in neuropathic rats. Furthermore, we explored whether GABAergic disinhibition is responsible for regulating firing patterns and intrinsic excitabilities of CeA neurons as well as for pain-related anxiety in neuropathic rats. RESULTS We discovered that spinal nerve ligation (SNL) produced neuropathic pain-related anxiety-like behaviors in rats, which could be specifically inhibited by intra-CeA administration of anti-anxiety drug diazepam. Moreover, we found potentiated plasticity and sensitization of CeA neurons in SNL-induced anxiety rats, of which including: 1) increased burst firing pattern and early-adapting firing pattern; 2) increased spike frequency and intrinsic excitability; 3) increased amplitude of both after-depolarized-potential (ADP) and sub-threshold membrane potential oscillation. In addition, we observed a remarkable reduction of GABAergic inhibition in CeA neurons in SNL-induced anxiety rats, which was proved to be important for altered firing patterns and hyperexcitability of CeA neurons, thereby greatly contributing to the development of neuropathic pain-related anxiety. Accordantly, activation of GABAergic inhibition by intra-CeA administration of muscimol, a selective GABAA receptors agonist, could inhibit SNL-induced anxiety-like behaviors in neuropathic rats. By contrast, suppression of GABAergic inhibition by intra-CeA administration of bicuculline, a selective GABAA receptors antagonist, produced anxiety-like behavior in normal rats. CONCLUSIONS This study suggests that reduction of GABAergic inhibition may be responsible for potentiated plasticity and sensitization of CeA neurons, which likely underlie the enhanced output of amygdala and neuropathic pain-related anxiety in SNL rats.
Collapse
Affiliation(s)
- Hong Jiang
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China.
| | - Dong Fang
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China.
| | - Ling-Yu Kong
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China.
| | - Zi-Run Jin
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China.
| | - Jie Cai
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China.
| | - Xue-Jing Kang
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China.
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China. .,Key Laboratory for Neuroscience, Ministry of Education and Ministry of Health, Beijing, 100191, P.R. China.
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing, 100191, P.R. China. .,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China. .,Key Laboratory for Neuroscience, Ministry of Education and Ministry of Health, Beijing, 100191, P.R. China.
| |
Collapse
|
47
|
Preclinical assessment of pain: improving models in discovery research. Curr Top Behav Neurosci 2014; 20:101-20. [PMID: 25012511 DOI: 10.1007/7854_2014_330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To date, animal models have not sufficiently "filtered" targets for new analgesics, increasing the failure rate and cost of drug development. Preclinical assessment of "pain" has historically relied on measures of evoked behavioral responses to sensory stimuli in animals. Such measures can often be observed in decerebrated animals and therefore may not sufficiently capture affective and motivational aspects of pain, potentially diminishing translation from preclinical studies to the clinical setting. Further, evidence indicates that there are important mechanistic differences between evoked behavioral responses of hypersensitivity and ongoing pain, limiting evaluation of mechanisms that could mediate aspects of clinically relevant pain. The mechanisms underlying ongoing pain in preclinical models are currently being explored and may serve to inform decisions towards the transition from drug discovery to drug development for a given target.
Collapse
|
48
|
Cobos EJ, Portillo-Salido E. "Bedside-to-Bench" Behavioral Outcomes in Animal Models of Pain: Beyond the Evaluation of Reflexes. Curr Neuropharmacol 2013; 11:560-91. [PMID: 24396334 PMCID: PMC3849784 DOI: 10.2174/1570159x113119990041] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/05/2013] [Accepted: 05/24/2013] [Indexed: 12/21/2022] Open
Abstract
Despite the myriad promising new targets and candidate analgesics recently identified in preclinical pain studies, little translation to novel pain medications has been generated. The pain phenotype in humans involves complex behavioral alterations, including changes in daily living activities and psychological disturbances. These behavioral changes are not reflected by the outcome measures traditionally used in rodents for preclinical pain testing, which are based on reflexes evoked by sensory stimuli of different types (mechanical, thermal or chemical). These measures do not evaluate the impact of the pain experience on the global behavior or disability of the animals, and therefore only consider a limited aspect of the pain phenotype. The development of relevant new outcomes indicative of pain to increase the validity of animal models of pain has been increasingly pursued over the past few years. The aim has been to translate "bedside-to-bench" outcomes from the human pain phenotype to rodents, in order to complement traditional pain outcomes by providing a closer and more realistic measure of clinical pain in rodents. This review summarizes and discusses the most important nonstandard outcomes for pain assessment in preclinical studies. The advantages and drawbacks of these techniques are considered, and their potential impact on the validation of potential analgesics is evaluated.
Collapse
Affiliation(s)
- Enrique J Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, Esteve, Avenida Mare de Déu de Montserrat 221, 08041 Barcelona, Spain
| |
Collapse
|
49
|
Albuquerque B, Häussler A, Vannoni E, Wolfer DP, Tegeder I. Learning and memory with neuropathic pain: impact of old age and progranulin deficiency. Front Behav Neurosci 2013; 7:174. [PMID: 24319417 PMCID: PMC3837228 DOI: 10.3389/fnbeh.2013.00174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 11/15/2022] Open
Abstract
Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia. In both genotypes, aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. However, once learnt, these aged mice with neuropathic pain showed a significantly stronger maintenance of the aversive memory. Nerve injury did not affect place preference behavior in neither genotype, neither in young nor aged mice. However, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in the aged mice. This task required a discrimination of clockwise and anti-clockwise sequences. The chaining failure occurred only in progranulin deficient mice after nerve injury, but not in sham operated or wildtype mice, suggesting that progranulin was particularly important for compensatory adaptations after nerve injury. In contrast, all aged mice with neuropathic pain, irrespective of the genotype, had a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age.
Collapse
Affiliation(s)
- Boris Albuquerque
- Department of Clinical Pharmacology, pharmazentrum frankfurt, Goethe-University Hospital Frankfurt am Main Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
50
|
Whiteside GT, Pomonis JD, Kennedy JD. An industry perspective on the role and utility of animal models of pain in drug discovery. Neurosci Lett 2013; 557 Pt A:65-72. [PMID: 23994390 DOI: 10.1016/j.neulet.2013.08.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 08/17/2013] [Indexed: 12/17/2022]
Abstract
In recent years, animal behavioral models, particularly those used in pain research, have been increasingly scrutinized and criticized for their role in the poor translation of novel pharmacotherapies for chronic pain. This article addresses the use of animal models of pain from the perspective of industrial drug discovery research. It highlights how, when, and why animal models of pain are used as one of the many experimental tools used to gain better understanding of target mechanisms and rank-order compounds in the iterative process of establishing structure-activity relationships (SAR). Together, these models help create an 'analgesic signature' for a compound and inform the indications most likely to yield success in clinical trials. In addition, the authors discuss some often under-appreciated aspects of currently used (traditional) animal models of pain, including how industry balances efficacy with side effect measures as part of the overall conclusion of efficacy. This is provided to add perspective regarding current efforts to develop new models and endpoints both in rodents and larger animal species as well as assess cognitive and/or affective aspects of pain. Finally, the authors suggest ways in which efficacy evaluation in animal models of pain, whether traditional or new, might better align with clinical standards of analysis, citing examples where applying effect size and NNT estimations to animal model data suggest that the efficacy bar often may be set too low preclinically to allow successful translation to the clinical setting.
Collapse
Affiliation(s)
- Garth T Whiteside
- Discovery Research, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, NJ 08512, United States
| | | | | |
Collapse
|