1
|
Gagliardi R, Koch DW, Loeser R, Schnabel LV. Matrikine stimulation of equine synovial fibroblasts and chondrocytes results in an in vitro osteoarthritis phenotype. J Orthop Res 2025; 43:292-303. [PMID: 39486895 DOI: 10.1002/jor.26004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Osteoarthritis (OA) is a debilitating disease that impacts millions of individuals and has limited therapeutic options. A significant hindrance to therapeutic discovery is the lack of in vitro OA models that translate reliably to in vivo preclinical animal models. An alternative to traditional inflammatory cytokine models is the matrikine stimulation model, in which fragments of matrix proteins naturally found in OA tissues and synovial fluid, are used to stimulate cells of the joint. The objective of this study was to determine if matrikine stimulation of equine synovial fibroblasts and chondrocytes with fibronectin fragments (FN7-10) would result in an OA phenotype. We hypothesized that FN7-10 stimulation of equine articular cells would result in an OA phenotype with gene and protein expression changes similar to those previously described for human chondrocytes stimulated with FN7-10. Synovial fibroblasts and chondrocytes isolated from four horses were stimulated in monolayer culture for 6 or 18 h with 1 µM purified recombinant 42 kD FN7-10 in serum-free media. At the conclusion of stimulation, RNA was collected for targeted gene expression analysis and media for targeted protein production analysis. Consistent with our hypothesis, FN7-10 stimulation resulted in significant alterations to many important genes that are involved in OA pathogenesis including increased expression of IL-1β, IL-4, IL-6, CCL2/MCP-1, CCL5/RANTES, CXCL6/GCP-2, MMP-1, MMP-3, and MMP13. The results of this study suggest that the equine matrikine stimulation model of OA may prove useful for in vitro experiments leading up to preclinical trials.
Collapse
Affiliation(s)
- Rachel Gagliardi
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Richard Loeser
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Delasos L, Khorrami M, Viswanathan VS, Jazieh K, Ding Y, Mutha P, Stephans K, Gupta A, Pennell NA, Patil PD, Higgins K, Madabhushi A. Novel radiogenomics approach to predict and characterize pneumonitis in stage III NSCLC. NPJ Precis Oncol 2024; 8:290. [PMID: 39719541 DOI: 10.1038/s41698-024-00790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
Unresectable stage III NSCLC is now treated with chemoradiation (CRT) followed by immune checkpoint inhibitors (ICI). Pneumonitis, a common CRT complication, has heightened risk with ICI, potentially causing severe outcomes. Currently, there are no biomarkers to predict pneumonitis risk or differentiate between radiation-induced pneumonitis (RTP) and ICI-induced pneumonitis (IIP). This study analyzed 293 patients from two institutions, with 140 experiencing pneumonitis (RTP: 84, IIP: 56). Two models were developed: M1 predicted pneumonitis risk using seven radiomic features, achieving high accuracy across internal and external datasets (AUCs: 0.76 and 0.85). M2 differentiated RTP from IIP, with strong performance (AUCs: 0.86 and 0.81). Gene set enrichment analysis linked high pneumonitis risk to pathways such as ECM-receptor interaction and T-cell signaling, while high IIP risk correlated with MAPK and JAK-STAT pathways. Radiomic models show promise in early pneumonitis risk stratification and distinguishing pneumonitis types, potentially guiding personalized NSCLC treatment.
Collapse
Affiliation(s)
- Lukas Delasos
- Cleveland Clinic Taussig Cancer Center, Cleveland, USA
| | | | | | - Khalid Jazieh
- Cleveland Clinic Taussig Cancer Center, Cleveland, USA
| | - Yifu Ding
- Department of Radiation Oncology, Winship Cancer Institute and Emory University, Atlanta, USA
| | - Pushkar Mutha
- Emory University and Georgia Institute of Technology, Atlanta, USA
| | | | - Amit Gupta
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, USA
| | | | - Pradnya D Patil
- Department of hematology and medical oncology, Nuvance Health, New York, USA
| | - Kristin Higgins
- Department of Radiation Oncology, Winship Cancer Institute and Emory University, Atlanta, USA
| | - Anant Madabhushi
- Emory University and Georgia Institute of Technology, Atlanta, USA.
- Atlanta Veterans Affairs Medical Center, Atlanta, USA.
| |
Collapse
|
3
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 Channels in the Skin Regulate Prolonged Heat Hypersensitivity during Neuroinflammation. eNeuro 2024; 11:ENEURO.0311-24.2024. [PMID: 39433408 PMCID: PMC11599794 DOI: 10.1523/eneuro.0311-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuroimmune cell signaling, but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal (i.d.) capsaicin via IL-1ɑ cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the i.d. capsaicin animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by i.d. complete Freund adjuvant (CFA). i.d. CFA, a model of chronic neuroinflammation, involves ongoing cytokine signaling for days leading to pronounced edema and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in the skin was required for the full development and week-long time course of heat hypersensitivity induced by i.d. CFA, but paw edema and mechanical hypersensitivity were independent of CaV2.2 channel activity. CFA induced increases in several cytokines in hindpaw fluid including IL-6 which was also dependent on CaV2.2 channel activity. Using IL-6-specific neutralizing antibodies in vivo, we show that IL-6 contributes to heat hypersensitivity and that neutralizing both IL-1ɑ and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in the skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in the skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Meredith J Crane
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Amanda M Jamieson
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Diane Lipscombe
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
4
|
Wang H, Gong W, Gao J, Cheng W, Hu Y, Hu C. Effects of vitamin D deficiency on chronic alcoholic liver injury. Free Radic Biol Med 2024; 224:220-231. [PMID: 39209135 DOI: 10.1016/j.freeradbiomed.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Vitamin D deficiency (VDD) has been found among alcoholics. However, little is known about the effect of VDD on alcoholic liver disease and the molecular mechanisms remain unclear. The aim of the current study was to evaluate whether vitamin D was deficient among patients with alcoholic fatty liver disease (AFLD) and the effect of VDD on chronic alcoholic liver injury and possible molecular mechanisms in mice. Our results found that lower 25-hydroxyvitamin D [25(OH)D] concentrations in patients with AFLD. And further analysis found that 25(OH)D is a protective factor in patients with AFLD. Mice experiments indicated that VDD can alter the composition of gut microbiota, down-regulate the protein levels of intestinal tight junction protein Occludin and E-cadherin, up-regulate the expression of inflammatory cytokines (tnf-α, il-1β, il-6, il-8, ccl2, il-10) in liver and colon tissue. And further exacerbated the protein levels of p65,P-IκB,P-p65 in alcoholic liver injury mice. In conclusion, VDD aggravates chronic alcoholic liver injury by activating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China; Women's Group Insurance Department, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, China
| | - Weiyi Gong
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jingxin Gao
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenxiu Cheng
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yongdi Hu
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Chunqiu Hu
- Department of Nutrition and Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Stewart TJ, Farrell J, Frew JW. A systematic review of case-control studies of cytokines in blister fluid and skin tissue of patients with Stevens Johnson syndrome and toxic epidermal necrolysis. Australas J Dermatol 2024; 65:491-504. [PMID: 38831709 DOI: 10.1111/ajd.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Stevens Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse reactions characterised by keratinocyte apoptosis, necroptosis and epidermal detachment. Several cytokines and cytotoxic proteins have been shown to be elevated in the blood and skin of SJS/TEN sufferers and biologics such as intravenous immune globulin and tumour necrosis factor (TNF)-alpha inhibitors have demonstrated good therapeutic potential. The exact pathogenic model of SJS/TEN however remains elusive. This systematic review aimed to evaluate the case-control studies of cytokines and cytotoxic proteins in the blister fluid and skin of adults with Stevens Johnson syndrome and/or toxic epidermal necrolysis. This review was registered with INPLASY and conducted in accordance with the PRISMA reporting guidelines. Potential bias was assessed using the NIH criteria. Eleven articles describing results from 96 cases and 170 controls were included. Fas, Fas ligand, Interleukin (IL)-8 and B-cell lymphoma (Bcl)-2 were elevated in SJS/TEN blister fluid and skin tissue, compared with healthy controls. IL-2, IL-6, TNF-alpha, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon-gamma and matrix metalloproteinase-2 were elevated in SJS/TEN blister fluid compared with fluid sampled from lesional controls. Granulysin, IL-33, TGF-beta-1 and IL-13 were elevated in SJS/TEN skin tissue compared with lesional lichen planus tissue, as was IL-13, IFN-gamma, IL-2 and IL-5, when compared with erythema multiforme tissue. A wide array of cytokines and cytotoxic proteins are present at higher concentrations in the blister fluid and skin tissue of SJS/TEN patients compared with healthy and lesional controls. Our findings suggest that these proteins may be pathogenic, as well as possibly markers for diagnosis, disease severity and course. They may also prove to be useful therapeutic targets. More research is needed.
Collapse
Affiliation(s)
- Thomas Jonathan Stewart
- Department of Dermatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Joshua Farrell
- Department of Dermatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - John Walter Frew
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Dermatology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
6
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Peng J, Gu Y, Liu J, Yi H, Ruan D, Huang H, Shu Y, Zong Z, Wu R, Li H. Identification of SOCS3 and PTGS2 as new biomarkers for the diagnosis of gout by cross-species comprehensive analysis. Heliyon 2024; 10:e30020. [PMID: 38707281 PMCID: PMC11066387 DOI: 10.1016/j.heliyon.2024.e30020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Gout is the most common inflammatory arthritis in adults. Gout is an arthritic disease caused by the deposition of monosodium urate crystal (MSU) in the joints, which can lead to acute inflammation and damage adjacent tissue. Hyperuricemia is the main risk factor for MSU crystal deposition and gout. With the increasing burden of gout disease, the identification of potential biomarkers and novel targets for diagnosis is urgently needed. Methods For the analysis of this subject paper, we downloaded the human gout data set GSE160170 and the gout mouse model data set GSE190138 from the GEO database. To obtain the differentially expressed genes (DEGs), we intersected the two data sets. Using the cytohubba algorithm, we identified the key genes and enriched them through GO and KEGG. The gene expression trends of three subgroups (normal control group, intermittent gout group and acute gout attack group) were analyzed by Series Test of Cluster (STC) analysis, and the key genes were screened out, and the diagnostic effect was verified by ROC curve. The expression of key genes in dorsal root nerve and spinal cord of gout mice was analyzed. Finally, the clinical samples of normal control group, hyperuricemia group, intermittent gout group and acute gout attack group were collected, and the expression of key genes at protein level was verified by ELISA. Result We obtained 59 co-upregulated and 28 co-downregulated genes by comparing the DEGs between gout mouse model data set and human gout data set. 7 hub DEGs(IL1B, IL10, NLRP3, SOCS3, PTGS2) were screened out via Cytohubba algorithm. The results of both GO and KEGG enrichment analyses indicate that 7 hub genes play a significant role in regulating the inflammatory response, cytokine production in immune response, and the TNF signaling pathway. The most representative hub genes SOCS3 and PTGS2 were screened out by Series Test of Cluster, and ROC analysis results showed the AUC values were both up to 1.000. In addition, we found that PTGS2 expression was significantly elevated in the dorsal root ganglia and spinal cord in monosodium urate(MSU)-induced gout mouse model. The ELISA results revealed that the expression of SOCS3 and PTGS2 was notably higher in the acute gout attack and intermittent gout groups compared to the normal control group. This difference was statistically significant, indicating a clear distinction between the groups. Conclusion Through cross-species comprehensive analysis and experimental verification, SOCS3 and PTGS2 were proved to be new biomarkers for diagnosing gout and predicting disease progression.
Collapse
Affiliation(s)
- Jie Peng
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yawen Gu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Jiang Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Hao Yi
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Dong Ruan
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, 330006, Nanchang, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Yuan Shu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| |
Collapse
|
8
|
Quartey BC, Sapudom J, ElGindi M, Alatoom A, Teo J. Matrix-Bound Hyaluronan Molecular Weight as a Regulator of Dendritic Cell Immune Potency. Adv Healthc Mater 2024; 13:e2303125. [PMID: 38104242 DOI: 10.1002/adhm.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan in the extracellular matrix with immunoregulatory properties depending on its molecular weight (MW). However, the impact of matrix-bound HA on dendritic cells (DCs) remains unclear due to varying distribution of HA MW under different physiological conditions. To investigate DCs in defined biosystems, 3D collagen matrices modified with HA of specific MW with similar microstructure and HA levels are used. It is found that HA MW influences cytokine binding to matrix, suggesting modulation of cytokine availability by the different HA MWs. These studies on DC immune potency reveal that low MW HA (8-15 kDa) enhances immature DC differentiation and antigen uptake, while medium (MMW-HA; 500-750 kDa) and high MW HA (HMW-HA; 1250-1500 kDa) increase cytokine secretion in mature DCs. The effect on DC phenotype and cytokine secretion by different MWs of HA is independent of CD44. However, blocking the CD44 receptor reveals its potential role in regulating acute inflammation through increased secretion of CCL2, CXCL8, and IL-6. Additionally, MMW- and HMW-HA matrices reduce migratory capacity of DCs, dependent on CD44. Overall, these findings provide insights into MW-dependent effects of matrix-bound HA on DCs, opening avenues for the design of DC-modulating materials to enhance DC-based therapy.
Collapse
Affiliation(s)
- Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
9
|
Della Rocca Y, Diomede F, Konstantinidou F, Trubiani O, Soundara Rajan T, Pierdomenico SD, Gatta V, Stuppia L, Marconi GD, Pizzicannella J. Protective effect of oral stem cells extracellular vesicles on cardiomyocytes in hypoxia-reperfusion. Front Cell Dev Biol 2024; 11:1260019. [PMID: 38288344 PMCID: PMC10823008 DOI: 10.3389/fcell.2023.1260019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Hypoxia signaling plays an important role in physiological and pathological conditions. Hypoxia in the heart tissue can produce different consequences depending on the duration of exposure to the hypoxic state. While acute hypoxic exposure leads to a reversible acclimatization in heart tissue with normal systemic oxygen supply, chronic hypoxia exacerbates cardiac dysfunction, leads to a destruction of the tissue. Extracellular vesicles (EVs) are small membrane vesicles that act as mediators of intercellular communication. EVs are secreted by different cell types and those produced by oral cavity-derived mesenchymal stem cells (MSCs), including human gingival MSCs (hGMSCs), have pro-angiogenic and anti-inflammatory effects and showed therapeutic role in tissue regeneration. The aim of the present work was to evaluate the potential protective and regenerative role of EVs produced by hGMSCs, in an in vitro model of hypoxia-conditioned HL-1 cardiomyocytes through the expression analysis of following inflammatory, oxidative stress, angiogenesis, cell survival and apoptotic markers: HIF-1α, P300, NFkB, CCL2, IL1B, IL6, NRF2, CASP-3, BAX and VEGF. Results showed that hGMSCs-derived EVs exerted protection HL-1 cardiomyocytes exposed to both pre and post hypoxic conditions. Moreover, modulation of CASP3 and BAX expression demonstrated that EVs reduced the apoptosis. The analysis of microRNAs in EVs derived from hGMSCs was performed to assess the epigenetic regulation of the presented markers. The following microRNAs: hsa-miR-138-5p, hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-21-5p, hsa-miR-324-5p, hsa-miR-133a-3p, hsa-miR-150-5p, hsa-miR-199a-5p, hsa-miR-128-3p and hsa-miR-221-3p can directly or indirectly target the studied genes by determining their modulation obtained in our study. The data from this study suggested that EVs obtained from hGMSCs may be considered for the cell free treatment option in hypoxia-driven cardiac tissue dysfunction.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Fanì Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Sante D. Pierdomenico
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. D’ Annunzio” Chieti-Pescara, Pescara, Italy
| |
Collapse
|
10
|
Marques JC, Ladislau de Carvalho KI, Xavier R, Nosé W, Rizzo LV. Inflammatory profile of keratoconic corneal epithelium. BMC Ophthalmol 2023; 23:326. [PMID: 37460969 DOI: 10.1186/s12886-023-03013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/02/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Recent studies have presented inflammatory features on keratoconus (KC) and many inflammatory markers are described in the tears of patients with this disease. The KC pathogenesis is still unknown just like the correlation with inflammatory patterns. However, environmental and genetic issues may be part of the progress of KC. In addition, some systemic features, such as allergy and obesity, seem to be related to the progression of KC. Our purpose was to evaluate the neuropeptides vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), chemokines ligand 2 (CCL-2) and 5 (CCL-5), and interleukins 6 (IL-6) and 8 (IL-8) on corneal epithelial cells and blood of patients with KC and in healthy controls. In addition, the neutrophil-to-lymphocyte ratio (NLR) was evaluated to predict inflammation. METHODS This including prospective observational study included 32 KC patients who underwent corneal crosslinking (CXL) and 32 control patients who underwent photorefractive keratectomy (PRK). Patients' corneal epithelial cells were removed surgically, and blood (buffy coat) was analyzed. Samples in triplicate were evaluated on rt-PCR for neuropeptides (VIP e NPY), interleukins (IL-6 e IL-8), and chemokines (CCL-2 and CCL-5). RESULTS Our study showed statistically higher CCL-5 and IL-8 on corneal epithelial cells in patients with KC. Blood cells were statistically higher in VIP and NPY in the KC group. Interleukin-8 on blood cells was statistically significant in KC'S group; for CCL-2 and CCL-5 they were statistically lower in patients with KC compared with controls. NLR showed no difference between the groups. CONCLUSIONS Our data support the findings of other studies that suggested altering KC status, such as inflammatory corneal disease. The presence of IL-8 in the cornea and blood samples of KC's group suggested systemic disease with a possible local or repercussion action. Further studies are warranted to elucidate KC pathogenesis and its correlation to systemic disease.
Collapse
Affiliation(s)
- Junia Cabral Marques
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil.
| | | | - Rafaela Xavier
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Walton Nosé
- Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Vicente Rizzo
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| |
Collapse
|
11
|
Pan Y, Hu Q, Yang Y, Nie H, Yin C, Wei H, Tai Y, Liu B, Shen Z, He X, Fang J, Liu B. Characterization of pain-related behaviors and gene expression profiling of peripheral sensory ganglia in a mouse model of acute ankle sprain. Front Behav Neurosci 2023; 17:1189489. [PMID: 37304762 PMCID: PMC10248128 DOI: 10.3389/fnbeh.2023.1189489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Lateral ankle sprain (LAS) is a very common type of joint injury. It occurred with high incidence among general population and especially among individuals participating sports and outdoor activities. A certain proportion of individuals who once developed LAS may suffer persistent ankle pain that affects daily activities. However, the mechanisms underlying LAS-induced pain still remained largely unknown. Methods We established a LAS mouse model and systematically evaluated the pain-related behaviors in this mouse model. RNA sequencing (RNA-Seq), combined with bioinformatics analysis, was undertaken to explore gene expression profiles. Immunostaining was used to study glial cell and neuron activation in ipsilateral spinal cord dorsal horn (SCDH) of LAS model mice. Ibuprofen was used to treat LAS model mice. Results The LAS model mice developed obvious signs of mechanical and heat hypersensitivities as well as gait impairments in ipsilateral hind paws. Besides, LAS model mice developed signs of pain-related emotional disorder, including pain-induced aversion. By RNA-Seq, we were able to identify certain differentially expressed genes and signaling pathways that might contribute to pain mechanisms of LAS mouse model. In addition, LAS model mice showed increased c-Fos and p-ERK immunoreactivity as well as astrocyte and microglia overactivation in ipsilateral spinal cord dorsal horn, indicating central sensitization might occur. Finally, LAS model mice respond to ibuprofen, a drug clinically used to treat ankle sprain pain. Conclusion Our study found LAS model mice may be used as a preclinical animal model for screening novel targets or therapies for ankle sprain. Thus, the study may further help to understand molecular mechanisms contributing to ankle sprain-induced pain.
Collapse
Affiliation(s)
- Yushuang Pan
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunqin Yang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huimin Nie
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huina Wei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Sklenarova R, Allaw M, Perra M, Castangia I, Frankova J, Luis Pedraz J, Letizia Manca M, Manconi M. Co-delivering of oleuropein and lentisk oil in phospholipid vesicles as an effective approach to modulate oxidative stress, cytokine secretion and promote skin regeneration. Eur J Pharm Biopharm 2023; 185:126-136. [PMID: 36871904 DOI: 10.1016/j.ejpb.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
In this work oleuropein and lentisk oil have been co-loaded in different phospholipid vesicles (i.e., liposomes, transfersomes, hyalurosomes and hyalutransfersomes), to obtain a formulation capable of both inhibiting the production of different markers connected with inflammation and oxidative stress and promoting the skin repair. Liposomes were prepared using a mixture of phospholipids, oleuropein and lentisk oil. Tween 80, sodium hyaluronate or their combination have been added to the mixture to obtain transfersomes, hyalurosomes and hyalutransfersomes. Size, polydispersity index, surface charge and stability on storage was evaluated. The biocompatibility, anti-inflammatory activity and wound healing effect were tested using normal human dermal fibroblasts. Vesicles were small (mean diameter ∼ 130 nm) and homogeneously dispersed (polydispersity index ∼ 0.14), highly negatively charged (zeta potential 02053-64 mV) and capable of loading 20 mg/mL of oleuropein and 75 mg/mL of lentisk oil. The freeze-drying of dispersions with a cryoprotectant permitted to improve their stability on storage. The co-loading of oleuropein and lentisk oil in vesicles inhibited the overproduction of inflammatory markers, especially MMP-1 and IL-6, counteracted the oxidative stress induced in cells using hydrogen peroxide, and promoted the healing of a wounded area performed in vitro in a cell monolayer of fibroblasts. The proposed co-loading of oleuropein and lentisk oil in natural-based phospholipid vesicles may hold promising therapeutic value especially for the treatment of a wide variety of skin disorders.
Collapse
Affiliation(s)
- Renata Sklenarova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Mohamad Allaw
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Matteo Perra
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Ines Castangia
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Josè Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy.
| | - Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
13
|
Gao YJ, Li SR, Huang Y. An inflammation-related gene landscape predicts prognosis and response to immunotherapy in virus-associated hepatocellular carcinoma. Front Oncol 2023; 13:1118152. [PMID: 36969014 PMCID: PMC10033597 DOI: 10.3389/fonc.2023.1118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundDue to the viral infection, chronic inflammation significantly increases the likelihood of hepatocellular carcinoma (HCC) development. Nevertheless, an inflammation-based signature aimed to predict the prognosis and therapeutic effect in virus-related HCC has rarely been established.MethodBased on the integrated analysis, inflammation-associated genes (IRGs) were systematically assessed. We comprehensively investigated the correlation between inflammation and transcriptional profiles, prognosis, and immune cell infiltration. Then, an inflammation-related risk model (IRM) to predict the overall survival (OS) and response to treatment for virus-related HCC patients was constructed and verified. Also, the potential association between IRGs and tumor microenvironment (TME) was investigated. Ultimately, hub genes were validated in plasma samples and cell lines via qRT-PCR. After transfection with shCCL20 combined with overSLC7A2, morphological change of SMMC7721 and huh7 cells was observed. Tumorigenicity model in nude mouse was established.ResultsAn inflammatory response-related gene signature model, containing MEP1A, CCL20, ADORA2B, TNFSF9, ICAM4, and SLC7A2, was constructed by conjoint analysis of least absolute shrinkage and selection operator (LASSO) Cox regression and gaussian finite mixture model (GMM). Besides, survival analysis attested that higher IRG scores were positively relevant to worse survival outcomes in virus-related HCC patients, which was testified by external validation cohorts (the ICGC cohort and GSE84337 dataset). Univariate and multivariate Cox regression analyses commonly proved that the IRG was an independent prognostic factor for virus-related HCC patients. Thus, a nomogram with clinical factors and IRG was also constructed to superiorly predict the prognosis of patients. Featured with microsatellite instability-high, mutation burden, and immune activation, lower IRG score verified a superior OS for sufferers. Additionally, IRG score was remarkedly correlated with the cancer stem cell index and drug susceptibility. The measurement of plasma samples further validated that CCL20 upexpression and SLC7A2 downexpression were positively related with virus-related HCC patients, which was in accord with the results in cell lines. Furthermore, CCL20 knockdown combined with SLC7A2 overexpression availably weakened the tumor growth in vivo.ConclusionsCollectively, IRG score, serving as a potential candidate, accurately and stably predicted the prognosis and response to immunotherapy in virus-related HCC patients, which could guide individualized treatment decision-making for the sufferers.
Collapse
Affiliation(s)
- Ying-jie Gao
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shi-rong Li
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Huang
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, China
- *Correspondence: Yuan Huang,
| |
Collapse
|
14
|
Li X, Guo D, Zhou W, Hu Y, Zhou H, Chen Y. The Potential Prognostic, Diagnostic and Therapeutic Targets for Recurrent Arrhythmias in Patients with Coronary Restenosis and Reocclusions After Coronary Stenting. Curr Pharm Des 2022; 28:3500-3512. [PMID: 36424794 DOI: 10.2174/1381612829666221124110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The interplay of oxidative stress, proinflammatory microparticles, and proinflammatory cytokines in recurrent arrhythmias is unknown in elderly patients with coronary restenosis and reocclusions after coronary stenting. OBJECTIVE This research sought to investigate the potential diagnostic and therapeutic targets for recurrent arrhythmias in patients with coronary restenosis and reocclusions after coronary stenting. METHODS We examined whether oxidative stress, proinflammatory microparticles, and proinflammatory cytokines could have effects that lead to recurrent arrhythmias in elderly patients with coronary restenosis and reocclusions. We measured the levels of malondialdehyde (MDA), CD31 + endothelial microparticle (CD31 EMP), CD62E + endothelial microparticle (CD62E + EMP), high-sensitivity C-reactive protein (hs-CRP), interleukin- 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), as well as oxidized low-density lipoprotein (OX-LDL), and assessed the effects of relationship between oxidative stress, proinflammatory microparticles, and proinflammatory cytokines on recurrent atrial and ventricular arrhythmias in elderly patients with coronary restenosis and reocclusions after coronary stenting. RESULTS The levels of CD31 + EMP, CD62E + EMP, MDA, hs-CRP, IL-1β, IL-6, IL-8, TNF-α and OX-LDL were found to be increased significantly in coronary restenosis + recurrent atrial arrhythmia group compared to without coronary restenosis and coronary restenosis + without recurrent atrial arrhythmia groups, respectively (P < 0.001). Patients in the coronary reocclusion + recurrent ventricular arrhythmia group also exhibited significantly increased levels of CD31 + EMP, CD62E + EMP, MDA, hs-CRP, IL-1β, IL-6, IL-8, TNF-α and OXLDL compared to without coronary reocclusion and coronary reocclusion + without recurrent ventricular arrhythmia groups, respectively (P < 0.001). CONCLUSION Proinflammatory microparticles, proinflammatory cytokines, and oxidative stress might act as potential targets for recurrent arrhythmias in patients with coronary restenosis and reocclusions after coronary stenting.
Collapse
Affiliation(s)
- Xia Li
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Dianxuan Guo
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Wenhang Zhou
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Youdong Hu
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Hualan Zhou
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Ying Chen
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| |
Collapse
|
15
|
Chen C, Wang N, Wang B, Zhang Q, Hu Y, Cheng G, Tao S, Huang J, Wang C, Zhang Y. Network analysis-based strategy to investigate the protective effect of cepharanthine on rat acute respiratory distress syndrome. Front Pharmacol 2022; 13:1054339. [DOI: 10.3389/fphar.2022.1054339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Combined with Network Analysis (NA) and in vivo experimental methods, we explored and verified the mechanism of Cepharanthine (CEP) involved in the treatment of acute respiratory distress syndrome (ARDS). Potential targets of CEP were searched using the SwissTargetPrediction database. The pathogenic genes related to ARDS were obtained using the DisGeNET database. A protein-protein interaction network of common target genes of disease-compound was subsequently built and visualised. Functional enrichment analysis was performed through the Enrichr database. Finally, for in vivo experimental verification, we established an oleic acid-induced ARDS rat model, mainly through histological evaluation and the ELISA method to evaluate both the protective effect of CEP on ARDS and its effect on inflammation. A total of 100 genes were found to be CEP targeted genes, while 153 genes were found to be associated with ARDS. The PPI network was used to illustrate the link and purpose of the genes associated with CEP and ARDS, which contained 238 nodes and 2,333 links. GO and KEGG analyses indicated that inflammatory response and its related signalling pathways were closely associated with CEP-mediated ARDS treatment. Thus, a key CEP–gene–pathway-ARDS network was constructed through network analysis, including 152 nodes (5 targets and 6 pathways) and 744 links. The results of in vivo experiments showed that CEP could alleviate histopathological changes and pulmonary edema related to ARDS, in addition to reducing neutrophil infiltration and secretion of inflammatory cytokines, whilst increasing serum contents of ResolvinD1 and ResolvinE1. Thus, these effects enhance the anti-inflammatory responses. Thus, our results show that CEP can treat oleic acid-induced ARDS in rats via ResolvinE1 and ResolvinD1 signalling pathways that promote inflammation resolution, providing a new avenue to explore for the clinical treatment of ARDS.
Collapse
|
16
|
The Molecular Mechanism of Traditional Chinese Medicine Prescription: Gu-tong Formula in Relieving Osteolytic Bone Destruction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4931368. [PMID: 35872837 PMCID: PMC9300326 DOI: 10.1155/2022/4931368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 01/01/2023]
Abstract
Bone metastasis is a common complication in patients with advanced tumors, causing pain and bone destruction and affecting their quality of life. Typically, complementary and alternative medicine (CAM), with unique theoretical guidance, has played key roles in the treatment of tumor-related diseases. Gu-tong formula (GTF), as a representative prescription of traditional Chinese medicine, has been demonstrated to be an effective clinical medication for the relief of cancer pain. However, the molecular mechanism of GTF in the treatment of osteolytic metastasis is still unclear. Herein, we employ network pharmacology and molecular dynamics methods to uncover the potential treatment mechanism, indicating that GTF can reduce the levels of serum IL6 and TGFB1 and thus limit the scope of bone cortical damage. Among the active compounds, sesamin and deltoin can bind stably with IL6 and TGFB1, respectively, and have the potential to become anti-inflammatory and anticancer drugs. Although the reasons for the therapeutic effect of GTF are complex and comprehensive, this work provides biological plausibility in the treatment of osteolytic metastases, which has a guiding significance for the treatment of cancer pain with CAM.
Collapse
|
17
|
Swain T, Chavez C, Myers MJ. Effects of swine microRNA mimics on lipopolysaccharide (LPS) induced inflammatory changes in 3D4/21 cells. Res Vet Sci 2022; 150:115-121. [PMID: 35816767 DOI: 10.1016/j.rvsc.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
There have been limited studies focused on validation of swine microRNAs (miRNA) with mRNA targets. The objective of this study was to validate a defined set of targets using artificial miRNA mimics transfected into cell lines to confirm specific targets of endogenous miRNAs after administration of Escherichia coli lipopolysaccharide (LPS). Sixteen hours after mimic transfection of 3D4/21 cell lines, the cells were stimulated with 1 μg/ml LPS or phosphate-buffered saline (PBS). The cells were harvested and collected at 0, 1, 3, and 8 h post administration. The selected genes DAD1, IL8, and ESR, which are involved in known pathways of inflammation. and are predicted or validated human targets of either miR-146a, let-7a, or miR-22-3p. These were then evaluated by quantitative real-time-PCR (qRT-PCR) to verify microRNA-mRNA interaction in swine. Using the ROX reference dye, mRNA changes in expression were assessed using the comparative CT Method (ΔΔCT method) for normalization against the PBS control group. DAD1 and ESR1 were negatively regulated by miR-22-3p and miR-146a-5p, respectively in 3D4/21 cells after LPS stimulation. However, miR-146a-5p may play an indirect positive regulatory role of both DAD1 and IL8 mRNA expression. Furthermore, we found an inverse relationship between LPS stimulation compared with the let-7a-5p overexpression with DAD1. Our inflammation study provides new evidence on the roles and predicted targets of miR-146a, let-7a, and miR-22-3p in swine.
Collapse
Affiliation(s)
- Trevon Swain
- U.S. Food and Drug Administration Center for Veterinary Medicine, Laurel, MD 20708, United States of America
| | - Chris Chavez
- U.S. Food and Drug Administration Center for Veterinary Medicine, Laurel, MD 20708, United States of America
| | - Michael J Myers
- U.S. Food and Drug Administration Center for Veterinary Medicine, Laurel, MD 20708, United States of America.
| |
Collapse
|
18
|
Valentine T, Hardowar L, Elphick-Ross J, Hulse RP, Paul-Clark M. The Role of Vascular-Immune Interactions in Modulating Chemotherapy Induced Neuropathic Pain. Front Pharmacol 2022; 13:887608. [PMID: 35814225 PMCID: PMC9257211 DOI: 10.3389/fphar.2022.887608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Chemotherapy causes sensory disturbances in cancer patients that results in neuropathies and pain. As cancer survivorships has dramatically increased over the past 10 years, pain management of these patients is becoming clinically more important. Current analgesic strategies are mainly ineffective and long-term use is associated with severe side effects. The issue being that common analgesic strategies are based on ubiquitous pain mediator pathways, so when applied to clinically diverse neuropathic pain and neurological conditions, are unsuccessful. This is principally due to the lack of understanding of the driving forces that lead to chemotherapy induced neuropathies. It is well documented that chemotherapy causes sensory neurodegeneration through axonal atrophy and intraepidermal fibre degeneration causing alterations in pain perception. Despite the neuropathological alterations associated with chemotherapy-induced neuropathic pain being extensively researched, underlying causes remain elusive. Resent evidence from patient and rodent studies have indicated a prominent inflammatory cell component in the peripheral sensory nervous system in effected areas post chemotherapeutic treatment. This is accompanied by modulation of auxiliary cells of the dorsal root ganglia sensory neurons such as activation of satellite glia and capillary dysfunction. The presence of a neuroinflammatory component was supported by transcriptomic analysis of dorsal root ganglia taken from mice treated with common chemotherapy agents. With key inflammatory mediators identified, having potent immunoregulatory effects that directly influences nociception. We aim to evaluate the current understanding of these immune-neuronal interactions across different cancer therapy drug classes. In the belief this may lead to better pain management approaches for cancer survivors.
Collapse
|
19
|
Grech L, Ebejer JP, Mazzitelli O, Schembri K, Borg J, Seria E. Possible Role of Circulating Bone Marrow Mesenchymal Progenitors in Modulating Inflammation and Promoting Wound Repair. Int J Mol Sci 2021; 23:78. [PMID: 35008501 PMCID: PMC8744598 DOI: 10.3390/ijms23010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Circulating bone marrow mesenchymal progenitors (BMMPs) are known to be potent antigen-presenting cells that migrate to damaged tissue to secrete cytokines and growth factors. An altered or dysregulated inflammatory cascade leads to a poor healing outcome. A skin model developed in our previous study was used to observe the immuno-modulatory properties of circulating BMMP cells in inflammatory chronic wounds in a scenario of low skin perfusion. BMMPs were analysed exclusively and in conjunction with recombinant tumour necrosis factor alpha (TNFα) and recombinant hepatocyte growth factor (HGF) supplementation. We analysed the expression levels of interleukin-8 (IL-8) and ecto-5'-nucleotidase (CD73), together with protein levels for IL-8, stem cell factor (SCF), and fibroblast growth factor 1 (FGF-1). The successfully isolated BMMPs were positive for both hemopoietic and mesenchymal markers and showed the ability to differentiate into adipocytes, chondrocytes, and osteocytes. Significant differences were found in IL-8 and CD73 expressions and IL-8 and SCF concentrations, for all conditions studied over the three time points taken into consideration. Our data suggests that BMMPs may modulate the inflammatory response by regulating IL-8 and CD73 and influencing IL-8 and SCF protein secretions. In conclusion, we suggest that BMMPs play a role in wound repair and that their induced application might be suitable for scenarios with a low skin perfusion.
Collapse
Affiliation(s)
- Laura Grech
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| | - Jean-Paul Ebejer
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| | - Oriana Mazzitelli
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta;
| | - Kevin Schembri
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta Medical School and Mater Dei Hospital, MSD 2080 Msida, Malta;
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta;
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| |
Collapse
|
20
|
ZFP36 family members regulate the pro-inflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol 2021; 142:402-413. [PMID: 34333017 DOI: 10.1016/j.jid.2021.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Dermal fibroblasts are strategically positioned underneath the basal epidermis layer to support keratinocyte proliferation and extracellular matrix production. In inflammatory conditions, these fibroblasts produce cytokines and chemokines that promote the chemoattraction of immune cells into the dermis and the hyperplasia of the epidermis, two characteristic hallmarks of Psoriasis (Pso). However, how dermal fibroblasts specifically contribute to Pso development remains largely uncharacterized. Here we investigated through which cytokines and signaling pathways dermal fibroblasts contribute to the inflammatory features of psoriatic skin. We show that dermal fibroblasts from lesional Pso skin are important producers of inflammatory mediators, including IL6, CXCL8 and CXCL2. This increased cytokine production was found to be regulated by ZFP36 family members ZFP36, ZFP36L1 and ZPF36L2, RNA-binding proteins with mRNA-degrading properties. Additionally, the expression of ZFP36 family proteins was found reduced in chronic inflammatory conditions that mimic psoriatic lesional skin. Collectively, these results indicate that dermal fibroblasts are important producers of cytokines in psoriatic skin, and that reduced expression of ZFP36 members in Pso dermal fibroblasts contributes to their inflammatory phenotype.
Collapse
|
21
|
Solis-Castro OO, Wong N, Boissonade FM. Chemokines and Pain in the Trigeminal System. FRONTIERS IN PAIN RESEARCH 2021; 2:689314. [PMID: 35295531 PMCID: PMC8915704 DOI: 10.3389/fpain.2021.689314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chemotactic cytokines or chemokines are a large family of secreted proteins able to induce chemotaxis. Chemokines are categorized according to their primary amino acid sequence, and in particular their cysteine residues that form disulphide bonds to maintain the structure: CC, CXC, CX3C, and XC, in which X represents variable amino acids. Among their many roles, chemokines are known to be key players in pain modulation in the peripheral and central nervous systems. Thus, they are promising candidates for novel therapeutics that could replace current, often ineffective treatments. The spinal and trigeminal systems are intrinsically different beyond their anatomical location, and it has been suggested that there are also differences in their sensory mechanisms. Hence, understanding the different mechanisms involved in pain modulation for each system could aid in developing appropriate pharmacological alternatives. Here, we aim to describe the current landscape of chemokines that have been studied specifically with regard to trigeminal pain. Searching PubMed and Google Scholar, we identified 30 reports describing chemokines in animal models of trigeminal pain, and 15 reports describing chemokines involved in human pain associated with the trigeminal system. This review highlights the chemokines studied to date at different levels of the trigeminal system, their cellular localization and, where available, their role in a variety of animal pain models.
Collapse
Affiliation(s)
- Oscar O. Solis-Castro
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Wong
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Fiona M. Boissonade
| |
Collapse
|
22
|
Yamaguchi K, Yamazaki S, Kumakura S, Someya A, Iseki M, Inada E, Nagaoka I. Yokukansan, a Japanese Herbal Medicine, Suppresses Substance PInduced Production of Interleukin-6 and Interleukin-8 by Human U373 MG Glioblastoma Astrocytoma Cells. Endocr Metab Immune Disord Drug Targets 2021; 20:1073-1080. [PMID: 32003704 DOI: 10.2174/1871530320666200131103733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Yokukansan is a traditional Japanese herbal medicine that has an antiallodynic effect in patients with chronic pain. However, the mechanisms by which yokukansan inhibits neuropathic pain are unclear. OBJECTIVE This study aimed to investigate the molecular effects of yokukansan on neuroinflammation in U373 MG glioblastoma astrocytoma cells, which express a functional high-affinity neurokinin 1 receptor (substance P receptor), and produce interleukin (IL)-6 and IL-8 in response to stimulation by substance P (SP). METHODS We assessed the effect of yokukansan on the expression of ERK1/2, P38 MAPK, nuclear factor (NF)-κB, and cyclooxygenase-2 (COX-2) in U373 cells by western blot assay. Levels of IL-6 and IL-8 in conditioned medium obtained after stimulation of cells with SP for 24 h were measured by enzyme-linked immunosorbent assay. All experiments were conducted in triplicate. Results were analyzed by one-way ANOVA, and significance was accepted at p < 0.05. RESULTS Yokukansan suppressed SP-induced production of IL-6 and IL-8 by U373 MG cells, and downregulated SP-induced COX-2 expression. Yokukansan also inhibited phosphorylation of ERK1/2 and p38 MAPK, as well as nuclear translocation of NF-κB, induced by SP stimulation of U373 MG cells. CONCLUSION Yokukansan exhibits anti-inflammatory activity by suppressing SP-induced production of IL-6 and IL-8 and downregulating COX-2 expression in U373 MG cells, possibly via inhibition of the activation of signaling molecules, such as ERK1/2, p38 MAPK, and NF-κB.
Collapse
Affiliation(s)
- Keisuke Yamaguchi
- Department of Anesthesiology and Pain Medicine, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Sho Yamazaki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Seiichiro Kumakura
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Eiichi Inada
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
23
|
Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094666. [PMID: 33925121 PMCID: PMC8125634 DOI: 10.3390/ijms22094666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.
Collapse
|
24
|
Dansereau MA, Midavaine É, Bégin-Lavallée V, Belkouch M, Beaudet N, Longpré JM, Mélik-Parsadaniantz S, Sarret P. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J Neuroinflammation 2021; 18:79. [PMID: 33757529 PMCID: PMC7986025 DOI: 10.1186/s12974-021-02125-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.
Collapse
Affiliation(s)
- Marc-André Dansereau
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Élora Midavaine
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Valérie Bégin-Lavallée
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mounir Belkouch
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Nicolas Beaudet
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Stéphane Mélik-Parsadaniantz
- Centre de Recherche Institut de la Vision, Université Pierre et Marie Curie, INSERM, UMR_S968, CNRS, UMR_7210, Paris, France
| | - Philippe Sarret
- Département de Pharmacologie & Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada.
| |
Collapse
|
25
|
Żychowska M, Grzybkowska A, Zasada M, Piotrowska A, Dworakowska D, Czerwińska-Ledwig O, Pilch W, Antosiewicz J. Effect of six weeks 1000 mg/day vitamin C supplementation and healthy training in elderly women on genes expression associated with the immune response - a randomized controlled trial. J Int Soc Sports Nutr 2021; 18:19. [PMID: 33653365 PMCID: PMC7923494 DOI: 10.1186/s12970-021-00416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background In this study, we investigated the effects of supplementation and exercise on the expression of genes associated with inflammation like CCL2, CRP, IL1, IL6, IL10 mRNA in elderly women. Methods Twenty four participants divided randomly into two groups were subjected to 6 weeks of the same health training program (three times per week). SUP group (supplemented, n = 12, mean age 72.8 ± 5.26 years and mean body mass 68.1 ± 8.3 kg) received 1000 mg of Vitamin C/day during the training period, while CON group (control, n = 12, mean age 72.4 ± 5.5 years and body mass 67.7 ± 7.5 kg) received placebo. Results No significant changes in IL-1, IL-6, IL-10 and CRP mRNA were observed within and between groups. However, there was a clear tendency of a decrease in IL-6 (two-way ANOVA, significant between investigated time points) and an increase in IL-10 mRNA noted in the supplemented group. A significant decrease in CCL2 mRNA was observed only in the CON group (from 2^0.2 to 2^0.1, p = 0.01). Conclusions It can be concluded, that 6 weeks of supplementation and exercise was too short to obtain significant changes in gene expression in leukocytes, but supplementation of 1000 mg vitamin C positively affected IL-6 and IL-10 expression – which are key changes in the adaptation to training. However, changes in body mass, IL1 and CCL2 were positive in CON group. It is possible that Vitamin C during 6 weeks of supplementation could have different effects on the expression of individual genes involved in the immune response. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Małgorzata Żychowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland. .,Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland.
| | - Agata Grzybkowska
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland
| | - Mariusz Zasada
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Anna Piotrowska
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Danuta Dworakowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, Jana Karola Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Olga Czerwińska-Ledwig
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Wanda Pilch
- Institute for Basic Sciences, Faculty of Physiotherapy, University of Physical Education in Krakow, Jana Pawła II 78, 31-571, Krakow, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
26
|
Voß AL, Fischer-Tenhagen C, Bartel A, Heuwieser W. Sensitivity and specificity of a tail-activity measuring device for calving prediction in dairy cattle. J Dairy Sci 2020; 104:3353-3363. [PMID: 33358788 DOI: 10.3168/jds.2020-19277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Efficient calving surveillance is essential for avoiding stillbirth due to unattended dystocia. Calving sensors can help detect the onset of parturition and thus ensure timely calving assistance if necessary. Tail-raising is an indicator of imminent calving. The objective of this study was to evaluate a tail-mounted inclinometer sensor (Moocall Ltd., Dublin, Ireland) and to monitor skin integrity after sensor attachment. Cows (n = 157) and heifers (n = 23) were enrolled at 275 d post insemination, and a sensor was attached to each cow's tail. Investigators checked for signs indicating the onset of stage II of parturition, verified the position of the sensor, and evaluated the skin integrity of the tail above and below the sensor hourly for 24 h/d. We used 5 different intervals (i.e., 1, 2, 4, 12, and 24 h until calving) to calculate sensitivity and specificity. Sensors continuously remained on the tail (i.e., within 3 cm of the initial attachment position) after initial attachment until the onset of calving in only 13.9% of animals (n = 25). Sensors were reattached until a calving event occurred (51.6%) or the animal was excluded for other reasons (34.4%). In 31 animals the sensor was removed because the tail was swollen or painful. Heifers were significantly less likely than cows to lose a sensor but more likely to experience tail swelling or pain. Depending on the interval preceding the onset of parturition, sensitivity varied from 19 to 75% and specificity from 63 to 96%.
Collapse
Affiliation(s)
- A L Voß
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine
| | | | - A Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Koenigsweg 65, 14163 Berlin, Germany
| | - W Heuwieser
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine.
| |
Collapse
|
27
|
Thompson D, Watt JA, Brissette CA. Host transcriptome response to Borrelia burgdorferi sensu lato. Ticks Tick Borne Dis 2020; 12:101638. [PMID: 33360384 DOI: 10.1016/j.ttbdis.2020.101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
The host immune response to infection is a well-coordinated system of innate and adaptive immune cells working in concert to prevent the colonization and dissemination of a pathogen. While this typically leads to a beneficial outcome and the suppression of disease pathogenesis, the Lyme borreliosis bacterium, Borrelia burgdorferi sensu lato, can elicit an immune profile that leads to a deleterious state. As B. burgdorferi s.l. produces no known toxins, it is suggested that the immune and inflammatory response of the host are responsible for the manifestation of symptoms, including flu-like symptoms, musculoskeletal pain, and cognitive disorders. The past several years has seen a substantial increase in the use of microarray and sequencing technologies to investigate the transcriptome response induced by B. burgdorferi s.l., thus enabling researchers to identify key factors and pathways underlying the pathophysiology of Lyme borreliosis. In this review we present the major host transcriptional outcomes induced by the bacterium across several studies and discuss the overarching theme of the host inflammatory and immune response, and how it influences the pathology of Lyme borreliosis.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - John A Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
28
|
Baralić K, Jorgovanović D, Živančević K, Antonijević Miljaković E, Antonijević B, Buha Djordjevic A, Ćurčić M, Đukić-Ćosić D. Safety assessment of drug combinations used in COVID-19 treatment: in silico toxicogenomic data-mining approach. Toxicol Appl Pharmacol 2020; 406:115237. [PMID: 32920000 PMCID: PMC7483129 DOI: 10.1016/j.taap.2020.115237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
Improvement of COVID-19 clinical condition was seen in studies where combination of antiretroviral drugs, lopinavir and ritonavir, as well as immunomodulant antimalaric, chloroquine/hydroxychloroquine together with the macrolide-type antibiotic, azithromycin, was used for patient's treatment. Although these drugs are "old", their pharmacological and toxicological profile in SARS-CoV-2 - infected patients are still unknown. Thus, by using in silico toxicogenomic data-mining approach, we aimed to assess both risks and benefits of the COVID-19 treatment with the most promising candidate drugs combinations: lopinavir/ritonavir and chloroquine/hydroxychloroquine + azithromycin. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite portal (https://toppgene.cchmc.org) served as a foundation in our research. Our results have demonstrated that lopinavir/ritonavir increased the expression of the genes involved in immune response and lipid metabolism (IL6, ICAM1, CCL2, TNF, APOA1, etc.). Chloroquine/hydroxychloroquine + azithromycin interacted with 6 genes (CCL2, CTSB, CXCL8, IL1B, IL6 and TNF), whereas chloroquine and azithromycin affected two additional genes (BCL2L1 and CYP3A4), which might be a reason behind a greater number of consequential diseases. In contrast to lopinavir/ritonavir, chloroquine/hydroxychloroquine + azithromycin downregulated the expression of TNF and IL6. As expected, inflammation, cardiotoxicity, and dyslipidaemias were revealed as the main risks of lopinavir/ritonavir treatment, while chloroquine/hydroxychloroquine + azithromycin therapy was additionally linked to gastrointestinal and skin diseases. According to our results, these drug combinations should be administrated with caution to patients suffering from cardiovascular problems, autoimmune diseases, or acquired and hereditary lipid disorders.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia.
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia.
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia.
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia.
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Serbia.
| |
Collapse
|
29
|
Slepukhina MA, Ivashchenko DV, Sheina MA, Muradian AA, Blagovestnov DA, Sychev DA. Pain pharmacogenetics. Drug Metab Pers Ther 2020; 35:dmpt-2020-2939. [PMID: 32776897 DOI: 10.1515/dmpt-2020-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022]
Abstract
Pain is a significant problem in medicine. The use of PGx markers to personalize postoperative analgesia can increase its effectiveness and avoid undesirable reactions. This article describes the mechanisms of nociception and antinociception and shows the pathophysiological mechanisms of pain in the human body. The main subject of this article is pharmacogenetic approach to the selection of anesthetics. Current review presents data for local and general anesthetics, opioids, and non-steroidal anti-inflammatory drugs. None of the anesthetics currently has clinical guidelines for pharmacogenetic testing. This literature review summarizes the results of original research available, to date, and draws attention to this area.
Collapse
Affiliation(s)
| | - Dmitriy V Ivashchenko
- Child Psychiatry and Psychotherapy Department, Department of Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Maria A Sheina
- Department of Anesthesiology and Intensive Care, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - Dmitriy A Sychev
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
30
|
Thompson D, Sorenson J, Greenmyer J, Brissette CA, Watt JA. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. PLoS One 2020; 15:e0234993. [PMID: 32645014 PMCID: PMC7347220 DOI: 10.1371/journal.pone.0234993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 11/19/2022] Open
Abstract
The main functions of the choroid plexus (CP) are the production of cerebral spinal fluid (CSF), the formation of the blood-CSF barrier, and regulation of immune response. This barrier allows for the exchange of specific nutrients, waste, and peripheral immune cells between the blood stream and CSF. Borrelia burgdorferi (Bb), the causative bacteria of Lyme disease, is associated with neurological complications including meningitis-indeed, Bb has been isolated from the CSF of patients. While it is accepted that B. burgdorferi can enter the central nervous system (CNS) of patients, it is unknown how the bacteria crosses this barrier and how the pathogenesis of the disease leads to the observed symptoms in patients. We hypothesize that during infection Borrelia burgdorferi will induce an immune response conducive to the chemotaxis of immune cells and subsequently lead to a pro-inflammatory state with the CNS parenchyma. Primary human choroid plexus epithelial cells were grown in culture and infected with B. burgdorferi strain B31 MI-16 for 48 hours. RNA was isolated and used for RNA sequencing and RT-qPCR validation. Secreted proteins in the supernatant were analyzed via ELISA. Transcriptome analysis based on RNA sequencing determined a total of 160 upregulated genes and 98 downregulated genes. Pathway and biological process analysis determined a significant upregulation in immune and inflammatory genes specifically in chemokine and interferon related pathways. Further analysis revealed downregulation in genes related to cell to cell junctions including tight and adherens junctions. These results were validated via RT-qPCR. Protein analysis of secreted factors showed an increase in inflammatory chemokines, corresponding to our transcriptome analysis. These data further demonstrate the role of the CP in the modulation of the immune response in a disease state and give insight into the mechanisms by which Borrelia burgdorferi may disseminate into, and act upon, the CNS. Future experiments aim to detail the impact of B. burgdorferi on the blood-CSF-barrier (BCSFB) integrity and inflammatory response within animal models.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jordyn Sorenson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jacob Greenmyer
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - John A. Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
31
|
Stabilization of the histone acetyltransferase Tip60 by deubiquitinating enzyme USP7 stimulates the release of pro-inflammatory mediators in acute lung injury. J Mol Med (Berl) 2020; 98:907-921. [PMID: 32440780 DOI: 10.1007/s00109-020-01910-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) is often associated with inflammation. Increasing evidence has identified the role for ubiquitin-specific protease 7 (USP7) in activating the expression of inflammatory factors in macrophages. The present study evaluated whether USP7 also mediates histone acetyltransferase Tat-interactive protein 60 (Tip60) in the development of ALI inflammation. An ALI mouse model was induced by intratracheal lipopolysaccharide (LPS) administration. Next, lung myeloperoxidase (MPO) activity and the ratio of dry weight/wet weight of lung were examined to evaluate tissue damage. In addition, RAW 264.7 cells were treated with LPS to induce an in vitro LPS-induced inflammatory cell model. ELISA was performed to measure expression of IL-1β, TNF-α, IL-6, and IL-8 in cells and tissues. TUNEL was used to detect LPS-induced cell apoptosis. Furthermore, the interaction between USP7 and Tip60 was identified by IP, Western blot analysis, and cycloheximide (CHX) treatment. The enrichment of Tip60 and H3K27ac in the promoter region of IL-6 and IL-8 was assessed by ChIP. USP7 was highly expressed in LPS-endotoxin-induced ALI mouse models and silencing of USP7 delayed the progression of ALI in mice. Silencing of USP7 protected RAW 264.7 cells against LPS-induced inflammation and apoptosis by downregulating IL-1β, TNF-α, IL-6, and IL-8. USP7 enhanced Tip60 protein stability, and Tip60 increased the enrichment of H3K27ac on IL-6 and IL-8 promoter region and activated NF-κB p65 to increase IL-6 and IL-8 expression. These findings reveal a new post-transcriptional role for USP7 in inflammation by stabilizing Tip60 and increasing the release of the pro-inflammatory cytokines, and implicate USP7 inhibitors as potential therapeutic agents for ALI. KEY MESSAGES: USP7 expresses highly in an acute lung injury (ALI) mouse models. Silencing of USP7 inhibits inflammation and cell apoptosis in ALI mouse. USP7 stabilizes Tip60 to boost the release of IL-6 and IL-8. Tip60 increases IL-6 and IL-8 expression by acetylating NF-κB p65. Silencing of USP7 alleviates ALI by repressing NF-κB p65 and Tip60.
Collapse
|
32
|
Therapeutic Effect of Intense Pulsed Light (IPL) Combined with Meibomian Gland Expression (MGX) on Meibomian Gland Dysfunction (MGD). J Ophthalmol 2020; 2020:3684963. [PMID: 32351719 PMCID: PMC7174928 DOI: 10.1155/2020/3684963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Our study aimed to evaluate the efficiency of intense pulsed light (IPL) combined with meibomian gland expression (MGX) in treating meibomian gland dysfunction (MGD). Methods This study was a prospective interventional study. A total of 53 patients were included in the study and received a series of three treatments at an interval of 3-4 weeks. Follow-up examinations were completed 4 weeks after the last treatment. The Ocular Surface Disease Index (OSDI) questionnaire, tear meniscus height (TMH), tear break-up time (TBUT), slit-lamp examinations, and in vivo confocal microscopy (IVCM) were recorded before and after treatment. Additionally, an artificial intelligence automated software program was applied in our study for corneal nerve analysis. Results The OSDI score was significantly reduced after the IPL treatment compared with baseline (P < 0.001). Meibomian gland assessment scores, including meibum quality and expressibility, eyelid margin abnormalities, and corneal staining, significantly decreased after treatment (P < 0.05). Moreover, the corneal nerve fiber length (CNFL) significantly increased after the treatment (P < 0.001). Conclusion Intense pulsed light (IPL) combined with MGX is an effective treatment for MGD, and neurotrophism could be one of the mechanisms of IPL.
Collapse
|
33
|
Jeong J, Choi J. Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCast™ and deep learning models combined approach. ENVIRONMENT INTERNATIONAL 2020; 137:105557. [PMID: 32078872 DOI: 10.1016/j.envint.2020.105557] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Various additives are used in plastic products to improve the properties and the durability of the plastics. Their possible elution from the plastics when plastics are fragmented into micro- and nano-size in the environment is suspected to one of the major contributors to environmental and human toxicity of microplastics. In this context, to better understand the hazardous effect of microplastics, the toxicity of chemical additives was investigated. Fifty most common chemicals presented in plastics were selected as target additives. Their toxicity was systematically identified using apical and molecular toxicity databases, such as ChemIDplus and ToxCast™. Among the vast ToxCast assays, those having intended gene targets were selected for identification of the mechanism of toxicity of plastic additives. Deep learning artificial neural network models were further developed based on the ToxCast assays for the chemicals not tested in the ToxCast program. Using both the ToxCast database and deep learning models, active chemicals on each ToxCast assays were identified. Through correlation analysis between molecular targets from ToxCast and mammalian toxicity results from ChemIDplus, we identified the fifteen most relevant mechanisms of toxicity for the understanding mechanism of toxicity of plastic additives. They are neurotoxicity, inflammation, lipid metabolism, and cancer pathways. Based on these, along with, previously conducted systemic review on the mechanism of toxicity of microplastics, here we have proposed potential adverse outcome pathways (AOPs) relevant to microplastics pollution. This study also suggests in vivo and in vitro toxicity database and deep learning model combined approach is appropriate to provide insight into the toxicity mechanism of the broad range of environmental chemicals, such as plastic additives.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
34
|
Wen R, Dong C, Xu C, Zhao L, Yang Y, Zhang Z, Chen Y, Duan L, Chen H, Yang Z, Zhang B. UM171 promotes expansion of autologous peripheral blood hematopoietic stem cells from poorly mobilizing lymphoma patients. Int Immunopharmacol 2020; 81:106266. [PMID: 32062079 DOI: 10.1016/j.intimp.2020.106266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation is an effective therapeutic strategy for lymphoma patients. However, some patients have to give up receiving transplantation because of failing to obtain sufficient CD34+ cells yields. Therefore, we ex vivo expanded HSCs of lymphoma patients using UM171 to solve the problem of HSCs deficiency. METHODS Mobilized peripheral blood-derived CD34+ cells from lymphoma patients were cultured for 10 days with or without UM171. The fold of cell expansion and the immunophenotype of expanded cells were assessed by flow cytometry. RNA-seq experiment was performed to identify the mechanism by which UM171 promoted HSCs expansion. RESULTS UM171 treatment increased the proportion of CD34+ (68.97 ± 6.91%), CD34+ CD38- cells (44.10 ± 9.20%) and CD34+CD38-CD45RA-CD90+ LT-HSCs (3.05 ± 2.08%) compared to vehicle treatment (36.08 ± 11.14%, 18.30 ± 9.49% and 0.56 ± 0.45%, respectively). UM171 treatment led to an 85.08-fold increase in LT-HSC numbers relative to initial cells. Importantly, UM171 promoted expansion of LT-HSCs achieved 138.57-fold in patients with poor mobilization. RNA-seq data showed that UM171 upregulated expression of HSC-, mast cell-specific genes and non-canonical Wnt signaling related genes, and inhibited genes expression of erythroid, megakaryocyte and inflammatory mediated chemokine. CONCLUSIONS Our study shows that UM171 can efficiently promote ex vivo expansion of HSCs from lymphoma patients, especially for poorly mobilizing patients. In terms of mechanism, UM171 upregulate HSC-specific genes expression and suppress erythroid and megakaryocytic differentiation, as well as activate non-classical Wnt signaling.
Collapse
Affiliation(s)
- Ruiting Wen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, PR China; Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Chen Dong
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, PR China; Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Chen Xu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, PR China; Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Long Zhao
- Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Yang Yang
- Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Zhihua Zhang
- Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Yanfu Chen
- Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Lian Duan
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China
| | - Zhigang Yang
- Department of Hematology and Rheumatology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524045, PR China.
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China; Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, PR China.
| |
Collapse
|
35
|
Ding Y, Feng Q, Chen J, Song J. TLR4/NF-κB signaling pathway gene single nucleotide polymorphisms alter gene expression levels and affect ARDS occurrence and prognosis outcomes. Medicine (Baltimore) 2019; 98:e16029. [PMID: 31261506 PMCID: PMC6617146 DOI: 10.1097/md.0000000000016029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To study the occurrence and prognosis of acute respiratory distress syndrome (ARDS) using single nucleotide polymorphisms (SNPs) of TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 loci in the TLR4/NF-κB pathway. METHODS Genotypes were analyzed for TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 loci. Plasma TNF-α and IL-6 levels and MyD88 mRNA expression in peripheral blood mononuclear cells (PBMCs) of 300 ARDS patients and 300 non-ARDS patients (control group) were examined. The patients were followed up for 60 days, and the prognosis outcome was recorded. RESULTS The TNF-α rs1800629 locus A allele and the IL-6 rs1800796 locus G allele were found to be risk factors for ARDS (adjusted OR = 1.452, 95% CI: 1.211-1.689, P < .001 and adjusted OR = 1.205, 95% CI: 1.058-1.358, P = .005, respectively). The G allele at MyD88 rs7744 locus was a protective factor against ARDS (adjusted OR = 0.748, 95% CI: 0.631-0.876, P < .001). Compared with the other groups, homozygotes for TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 loci had higher expression levels, of which homozygotes for TNF-α rs1800629 and IL-6 rs1800796 loci had lower 60-day survival rates, while MyD88 rs7744 locus homozygotes had a higher 60-day survival rate. CONCLUSION The effect of TNF-α rs1800629, IL-6 rs1800796, and MyD88 rs7744 SNPs on gene expression level is a likely cause of ARDS occurrence and poor prognosis.
Collapse
Affiliation(s)
- Yueping Ding
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road
| | - Qijia Feng
- Department of Intensive Care Unit, Hangzhou Lin’an District People's Hospital, 548# Yijin Road, Jincheng Town, Lin’an, Hangzhou
| | - Jianshi Chen
- Department of Intensive Care Unit, the Sencond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou
| | - Jia Song
- Department of Emergency, the Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, Zhejiang, PR China
| |
Collapse
|
36
|
Wong SSC, Sun L, Qiu Q, Gu P, Li Q, Wang XM, Cheung CW. Propofol attenuates postoperative hyperalgesia via regulating spinal GluN2B-p38MAPK/EPAC1 pathway in an animal model of postoperative pain. Eur J Pain 2019; 23:812-822. [PMID: 30570802 DOI: 10.1002/ejp.1349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Total intravenous anesthesia with propofol has been shown to reduce postoperative pain in some clinical studies, but knowledge of its underlying analgesic mechanism remains limited. In this study, we compared the analgesic effects of propofol versus isoflurane in an animal model of postoperative pain and evaluated its underlying molecular mechanisms. METHODS Plantar incision was made in the hind paws of rats under general anesthesia with 2.5% of inhalational isoflurane (isoflurane group) or intravenous infusion of propofol (1.5 mg kg-1 min-1 , propofol group). Mechanical allodynia was assessed by paw withdrawal threshold before and after incision. Spinal dorsal horns (L3-L5) were harvested 1 hr after incision to assess the level of phosphorylated GluN2B, p38MAPK, ERK, JNK, and EPAC using Western blot and immunofluorescence. RESULTS Mechanical allodynia induced by plantar incision peaked at 1 hr and lasted for 3 days after incision. It was significantly less in the propofol group compared with the isoflurane group in the first 2 hr following incision. The incision-induced increases in phosphorylated GluN2B, p38MAPK, and EPAC1 were significantly reduced in the propofol group. The number of spinal dorsal neurons co-expressed with EPAC1 and c-Fos after the incision was significantly lower in the propofol group. CONCLUSION Propofol reduced pain responses in an animal model of postoperative pain and suppressed the spinal GluN2B-p38MAPK/EPAC1 signaling pathway. Since the p38MAPK/EPAC pathway plays a critical role in the development of postoperative hyperalgesia, our results provide evidence-based behavioral, molecular, and cellular mechanisms for the analgesic effects of propofol when used for general anesthesia. SIGNIFICANCE These findings may provide a new mechanism for the postsurgical analgesic effect of propofol, which is particularly interesting during the subacute period after surgery as it is the critical period for the development of persistent postsurgical pain.
Collapse
Affiliation(s)
- Stanley S-C Wong
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liting Sun
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Qiu Qiu
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiao-Min Wang
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Hong Kong SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
37
|
Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:298-307. [PMID: 30447270 DOI: 10.1016/j.bbadis.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ACLF is usually associated with a precipitant in the setting of a chronically damaged liver. We aim to combine a mouse model with a pre-injured liver (Abcb4/Mdr2-/-) with a recently standardized ethanol feeding model to dissect alcohol-related inflammatory responses in this model. METHOD Ten (n = 64) and 15 (n = 64) week old wild-type (WT) C57BL/6 J and Abcb4-/- knock-out (KO) mice were either fed control (WT/Cont and KO/Cont groups) or liquid ethanol diet (5% v/v) followed by an ethanol binge (4 mg/kg) (WT/EtOH and KO/EtOH groups). Hepatic mRNA levels of IL6, IFN-G, IL-1B, TGFB1, TNF-A, CCL2, HGF, CRP, RANTES, PNPLA3 and COL3A1 were evaluated using the 2-ΔΔCt method. IL6 and HGF plasma levels were quantified by ELISA. RESULTS Older mice in KO/EtOH group displayed higher IL6 expressions compared to KO/Cont, WT/EtOH and WT/Cont groups of the same age, whereas HGF did not differ. Significant over-expression of CCL2 also corresponded to the same group. Males in KO/EtOH group exhibited higher IL6 expression than females. Lipid droplets were observed in about 80% of mice challenged with ethanol. There was a profound downregulation in PNPLA3 and RANTES levels after ethanol exposure. Mean size of the LDs was inversely correlated with hepatic PNPLA3 levels. CONCLUSION We propose a novel promising approach to model alcohol-related ACLI. Acute inflammatory IL6-driven response might help transition from a stable chronic state to a progressive liver damage in Abcb4-/- mice. Repression of PNPLA3 resulted in a notable expansion in size of lipid droplets, indicating lipid remodeling in this model.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
38
|
Qiu Q, Sun L, Wang XM, Lo ACY, Wong KL, Gu P, Wong SCS, Cheung CW. Propofol produces preventive analgesia via GluN2B-containing NMDA Receptor/ERK1/2 Signaling Pathway in a rat model of inflammatory pain. Mol Pain 2018; 13:1744806917737462. [PMID: 28969472 PMCID: PMC5644366 DOI: 10.1177/1744806917737462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract Propofol, an intravenous anesthetic, has been shown to offer superior analgesic effect clinically. Whether propofol has preventive analgesic property remains unexplored. The present study investigated the antinociceptive effect of propofol and underlying molecular and cellular mechanisms via pre-emptive administration in a formalin-induced inflammatory pain model in rats. Male adult Sprague–Dawley rats were randomly allocated into four groups: naïve (Group Naïve), formalin injection only (Group Formalin), and formalin injection at 30 min (Group P-30 min) or 2 h (Group P-2 h) after intravenous infusion of propofol (0.6 mg kg−1 min−1) for 1 h. Nociceptive responses and protein expression of phosphorylated- or pan-GluN2B, ERK1/2, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in the spinal dorsal horn were evaluated. Alteration of intracellular Ca2+ concentration induced by N-methyl-D-aspartate (NMDA) receptor agonists with or without pre-treatment of propofol was measured using fluorometry in SH-SY5Y cells while neuronal activation in the spinal dorsal horn by immunofluorescence. Pre-emptive propofol reduced pain with a delayed response to formalin and a reduction in hypersensitivity that lasted at least for 2 h. The formalin-induced activation of spinal GluN2B and ERK1/2 but not p38 or c-Jun N-terminal kinase was also diminished by propofol treatment. Preconditioning treatment with 3 µM and 10 µM of propofol inhibited Ca2+ influx mediated through NMDA receptors in SH-SY5Y cells. Propofol also reduced the neuronal expression of c-Fos and p-ERK induced by formalin. This study shows that pre-emptive administration of propofol produces preventive analgesic effects on inflammatory pain through regulating neuronal GluN2B-containing NMDA receptor and ERK1/2 pathway in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qiu Qiu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Liting Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao-Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kar Lok Wong
- Department of Anesthesiology, and Institute of Clinical Medical Sciences, and Research Group of Cardiovascular Biology, China Medical University and Hospital, Taichung, Taiwan
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Ching Stanley Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
39
|
Menna C, De Falco E, Teodonio L, Andreetti C, Maurizi G, Ciccone AM, D’Andrilli A, Cassiano F, Vanni C, Baccarini AE, Rendina EA, Ibrahim M. Surgical wound-site inflammation: video-assisted thoracic surgery versus thoracotomy. Interact Cardiovasc Thorac Surg 2018; 28:240-246. [DOI: 10.1093/icvts/ivy231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cecilia Menna
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Elena De Falco
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome ‘Sapienza’, Latina, Italy
| | - Leonardo Teodonio
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Claudio Andreetti
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Giulio Maurizi
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Anna Maria Ciccone
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Antonio D’Andrilli
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Francesco Cassiano
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Camilla Vanni
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Alberto E Baccarini
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| | - Erino Angelo Rendina
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
- Fondazione Eleonora Lorillard Spencer Cenci, Rome, Italy
| | - Mohsen Ibrahim
- Division of Thoracic Surgery, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome ‘Sapienza’, Rome, Italy
| |
Collapse
|
40
|
Solheim N, Gregersen I, Halvorsen B, Bjerkeli V, Stubhaug A, Gordh T, Rosseland LA. Randomized controlled trial of intra-articular ketorolac on pain and inflammation after minor arthroscopic knee surgery. Acta Anaesthesiol Scand 2018; 62:829-838. [PMID: 29512121 DOI: 10.1111/aas.13104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ketorolac is an effective non-steroidal anti-inflammatory drug, commonly used with local anaesthetics as part of local infiltration analgesia protocols following orthopaedic surgery. However, systemic uptake and drug action may be the major mechanism after local infiltration. The aims of this project were to study the effects of a small, systemically ineffective dose of ketorolac given intra-articularly for post-operative pain and also to study synovial inflammatory biomarkers. We investigated whether ketorolac affects pro-inflammatory biomarkers in an in vitro model, as well. METHODS In this placebo-controlled, blind, randomized study, we analysed intra-articular ketorolac (5 mg) in ambulatory minor knee surgery patients with moderate or severe pain (n = 44). We assessed post-operative pain intensity (n = 44) and analysed microdialysis samples taken from knee synovial tissue every 20 min (n = 34). We also tested cyclooxygenase-independent effects of ketorolac in synovial cells stimulated by prostaglandin E2 and chondroitin sulphate in vitro. RESULTS Intra-articular ketorolac (5 mg) administration did not reduce pain or synovial pro-inflammatory cytokines CXCL1, IL-8, and MCP-1, 0-120 min after knee arthroscopy. Female gender was a risk factor for moderate or severe pain (relative risk 1.45, 95% confidence interval 1.04-2.01). Paradoxically, ketorolac increased the release of CXCL1 and IL-8 in prostaglandin E2 and chondroitin sulphate-stimulated synovial cells in vitro. CONCLUSION Ketorolac prescribed at a low dose intra-articularly does not produce any detectable analgesic effect after minor knee surgery.
Collapse
Affiliation(s)
- N. Solheim
- Lovisenberg Diakonal Hospital; Oslo Norway
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - I. Gregersen
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Research Institute of Internal Medicine; Oslo University Hospital; Oslo Norway
| | - B. Halvorsen
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Research Institute of Internal Medicine; Oslo University Hospital; Oslo Norway
| | - V. Bjerkeli
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Research Institute of Internal Medicine; Oslo University Hospital; Oslo Norway
| | - A. Stubhaug
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Division of Emergencies and Critical Care; Department of Pain Medicine and Research; Oslo University Hospital; Oslo Norway
| | - T. Gordh
- Department of Surgical Sciences, Pain Medicine; Uppsala University; Uppsala Sweden
| | - L. A. Rosseland
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
- Division of Emergencies and Critical Care; Department of Research and Development; Oslo University Hospital; Oslo Norway
| |
Collapse
|
41
|
Maulina T, Diana H, Cahyanto A, Amaliya A. The efficacy of curcumin in managing acute inflammation pain on the post-surgical removal of impacted third molars patients: A randomised controlled trial. J Oral Rehabil 2018; 45:677-683. [PMID: 29908031 DOI: 10.1111/joor.12679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
Curcumin is a turmeric-contained active ingredient that has been proven to be effective in treating pain and inflammation due to its analgesic as well as anti-inflammation potential. Odontectomy, on the other hand, has been well known for its post-procedure acute inflammation pain. The aim of the current study was to evaluate the efficacy of curcuminoid in treating acute inflammation post-operative pain in the post-surgical removal of impacted third molars patients. Ninety (44 males; 46 females) participants were recruited in this randomised controlled trial and randomly assigned to the control group (those who consumed mefenamic acid) or the experimental group (those who consumed curcumin). Numeric rating scale (NRS) was used as an evaluation tool to evaluate the intensity of the pain experienced by the participants. Pain evaluation was performed immediately after anaesthesia effect disappeared (T0 ) and an hour after participant took their first (T1 ), second (T2 ) and third (T3 ) course of drugs. All data were collected and analysed using Wilcoxon-Mann-Whitney test. The current study showed that participants in both groups experienced significantly (P < .01) less pain compared to their initial pain level. In addition, when the two groups were compared, it was revealed that those in the treatment group experienced even significantly (P < .01) less pain compared to those in the control group. It can be concluded that curcumin is effective in treating acute inflammation pain in the post-surgical removal of impacted third molars patients.
Collapse
Affiliation(s)
- T Maulina
- Faculty of Dentistry, Oral Surgery Department, Universitas Padjadjaran, Bandung, Indonesia
| | - H Diana
- Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - A Cahyanto
- Faculty of Dentistry, Dental Materials Science and Technology Department, Universitas Padjadjaran, Bandung, Indonesia
| | - A Amaliya
- Faculty of Dentistry, Periodontology Department, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
42
|
Wang J, Wang W, Guo W, Ma Y, Ji T, Zhang B. Clinical importance of chemokines and inflammatory cytokines for patient care following percutaneous nephrolithotripsy. Exp Ther Med 2018; 15:2189-2195. [PMID: 29434824 DOI: 10.3892/etm.2017.5645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Chemokines are a class of proteins with low molecular weight that serve important roles in the progression of inflammation. Percutaneous nephrolithotripsy is a surgical technique in which lasers or ultrasound are utilized to break down and/or remove kidney stones. In order to ensure a full recovery following surgery, effective patient care and nursing are required. In the present study, a total of 348 patients with kidney stones were recruited and the clinical importance of chemokines and inflammatory cytokines for the nursing of patients during perioperative period was investigated. Plasma levels of inflammatory cytokines, as well as chemokines in the C, CC and CXC families, were analyzed in patients following percutaneous nephrolithotripsy. Correlations between chemokines and inflammatory cytokines and the urinary concentration of calcium oxalate were also investigated. The results indicated that plasma levels of C and CC chemokines were downregulated in patients following percutaneous nephrolithotripsy, whereas the plasma concentrations of CXC chemokines were upregulated. Plasma concentration levels of inflammatory cytokines interleukin (IL)-8, IL-1, IL-17 and tumor necrosis factor (TNF)-α were significantly downregulated in patients following percutaneous nephrolithotripsy; however, no significant differences were observed in plasma levels of IL-6 and IL-10 pre- and post-surgery. Regression analysis revealed that plasma concentration levels of chemokine C motif ligand, which is a C chemokine, chemokine ligand 2, which is a CC chemokine, and TNF-α were positively correlated with the urinary concentration of calcium oxalate during the perioperative period. The results of the present study indicate that plasma levels of chemokines and inflammatory cytokines are clinically important for nursing of patients who experienced percutaneous nephrolithotripsy.
Collapse
Affiliation(s)
- Junrong Wang
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Wang
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Guo
- Department of Opthalmology, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanru Ma
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Tianhui Ji
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Baodi Zhang
- Department of Surgery, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
43
|
Bao T, Seidman A, Li Q, Seluzicki C, Blinder V, Meghani SH, Farrar JT, Mao JJ. Living with chronic pain: perceptions of breast cancer survivors. Breast Cancer Res Treat 2018; 169:133-140. [PMID: 29350307 DOI: 10.1007/s10549-018-4670-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Breast cancer treatments may lead to chronic pain. For some breast cancer survivors (BCS), this experience can develop into the perception of living with chronic pain. The majority of BCS are postmenopausal and have hormone receptor-positive (HR+) breast cancer requiring aromatase inhibitors (AIs). Neither the prevalence nor risk factors associated with the perception of living with chronic pain among this population are well defined. METHODS We conducted a cross-sectional survey among postmenopausal, HR+ BCS who previously took or were currently taking AIs. The primary outcome was patients' perception of living with chronic pain over the past 6 months. We measured pain and demographic and clinical variables. Multivariable logistic regression analysis was performed to evaluate risk factors associated with the perception of chronic pain. RESULTS Among 1280 participants, 167 (13%) reported having the perception of living with chronic pain before their breast cancer diagnosis; 426 (34%) reported this perception after completion of non-hormonal cancer treatment. Seventy-eight percent of BCSs reported experiencing at least one type of treatment-related pain within the past 7 days, with 23% experiencing at least three types. The most common types of pain were AI-induced musculoskeletal pain (49%) and pain at the surgery or radiation site (31%). Younger age (< 56), BMI > 25, and the perception of living with chronic pain before diagnosis were risk factors associated with the perception of living with chronic pain. CONCLUSIONS One in three postmenopausal, HR+ BCS considered themselves to be living with chronic pain. Effective interventions to reduce chronic pain are needed.
Collapse
Affiliation(s)
- Ting Bao
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA.
| | - Andrew Seidman
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Qing Li
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Christina Seluzicki
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Victoria Blinder
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | | | - John T Farrar
- University of Pennsylvania Center for Clinical Epidemiology and Biostatistics, Philadelphia, PA, USA
| | - Jun J Mao
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| |
Collapse
|
44
|
Saligan LN, Lukkahatai N, Zhang ZJ, Cheung CW, Wang XM. Altered Cd8+ T lymphocyte Response Triggered by Arginase 1: Implication for Fatigue Intensification during Localized Radiation Therapy in Prostate Cancer Patients. ACTA ACUST UNITED AC 2018; 8:1249-1262. [PMID: 30364895 DOI: 10.4172/neuropsychiatry.1000454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fatigue, the most common side effect of cancer treatments, is observed to intensify during external-beam radiation therapy (EBRT). The underlying molecular mechanisms remain unclear. This study investigated the differentially expressed genes/proteins and their association with fatigue intensification during EBRT. Fatigue scores measured by FACT-F and peripheral blood were collected prior to treatment (baseline D0), at midpoint (days 19-21, D21) and endpoint (days 38-42, D42) from men (n=30) with non-metastatic prostate cancer undergoing EBRT. RNA extracted from peripheral blood was used for gene expression analysis. Plasma arginase I and arginine were examined using ELISA and liquid chromatography-tandem mass spectrometry. Differences in fatigue scores, gene and protein expression between times points following EBRT were analyzed by one way ANOVA followed by Post Hoc t-test. Fatigue scores decreased significantly from baseline (44.6 ± 8.1) to midpoint (37.3 ± 10.6, p=0.000, low scores indicating high fatigue) and to endpoint (37.4 ± 10.1, p=0.001) during EBRT. ARG1 (encoding arginase type 1) was significantly up regulated from baseline to midpoint of EBRT (fold change =2.41, p<0.05) whereas genes associated with the adaptive immune functional pathway (CD28, CD27, CCR7, CD3D, CD8A and HLA-DOB) were significantly downregulated >2-fold between the study time points. The changes in gene expression were associated with patient reported fatigue intensity. Moreover, the upregulation of ARG1 was negatively correlated with the absolute lymphocyte count (R2=0.561, p=0.01) only in the high level of fatigue group (n=17) during EBRT. Increased ARG1 expression is known to result in arginine deficiency, which leads to immunosuppression by impairing lymphocyte proliferation and activation. EBRT-induced ARG1 upregulation may play an essential role in fatigue intensification via the arginine deficiency and suppression of T-cell proliferation pathways. These findings may provide novel insights into the molecular-genetic mechanisms underlying the development and intensification of cancer treatment-related fatigue.
Collapse
Affiliation(s)
- Leorey N Saligan
- Nursing Research, Division of Intramural Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nada Lukkahatai
- School of Nursing, Johns Hopkins University, 525 North Wolfe Street, Baltimore, MD 21205 USA
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chi Wai Cheung
- Laboratory and Clinical research Institute for Pain, the University of Hong Kong, Hong Kong.,Department of Anesthesiology, the University of Hong Kong, Hong Kong
| | - Xiao-Min Wang
- Laboratory and Clinical research Institute for Pain, the University of Hong Kong, Hong Kong.,Department of Anesthesiology, the University of Hong Kong, Hong Kong
| |
Collapse
|
45
|
Starobova H, S. W. A. H, Lewis RJ, Vetter I. Transcriptomics in pain research: insights from new and old technologies. Mol Omics 2018; 14:389-404. [DOI: 10.1039/c8mo00181b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Physiological and pathological pain involves a complex interplay of multiple cell types and signaling pathways.
Collapse
Affiliation(s)
- H. Starobova
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - Himaya S. W. A.
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - R. J. Lewis
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| | - I. Vetter
- Centre for Pain Research
- Institute for Molecular Bioscience
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|
46
|
Starkweather AR, Ramesh D, Lyon DE, Siangphoe U, Deng X, Sturgill J, Heineman A, Elswick RK, Dorsey SG, Greenspan J. Acute Low Back Pain: Differential Somatosensory Function and Gene Expression Compared With Healthy No-Pain Controls. Clin J Pain 2017; 32:933-939. [PMID: 26736025 DOI: 10.1097/ajp.0000000000000347] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Low back pain (LBP) is the second most frequently diagnosed pain condition in the United States, and although a majority of individuals have resolution of pain during the acute period, an estimated 40% of individuals will experience persistent pain. Given the heterogenous nature of LBP, this study sought to describe and compare somatosensory and molecular (gene expression) profiles between individuals with acute LBP and healthy no-pain controls. METHODS Using a previously established protocol, we comprehensively assessed somatosensory parameters among 31 no-pain control participants and 31 participants with acute LBP. Samples of whole blood were drawn to examine mRNA expression of candidate genes involved in the transduction, maintenance, and modulation of pain. RESULTS The acute LBP group exhibited increased pain sensitivity to cold stimuli, mechanical stimuli, including mechanical temporal summation at both the painful back area and remote location suggesting a mechanism of enhanced central nervous system excitability. In addition, deep tissue-specific peripheral sensitization was suggested due to significant differences in pressure pain threshold of the painful back area, but not the remote body site. Several genes that were differentially expressed were significantly associated with somatosensory alterations identified in the acute LBP group. DISCUSSION Acute LBP participants showed selective pain sensitivity enhancement and differential gene expression profiles compared with pain-free controls. Further research to characterize pain-associated somatosensory changes in the context of altered mRNA expression levels may provide insight on the molecular underpinnings of maladaptive chronic pain.
Collapse
Affiliation(s)
- Angela R Starkweather
- *University of Connecticut, School of Nursing, Storrs, CT †University of Florida College of Nursing, Gainesville, FL ‡Virginia Commonwealth University, School of Nursing, Richmond, VA §University of Maryland School of Nursing, Baltimore, MD
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Barry A, O'Halloran KD, McKenna JP, McCreary C, Downer EJ. Plasma IL-8 signature correlates with pain and depressive symptomatology in patients with burning mouth syndrome: Results from a pilot study. J Oral Pathol Med 2017; 47:158-165. [DOI: 10.1111/jop.12666] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Alison Barry
- Department of Physiology; University College Cork; Cork Ireland
| | | | - Joseph P. McKenna
- Cork University Dental School and Hospital; University College Cork; Cork Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital; University College Cork; Cork Ireland
| | - Eric J. Downer
- Discipline of Physiology; School of Medicine; Trinity Biomedical Sciences Institute; Trinity College Dublin; University of Dublin; Dublin Ireland
| |
Collapse
|
48
|
Yamaguchi K, Kumakura S, Someya A, Iseki M, Inada E, Nagaoka I. Anti-inflammatory actions of gabapentin and pregabalin on the substance P-induced mitogen-activated protein kinase activation in U373 MG human glioblastoma astrocytoma cells. Mol Med Rep 2017; 16:6109-6115. [DOI: 10.3892/mmr.2017.7368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
|
49
|
Abstract
OBJECTIVE To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. DESIGN In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. RESULTS Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1β. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1β stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). CONCLUSION Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.
Collapse
|
50
|
Manshian BB, Martens TF, Kantner K, Braeckmans K, De Smedt SC, Demeester J, Jenkins GJS, Parak WJ, Pelaz B, Doak SH, Himmelreich U, Soenen SJ. The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile. J Nanobiotechnology 2017; 15:45. [PMID: 28619032 PMCID: PMC5472855 DOI: 10.1186/s12951-017-0279-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 11/21/2022] Open
Abstract
Background Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH2 or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs. Results In water, the COOH- and NH2-QDs were negatively and positively charged, respectively, while in serum-containing medium the NH2-QDs were agglomerated, whereas the COOH-QDs remained dispersed. Though intracellular levels of NH2- and COOH-QDs were very similar after 24 h exposure, COOH-QDs appeared to be continuously internalised and transported by endosomes and lysosomes, while NH2-QDs mainly remained in the lysosomes. The results of (intra)cellular QD trafficking were correlated to their toxicity profiles investigating levels of reactive oxygen species (ROS), mitochondrial ROS, autophagy, changes to cellular morphology and alterations in genes involved in cellular stress, toxicity and cytoskeletal integrity. The continuous flux of COOH-QDs perhaps explains their higher toxicity compared to the NH2-QDs, mainly resulting in mitochondrial ROS and cytoskeletal remodelling which are phenomena that occur early during cellular exposure. Conclusions Together, these data reveal that although cellular QD levels were similar after 24 h, differences in the nature and extent of their cellular trafficking resulted in differences in consequent gene alterations and toxicological effects. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0279-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bella B Manshian
- Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium. .,Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Thomas F Martens
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.,Center of Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Karsten Kantner
- Philipps University of Marburg, Renthof 7, 35032, Marburg, Germany
| | - Kevin Braeckmans
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.,Center of Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Stefaan C De Smedt
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Jo Demeester
- Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | - Gareth J S Jenkins
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Wolfgang J Parak
- Philipps University of Marburg, Renthof 7, 35032, Marburg, Germany.,CICBiomagune, San Sebastian, Spain
| | - Beatriz Pelaz
- Philipps University of Marburg, Renthof 7, 35032, Marburg, Germany
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Uwe Himmelreich
- Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium
| | - Stefaan J Soenen
- Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Herestraat 49, 3000, Louvain, Belgium
| |
Collapse
|