1
|
Qi Y, Gong H, Wang Z, Song X, Shen Z, Wu L, Gu Y, Wang W, Li X, Zhang M, Xu Z, Qiu J, Wen H, Xu Z, Shi N, Li X, Zhao Q. Discovery of novel oxindole derivatives as TRPA1 antagonists with potent analgesic activity for pain treatment. Bioorg Chem 2025; 154:108088. [PMID: 39721146 DOI: 10.1016/j.bioorg.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in detecting harmful stimuli and endogenous ligands, primarily expressed in sensory neurons. Due to its role in pain and itch, TRPA1 is a potential drug target. We identified an oxindole core structure via high-throughput screening, modified it, and tested the modified compounds in vitro and in vivo. Calcium influx assays in primary dorsal root ganglion (DRG) cells and TRPA1-overexpressing HEK-293 T cells identified best compound ZQMT-10. ZQMT-10 demonstrated strong interaction with TRPA1 in the CETSA and MST assays. Oral administration of ZQMT-10 in C57BL/6J mice significantly reduced abnormal responses in the cold plate test. ZQMT-10 alleviated pain induced by AITC application on the mouse paw or by intracolonic administration, while also increasing the pain threshold and relieving persistent inflammatory pain. These results suggest ZQMT-10 as a promising TRPA1-targeted therapeutic agent.
Collapse
Affiliation(s)
- Yiming Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhiya Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoxuan Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zixian Shen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Limeng Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yujia Gu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weiyi Wang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyu Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingzuo Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zonghe Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jingsong Qiu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Han Wen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Nuo Shi
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China.
| |
Collapse
|
2
|
Gold MS, Pineda-Farias JB, Close D, Patel S, Johnston PA, Stocker SD, Journigan VB. Subcutaneous administration of a novel TRPM8 antagonist reverses cold hypersensitivity while attenuating the drop in core body temperature. Br J Pharmacol 2024; 181:3527-3543. [PMID: 38794851 DOI: 10.1111/bph.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND AND PURPOSE We extend the characterization of the TRPM8 antagonist VBJ103 with tests of selectivity, specificity and distribution, therapeutic efficacy of systemic administration against oxaliplatin-induced cold hyperalgesia and the impact of systemic administration on core body temperature (CBT). EXPERIMENTAL APPROACH Selectivity at human TRPA1 and TRPV1 as well as in vitro safety profiling was determined. Effects of systemic administration of VBJ103 were evaluated in a model of oxaliplatin-induced cold hyperalgesia. Both peripheral and centrally mediated effects of VBJ103 on CBT were assessed with radiotelemetry. KEY RESULTS VBJ103 had no antagonist activity at TRPV1 and TRPA1, but low potency TRPA1 activation. The only safety liability detected was partial inhibition of the dopamine transporter (DAT). VBJ103 delivered subcutaneously dose-dependently attenuated cold hypersensitivity in oxaliplatin-treated mice at 3, 10 and 30 mg·kg-1 (n = 7, P < 0.05). VBJ103 (30 mg·kg-1) antinociception was influenced by neither the TRPA1 antagonist HC-030031 nor the DAT antagonist GBR12909. Subcutaneous administration of VBJ103 (3, 10 and 30 mg·kg-1, but not 100 or 300 mg·kg-1, n = 7) decreased CBT (2°C). Intraperitoneal (i.p.) administration of VBJ103 (3, 10 and 30 mg·kg-1) dose-dependently decreased CBT to an extent larger than that detected with subcutaneous administration. Intracerebroventricular (i.c.v.) administration (306 nmol/1 μL; n = 5) did not alter CBT. CONCLUSIONS AND IMPLICATIONS We achieve therapeutic efficacy with subcutaneous administration of a novel TRPM8 antagonist that attenuates deleterious influences on CBT, a side effect that has largely prevented the translation of TRPM8 as a target.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge B Pineda-Farias
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Smith Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - V Blair Journigan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Rumbus Z, Fekete K, Kelava L, Gardos B, Klonfar K, Keringer P, Pinter E, Pakai E, Garami A. Ammonium chloride-induced hypothermia is attenuated by transient receptor potential channel vanilloid-1, but augmented by ankyrin-1 in rodents. Life Sci 2024; 346:122633. [PMID: 38615746 DOI: 10.1016/j.lfs.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
AIMS Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Bibor Gardos
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Krisztian Klonfar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary.
| |
Collapse
|
4
|
Terrett JA, Ly JQ, Katavolos P, Hasselgren C, Laing S, Zhong F, Villemure E, Déry M, Larouche-Gauthier R, Chen H, Shore DG, Lee WP, Suto E, Johnson K, Brooks M, Stablein A, Beaumier F, Constantineau-Forget L, Grand-Maître C, Lépissier L, Ciblat S, Sturino C, Chen Y, Hu B, Elstrott J, Gandham V, Joseph V, Booler H, Cain G, Chou C, Fullerton A, Lepherd M, Stainton S, Torres E, Urban K, Yu L, Zhong Y, Bao L, Chou KJ, Lin J, Zhang W, La H, Liu L, Mulder T, Chen J, Chernov-Rogan T, Johnson AR, Hackos DH, Leahey R, Shields SD, Balestrini A, Riol-Blanco L, Safina BS, Volgraf M, Magnuson S, Kakiuchi-Kiyota S. Discovery of TRPA1 Antagonist GDC-6599: Derisking Preclinical Toxicity and Aldehyde Oxidase Metabolism with a Potential First-in-Class Therapy for Respiratory Disease. J Med Chem 2024; 67:3287-3306. [PMID: 38431835 DOI: 10.1021/acs.jmedchem.3c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Martin Déry
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | | | | | | | | | | | - Marjory Brooks
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, United States
| | - Alyssa Stablein
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, United States
| | - Francis Beaumier
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | - Chantal Grand-Maître
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Luce Lépissier
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Stéphane Ciblat
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Claudio Sturino
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Yong Chen
- Pharmaron-Beijing Company Limited, 6 Taihe Road BDA, Beijing 100176, PR China
| | - Baihua Hu
- Pharmaron-Beijing Company Limited, 6 Taihe Road BDA, Beijing 100176, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Goh M, Fu L, Seetoh WG, Koay A, Hua H, Tan SM, Tay SH, Jinfeng EC, Abdullah N, Ng SY, Lakshmanan M, Arumugam P. Mono-2-ethylhexylphthalate (MEHP) is a potent agonist of human TRPA1 channel. CHEMOSPHERE 2024; 349:140740. [PMID: 38006918 DOI: 10.1016/j.chemosphere.2023.140740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.
Collapse
Affiliation(s)
- Megan Goh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Lin Fu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore, 138671
| | - Wei-Guang Seetoh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Ann Koay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Huang Hua
- National University of Singapore, Department of Physiology, 4 Science Drive 2, Wet Science Building Level 11, Singapore, 117544
| | - Shi Min Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Shermaine Huiping Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Elaine Chin Jinfeng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Nimo Abdullah
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Nanyang Technological University, School of Biological Sciences, Singapore, 637551.
| |
Collapse
|
6
|
Achanta S, Chintagari NR, Balakrishna S, Liu B, Jordt SE. Pharmacologic Inhibition of Transient Receptor Potential Ion Channel Ankyrin 1 Counteracts 2-Chlorobenzalmalononitrile Tear Gas Agent-Induced Cutaneous Injuries. J Pharmacol Exp Ther 2024; 388:613-623. [PMID: 38050077 PMCID: PMC10801748 DOI: 10.1124/jpet.123.001666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Deployment of the tear gas agent 2-chlorobenzalmalononitrile (CS) for riot control has significantly increased in recent years. The effects of CS have been believed to be transient and benign. However, CS induces severe pain, blepharospasm, lachrymation, airway obstruction, and skin blisters. Frequent injuries and hospitalizations have been reported after exposure. We have identified the sensory neuronal ion channel, transient receptor potential ankyrin 1 (TRPA1), as a key CS target resulting in acute irritation and pain and also as a mediator of neurogenic inflammation. Here, we examined the effects of pharmacologic TRPA1 inhibition on CS-induced cutaneous injury. We modeled CS-induced cutaneous injury by applying 10 μl CS agent [200 mM in dimethyl sulfoxide (DMSO)] to each side of the right ears of 8- to 9-week-old C57BL/6 male mice, whereas left ears were applied with solvent only (DMSO). The TRPA1 inhibitor HC-030031 or A-967079 was administered after CS exposure. CS exposure induced strong tissue swelling, plasma extravasation, and a dramatic increase in inflammatory cytokine levels in the mouse ear skin. We also showed that the effects of CS were not transient but caused persistent skin injuries. These injury parameters were reduced with TRPA1 inhibitor treatment. Further, we tested the pharmacologic activity of advanced TRPA1 antagonists in vitro. Our findings showed that TRPA1 is a crucial mediator of CS-induced nociception and tissue injury and that TRPA1 inhibitors are effective countermeasures that reduce key injury parameters when administered after exposure. Additional therapeutic efficacy studies with advanced TRPA1 antagonists and decontamination strategies are warranted. SIGNIFICANCE STATEMENT: 2-Chlorobenzalmalononitrile (CS) tear gas agent has been deployed as a crowd dispersion chemical agent in recent times. Exposure to CS tear gas agents has been believed to cause transient acute toxic effects that are minimal at most. Here we found that CS tear gas exposure causes both acute and persistent skin injuries and that treatment with transient receptor potential ion channel ankyrin 1 (TRPA1) antagonists ameliorated skin injuries.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Narendranath Reddy Chintagari
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Shrilatha Balakrishna
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Boyi Liu
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| | - Sven-Eric Jordt
- Center for Translational Pain Medicine, Department of Anesthesiology (S.A., B.L., S.-E.J.) and Department of Pharmacology and Cancer Biology (S.-E.J.), Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut (N.R.C., S.B.); and Integrated Toxicology and Environmental Health Program (ITEHP), Nicholas School of the Environment, Duke University, Durham, North Carolina (S.-E.J.)
| |
Collapse
|
7
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Koldsø H, Jensen MØ, Jogini V, Shaw DE. Functional dynamics and allosteric modulation of TRPA1. Structure 2023; 31:1556-1566.e3. [PMID: 37729917 DOI: 10.1016/j.str.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The cation channel TRPA1 is a potentially important drug target, and characterization of TRPA1 functional dynamics might help guide structure-based drug design. Here, we present results from long-timescale molecular dynamics simulations of TRPA1 with an allosteric activator, allyl isothiocyanate (AITC), in which we observed spontaneous transitions from a closed, non-conducting channel conformation into an open, conducting conformation. Based on these transitions, we propose a gating mechanism in which movement of a regulatory TRP-like domain allosterically translates into pore opening in a manner reminiscent of pore opening in voltage-gated ion channels. In subsequent experiments, we found that mutations that disrupt packing of the S4-S5 linker-TRP-like domain and the S5 and S6 helices also affected channel activity. In simulations, we also observed A-967079, a known allosteric inhibitor, binding between helices S5 and S6, suggesting that A-967079 may suppress activity by stabilizing a non-conducting pore conformation-a finding consistent with our proposed gating mechanism.
Collapse
Affiliation(s)
| | | | | | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
10
|
Costa MJF, Sette-DE-Souza PH, Borges BCD. In silico affinity between analgesic/anti-inflammatory drugs and the transient receptor potential A1 to predict potential pharmacological managing approaches for bleaching sensitivity. AN ACAD BRAS CIENC 2023; 95:e20230555. [PMID: 38055565 DOI: 10.1590/0001-3765202320230555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 12/08/2023] Open
Abstract
Reducing in-office tooth bleaching sensitivity represents a challenge for professionals. Researchers have associated the block of the pain receptor TRPA1 with reducing bleaching sensitivity. However, the chemical affinity of analgesic/anti-inflammatory drugs to the TRPA1 needs to be verified. To perform a virtual screening of multiple drugs (analgesic and anti-inflammatory drugs) to verify chemical affinity for the TRPA1 receptor. The crystal structure of the TRPA1 receptor proteins was retrieved from the Protein Data Bank. The SMILES codes of the ligands were extracted from PubChem. The binding energy of the complex was obtained in ∆G - kcal/mol by AutoDock Vina© and replicated in the webservers SwissDock©, Dockthor©, and CbDock©. LigPlus© confirmed the binding sites. Codeine and dexamethasone showed regularity among all servers, even showing binding energy values of -7.9 kcal/mol for codeine and -8.1 kcal/mol for dexamethasone. Codeine and dexamethasone may be potential drugs to manage tooth bleaching sensitivity if they reach the dental pulp TRPA1 receptor.
Collapse
Affiliation(s)
- Moan J F Costa
- Programa de Pós-Graduação em Ciências Odontológicas, Universidade Federal do Rio Grande do Norte, Departamento de Odontologia, Av. Sen. Salgado Filho, 1787, Lagoa Nova, 59056-000 Natal, RN, Brazil
| | - Pedro H Sette-DE-Souza
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco, Rua Cap. Pedro Rodrigues, 105, São José, 55294-902 Garanhuns, PE, Brazil
| | - Boniek C D Borges
- Programa de Pós-Graduação em Ciências Odontológicas, Universidade Federal do Rio Grande do Norte, Departamento de Odontologia, Av. Sen. Salgado Filho, 1787, Lagoa Nova, 59056-000 Natal, RN, Brazil
| |
Collapse
|
11
|
Michot B, Casey SM, Lee CS, Erdogan O, Basu H, Chiu I, Gibbs JL. Lipopolysaccharide-Induced TRPA1 Upregulation in Trigeminal Neurons is Dependent on TLR4 and Vesicular Exocytosis. J Neurosci 2023; 43:6731-6744. [PMID: 37643860 PMCID: PMC10552941 DOI: 10.1523/jneurosci.0162-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Pain from bacterial infection was believed to be the consequence of inflammation induced by bacterial products. However recent studies have shown that bacterial products can directly activate sensory neurons and induce pain. The mechanisms by which bacteria induce pain are poorly understood, but toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors are likely important integrators of pain signaling induced by bacteria. Using male and female mice we show that sensory neuron activation by bacterial lipopolysaccharides (LPS) is mediated by both TRPA1 and TLR4 and involves the mobilization of extracellular and intracellular calcium. We also show that LPS induces neuronal sensitization in a process dependent on TLR4 receptors. Moreover, we show that TLR4 and TRPA1 are both involved in sensory neurons response to LPS stimulation. Activation of TLR4 in a subset of sensory neurons induces TRPA1 upregulation at the cell membrane through vesicular exocytosis, contributing to the initiation of neuronal sensitization and pain. Collectively these data highlight the importance of sensory neurons to pathogen detection, and their activation by bacterial products like LPS as potentially important to early immune and nociceptive responses.SIGNIFICANCE STATEMENT Bacterial infections are often painful and the recent discovery that bacteria can directly stimulate sensory neurons leading to pain sensation and modulation of immune system have highlighted the importance of nervous system in the response to bacterial infection. Here, we showed that lipopolysaccharide, a major bacterial by-product, requires both toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors for neuronal activation and acute spontaneous pain, but only TLR4 mediates sensory neurons sensitization. Moreover, we showed for the first time that TLR4 sensitize sensory neurons through a rapid upregulation of TRPA1 via vesicular exocytosis. Our data highlight the importance of sensory neurons to pathogen detection and suggests that TLR4 would be a potential therapeutic target to modulate early stage of bacteria-induced pain and immune response.
Collapse
Affiliation(s)
- Benoit Michot
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Sharon M Casey
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Caroline S Lee
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
12
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation - a Therapeutic Perspective in Migraine? Mol Neurobiol 2023; 60:5578-5591. [PMID: 37326902 PMCID: PMC10471718 DOI: 10.1007/s12035-023-03428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Persistent reprogramming of epigenetic pattern leads to changes in gene expression observed in many neurological disorders. Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the TRP channels superfamily, is activated by many migraine triggers and expressed in trigeminal neurons and brain regions that are important in migraine pathogenesis. TRP channels change noxious stimuli into pain signals with the involvement of epigenetic regulation. The expression of the TRPA1 encoding gene, TRPA1, is modulated in pain-related syndromes by epigenetic alterations, including DNA methylation, histone modifications, and effects of non-coding RNAs: micro RNAs (miRNAs), long non-coding RNAs, and circular RNAs. TRPA1 may change epigenetic profile of many pain-related genes as it may modify enzymes responsible for epigenetic modifications and expression of non-coding RNAs. TRPA1 may induce the release of calcitonin gene related peptide (CGRP), from trigeminal neurons and dural tissue. Therefore, epigenetic regulation of TRPA1 may play a role in efficacy and safety of anti-migraine therapies targeting TRP channels and CGRP. TRPA1 is also involved in neurogenic inflammation, important in migraine pathogenesis. The fundamental role of TRPA1 in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of TRPA1 may play a role in efficacy and safety of anti-migraine therapy targeting TRP channels or CGRP and they should be further explored for efficient and safe antimigraine treatment. This narrative/perspective review presents information on the structure and functions of TRPA1 as well as role of its epigenetic connections in pain transmission and potential in migraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
13
|
Tamai H, Yamanaka M, Taniguchi W, Nishio N, Fukui D, Nakatsuka T, Yamada H. Transient receptor potential ankyrin 1 in the knee is involved in osteoarthritis pain. Biochem Biophys Rep 2023; 34:101470. [PMID: 37293534 PMCID: PMC10244472 DOI: 10.1016/j.bbrep.2023.101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Transient receptor potential families play important roles in the pathology of osteoarthritis (OA) of the knee. While transient receptor potential ankyrin 1 (TRPA1) is also an essential component of the pathogenesis of various arthritic conditions, its association with pain is controversial. Thus, we researched whether TRPA1 is involved in knee OA pain by in vivo patch-clamp recordings and evaluated the behavioral responses using CatWalk gait analysis and pressure application measurement (PAM). Injection of the Trpa1 agonist, allyl isothiocyanate (AITC), into the knee joint significantly increased spontaneous excitatory synaptic current (sEPSC) frequency in the substantia gelatinosa of rats with knee OA, while injection of the Trpa1 antagonist, HC-030031, significantly decreased the sEPSC. Meanwhile, AITC did not affect the sEPSC in sham rats. In the CatWalk and PAM behavioral tests, AITC significantly decreased pain thresholds, but no difference between HC-030031 and saline injections was observed. Our results indicate that Trpa1 mediates knee OA-induced pain. We demonstrated that Trpa1 is activated in the knee joints of rats with OA, and Trpa1 activity enhanced the pain caused by knee OA.
Collapse
Affiliation(s)
- Hidenobu Tamai
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Wataru Taniguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Daisuke Fukui
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatorityou, Osaka, 590-0433, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan
| |
Collapse
|
14
|
Giacco V, Flower G, Artamonova M, Hunter J, Padilla Requerey A, Hamilton NB. Transient receptor potential Ankyrin-1 (TRPA1) agonists suppress myelination and induce demyelination in organotypic cortical slices. Glia 2023; 71:1402-1413. [PMID: 36762504 PMCID: PMC10953362 DOI: 10.1002/glia.24347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Oligodendrocytes are highly specialized glial cells characterized by their production of multilayer myelin sheaths that wrap axons to speed up action potential propagation. It is due to their specific role in supporting axons that impairment of myelin structure and function leads to debilitating symptoms in a wide range of degenerative diseases, including Multiple Sclerosis and Leukodystrophies. It is known that myelin damage can be receptor-mediated and recently oligodendrocytes have been shown to express Ca2+ -permeable Transient Receptor Potential Ankyrin-1 (TRPA1) channels, whose activation can result in myelin damage in ischemia. Here, we show, using organotypic cortical slice cultures, that TRPA1 activation, by TRPA1 agonists JT010 and Carvacrol for varying lengths of time, induces myelin damage. Although TRPA1 activation does not appear to affect oligodendrocyte progenitor cell number or proliferation, it prevents myelin formation and after myelination causes internodal shrinking and significant myelin degradation. This does not occur when the TRPA1 antagonist, A967079, is also applied. Of note is that when TRPA1 agonists are applied for either 24 h, 3 days or 7 days, axon integrity appears to be preserved while mature myelinated oligodendrocytes remain but with significantly shortened internodes. These results provide further evidence that TRPA1 inhibition could be protective in demyelination diseases and a promising therapy to prevent demyelination and promote remyelination.
Collapse
Affiliation(s)
- Vincenzo Giacco
- Wolfson Centre for Age‐Related DiseasesInstitute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College LondonLondonUK
| | - Grace Flower
- Wolfson Centre for Age‐Related DiseasesInstitute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College LondonLondonUK
| | - Maria Artamonova
- Wolfson Centre for Age‐Related DiseasesInstitute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College LondonLondonUK
| | - Jake Hunter
- Wolfson Centre for Age‐Related DiseasesInstitute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College LondonLondonUK
| | - Aitana Padilla Requerey
- Wolfson Centre for Age‐Related DiseasesInstitute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College LondonLondonUK
| | - Nicola B. Hamilton
- Wolfson Centre for Age‐Related DiseasesInstitute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College LondonLondonUK
| |
Collapse
|
15
|
Martins MS, Almeida IF, Cruz MT, Sousa E. Chronic pruritus: from pathophysiology to drug design. Biochem Pharmacol 2023; 212:115568. [PMID: 37116666 DOI: 10.1016/j.bcp.2023.115568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Pruritus, the most common symptom in dermatology, is an innate response capable of protecting skin against irritants. Nonetheless, when it lasts more than six weeks it is assumed to be a chronic pathology having a negative impact on people's lives. Chronic pruritus (CP) can occur in common and rare skin diseases, having a high prevalence in global population. The existing therapies are unable to counteract CP or are associated with adverse effects, so the development of effective treatments is a pressing issue. The pathophysiological mechanisms underlying CP are not yet completely dissected but, based on current knowledge, involve a wide range of receptors, namely neurokinin 1 receptor (NK1R), Janus kinase (JAK), and transient receptor potential (TRP) ion channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1). This review will address the relevance of these molecular targets for the treatment of CP and molecules capable of modulating these receptors that have already been studied clinically or have the potential to possibly alleviate this pathology. According to scientific and clinical literature, there is an increase in the expression of these molecular targets in the lesioned skin of patients experiencing CP when compared with non-lesioned skin, highlighting their importance for the development of potential efficacious drugs through the design of antagonists/inhibitors.
Collapse
Affiliation(s)
- Márcia S Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isaobel F Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Emília Sousa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Modification of the TRP Channel TRPA1 as a Relevant Factor in Migraine-Related Intracranial Hypersensitivity. Int J Mol Sci 2023; 24:ijms24065375. [PMID: 36982450 PMCID: PMC10049246 DOI: 10.3390/ijms24065375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Recently, the transient receptor potential ankyrin 1 (TRPA1) has gained more attention in migraine-related research. The involvement of the TRPA1 receptor in migraine headaches is proposed by the fact that TRPA1 may be a target of some migraine-triggering factors. Although it is doubtful that activation of TRPA1 alone is sufficient to induce pain, behavioral studies have demonstrated that TRPA1 is involved in injury- and inflammation-induced hypersensitivity. Here, we review the functional relevance of TRPA1 in headaches and its therapeutic potential, mainly focusing on its role in the development of hypersensitivity, referring to its altered expression in pathological conditions, and its functional interaction with other TRP channels.
Collapse
|
17
|
TRPA1 as Target in Myocardial Infarction. Int J Mol Sci 2023; 24:ijms24032516. [PMID: 36768836 PMCID: PMC9917254 DOI: 10.3390/ijms24032516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Transient receptor potential cation channel subfamily A member 1 (TRPA1), an ion channel primarily expressed on sensory neurons, can be activated by substances occurring during myocardial infarction. Aims were to investigate whether activation, inhibition, or absence of TRPA1 affects infarcts and to explore underlying mechanisms. In the context of myocardial infarction, rats received a TRPA1 agonist, an antagonist, or vehicle at different time points, and infarct size was assessed. Wild type and TRPA1 knockout mice were also compared in this regard. In vitro, sensory neurons were co-cultured with cardiomyocytes and subjected to a model of ischemia-reperfusion. Although there was a difference between TRPA1 activation or inhibition in vivo, no experimental group was different to control animals in infarct size, which also applies to animals lacking TRPA1. In vitro, survival probability of cardiomyocytes challenged by ischemia-reperfusion increased from 32.8% in absence to 45.1% in presence of sensory neurons, which depends, at least partly, on TRPA1. This study raises doubts about whether TRPA1 is a promising target to reduce myocardial damage within a 24 h period. The results are incompatible with relevant enlargements of infarcts by TRPA1 activation or inhibition, which argues against adverse effects when TRPA1 is targeted for other indications.
Collapse
|
18
|
Mesch S, Walter D, Laux-Biehlmann A, Basting D, Flanagan S, Miyatake Ondozabal H, Bäurle S, Pearson C, Jenkins J, Elves P, Hess S, Coelho AM, Rotgeri A, Bothe U, Nawaz S, Zollner TM, Steinmeyer A. Discovery of BAY-390, a Selective CNS Penetrant Chemical Probe as Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonist. J Med Chem 2023; 66:1583-1600. [PMID: 36622903 PMCID: PMC9884088 DOI: 10.1021/acs.jmedchem.2c01830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 01/10/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a voltage-dependent, ligand-gated ion channel, and activation thereof is linked to a variety of painful conditions. Preclinical studies have demonstrated the role of TRPA1 receptors in a broad range of animal models of acute, inflammatory, and neuropathic pain. In addition, a clinical study using the TRPA1 antagonist GRC-17536 (Glenmark Pharmaceuticals) demonstrated efficacy in a subgroup of patients with painful diabetic neuropathy. Consequently, there is an increasing interest in TRPA1 inhibitors as potential analgesics. Herein, we report the identification of a fragment-like hit from a high-throughput screening (HTS) campaign and subsequent optimization to provide a novel and brain-penetrant TRPA1 inhibitor (compound 18, BAY-390), which is now being made available to the research community as an open-source in vivo probe.
Collapse
Affiliation(s)
- Stefanie Mesch
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daryl Walter
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Alexis Laux-Biehlmann
- Exploratory
Pathobiology, RED preMED, R&D, Bayer
AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Daniel Basting
- Pharmaceutical
R&D, Drug Discovery, Lead Identification and Characterization, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Stuart Flanagan
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Hideki Miyatake Ondozabal
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Stefan Bäurle
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Christopher Pearson
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - James Jenkins
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Philip Elves
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Stephen Hess
- In
Vitro Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen
7, 22419 Hamburg, Germany
| | - Anne-Marie Coelho
- In Vivo Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Andrea Rotgeri
- Pharmaceutical
R&D, Early Development, Drug Metabolism and Pharmacokinetics, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulrich Bothe
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Schanila Nawaz
- In Vivo Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Thomas M. Zollner
- Pharmaceutical
R&D, Preclinical Research, Therapeutic Area Endocrinology, Metabolism
and Reproductive Health, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Andreas Steinmeyer
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| |
Collapse
|
19
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
20
|
Sánchez JC, Muñoz LV, Galindo-Márquez ML, Valencia-Vásquez A, García AM. Paclitaxel Regulates TRPA1 Function and Expression Through PKA and PKC. Neurochem Res 2023; 48:295-304. [PMID: 36098890 PMCID: PMC9823074 DOI: 10.1007/s11064-022-03748-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Paclitaxel (PTX) is a frequently used anticancer drug that causes peripheral neuropathy. Transient receptor potential ankyrin 1 (TRPA1), a plasma membrane calcium channel, has been associated with PTX toxicity and with other chemotherapy agents such as oxaliplatin and vincristine. However, the effect of PTX on the functional expression and calcium currents of TRPA1 has not been determined. The present study shows the effect of PTX on TRPA1 activity in a neuronal cell line (SH-SY5Y). The effect of PTX on the expression of TRPA1 was assessed through quantitative PCR and Western blot analyses to determine the relative mRNA and protein expression levels. To assess the effect on calcium flux and currents, cells were exposed to PTX; simultaneously, a specific agonist and antagonist of TRPA1 were added to evaluate the differential response in exposed versus control cells. To assess the effect of PKA, PKC and PI3K on PTX-induced TRPA1 increased activity, selective inhibitors were added to these previous experiments. PTX increased the mRNA and protein expression of TRPA1 as well as the TRPA1-mediated Ca2+ currents and intracellular Ca2+ concentrations. This effect was dependent on AITC (a selective specific agonist) and was abolished with HC-030031 (a selective specific antagonist). The inhibition of PKA and PKC reduced the effect of PTX on the functional expression of TRPA1, whereas the inhibition of PI3K had no effects. PTX-induced neuropathy involves TRPA1 activity through an increase in functional expression and is regulated by PKA and PKC signaling. These findings support the role of the TRPA1 channel in the mechanisms altered by PTX, which can be involved in the process that lead to chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Julio C Sánchez
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Colombia.
| | - Laura V Muñoz
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Colombia
| | | | - Aníbal Valencia-Vásquez
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Colombia
| | - Andrés M García
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, 660003, Pereira, Colombia
| |
Collapse
|
21
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Analysis of Structural Determinants of Peptide MS 9a-1 Essential for Potentiating of TRPA1 Channel. Mar Drugs 2022; 20:md20070465. [PMID: 35877758 PMCID: PMC9320628 DOI: 10.3390/md20070465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The TRPA1 channel is involved in a variety of physiological processes and its activation leads to pain perception and the development of inflammation. Peptide Ms 9a-1 from sea anemone Metridium senile is a positive modulator of TRPA1 and causes significant analgesic and anti-inflammatory effects by desensitization of TRPA1-expressing sensory neurons. For structural and functional analysis of Ms 9a-1, we produced four peptides—Ms 9a-1 without C-terminal domain (abbreviated as N-Ms), short C-terminal domain Ms 9a-1 alone (C-Ms), and two homologous peptides (Ms 9a-2 and Ms 9a-3). All tested peptides possessed a reduced potentiating effect on TRPA1 compared to Ms 9a-1 in vitro. None of the peptides reproduced analgesic and anti-inflammatory properties of Ms 9a-1 in vivo. Peptides N-Ms and C-Ms were able to reduce pain induced by AITC (selective TRPA1 agonist) but did not decrease AITC-induced paw edema development. Fragments of Ms 9a-1 did not effectively reverse CFA-induced thermal hyperalgesia and paw edema. Ms 9a-2 and Ms 9a-3 possessed significant effects and anti-inflammatory properties in some doses, but their unexpected efficacy and bell-shape dose–responses support the hypothesis of other targets involved in their effects in vivo. Therefore, activity comparison of Ms 9a-1 fragments and homologues peptides revealed structural determinants important for TRPA1 modulation, as well as analgesic and anti-inflammatory properties of Ms9a-1.
Collapse
|
23
|
Abstract
Joint pain is the hallmark symptom of osteoarthritis (OA) and the main reason for patients to seek medical assistance. OA pain greatly contributes to functional limitations of joints and reduced quality of life. Although several pain-relieving medications are available for OA treatment, the current intervention strategy for OA pain cannot provide satisfactory pain relief, and the chronic use of the drugs for pain management is often associated with significant side effects and toxicities. These observations suggest that the mechanisms of OA-related pain remain undefined. The current review mainly focuses on the characteristics and mechanisms of OA pain. We evaluate pathways associated with OA pain, such as nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA), calcitonin gene-related peptide (CGRP), C–C motif chemokine ligands 2 (CCL2)/chemokine receptor 2 (CCR2) and tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, and the Wnt/β-catenin signaling pathway. In addition, animal models currently used for OA pain studies and emerging preclinical studies are discussed. Understanding the multifactorial components contributing to OA pain could provide novel insights into the development of more specific and effective drugs for OA pain management.
Collapse
|
24
|
Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol 2022; 107:108610. [PMID: 35219163 DOI: 10.1016/j.intimp.2022.108610] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diabetic nephropathy is one of the common complications of diabetes mellitus, which seriously affects the life quality and health of patients. In this study, we aimed to investigate the function of cardamonin (CAD) in diabetes-induced kidney damage in rats. METHODS The normal rat kidney tubular epithelial cells (NRK-52E) were pre-treated with different doses of CAD and then stimulated with methylglyoxal (MGO). Streptozotocin (STZ) induced diabetes rat model were received different doses of CAD treatment. MTT, EdU, Transwell, and flow cytometry was used to detect cell viability, proliferation, migration, and apoptosis. Western blot analysis was used to detect the expression of apoptosis related proteins, advanced glycation end-products (AGEs), receptor for AGEs (RAGE), epithelial mesenchymal transition (EMT) related proteins, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway related proteins, and janus kinas/signal transducer and activator of transcription 3 (JAK/STAT3) related proteins. ELISA assay was used to detect the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected using commercial kit. Hematoxylin and eosin staining was used to assess pathological changes in rat kidney. RESULTS Compared with control group, MGO reduced cell viability and proliferation, enhanced migration and apoptosis of NRK-52E cells, while CAD inhibited these effects induced by MGO in NRK-52E cells. Moreover, CAD increased Bcl-2 expression and decreased the expression of Bax and cleaved caspase-3 in MGO-treated NRK-52E cells. Compared with control group, MGO increased the AGEs formation, the expression of RAGE and p-p65, the levels of TNF-α, IL-6, IL-1β, MDA in NRK-52E cells and reduced the levels of GSH and SOD, while treatment of CAD dose-dependently prevented these results. In addition, CAD attenuated MGO-induced EMT of MGO-treated NRK-52E cells. Mechanically, we identified that CAD repressed PI3K/AKT and JAK/STAT3 signaling in NRK-52E cells. Importantly, the kidney injury of diabetes rats was attenuated by CAD. Besides, STZ-induced inflammatory response, oxidative stress, and phosphorylation levels of PI3K, AKT, JAK2, and STAT3 were reduced by CAD in the rats. CONCLUSION CAD protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats.
Collapse
|
25
|
Lezama-García K, Mota-Rojas D, Pereira AMF, Martínez-Burnes J, Ghezzi M, Domínguez A, Gómez J, de Mira Geraldo A, Lendez P, Hernández-Ávalos I, Falcón I, Olmos-Hernández A, Wang D. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals (Basel) 2022; 12:106. [PMID: 35011212 PMCID: PMC8749608 DOI: 10.3390/ani12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Adriana Domínguez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Jocelyn Gómez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Pamela Lendez
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Isabel Falcón
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
26
|
Naert R, López-Requena A, Talavera K. TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 2021; 22:ijms222111460. [PMID: 34768891 PMCID: PMC8583806 DOI: 10.3390/ijms222111460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
Collapse
Affiliation(s)
- Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Ablynx, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
27
|
Evidence That a TRPA1-Mediated Murine Model of Temporomandibular Joint Pain Involves NLRP3 Inflammasome Activation. Pharmaceuticals (Basel) 2021; 14:ph14111073. [PMID: 34832855 PMCID: PMC8622821 DOI: 10.3390/ph14111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) in murine temporomandibular joint (TMJ) inflammatory hyperalgesia and the influence of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. Two distinct murine models of TMJ pain and inflammation (zymosan and CFA) were established. Spontaneous pain-like behaviours were observed as unilateral front paw cheek wipes. Ipsilateral cheek blood flow was used as a measure of ongoing inflammation, which, to our knowledge, is a novel approach to assessing real-time inflammation in the TMJ. Joint tissue and trigeminal ganglia were collected for ex vivo investigation. Both zymosan and CFA induced a time-dependent increase in hyperalgesia and inflammation biomarkers. Zymosan induced a significant effect after 4 h, correlating with a significantly increased IL-1β protein expression. CFA (50 µg) induced a more sustained response. The TRPA1 receptor antagonist A967079 significantly inhibited hyper-nociception. The NLRP3 inhibitor MCC950 similarly inhibited hyper-nociception, also attenuating inflammatory markers. In the trigeminal ganglia, CFA-induced CGRP expression showed trends of inhibition by A967079, whilst lba1 immunofluorescence was significantly inhibited by A967079 and MCC950, where the effect of TRPA1 inhibition lasted up to 14 days. Our results show that stimulation of TRPA1 is key to the TMJ pain. However, the inflammasome inhibitor exhibited similar properties in attenuating these pain-like behaviours, in addition to some inflammatory markers. This indicates that in addition to the therapeutic targeting of TRPA1, NLRP3 inhibition may provide a novel therapeutic strategy for TMJ inflammation and pain.
Collapse
|
28
|
Hellenthal KEM, Brabenec L, Gross ER, Wagner NM. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021; 11:biom11101401. [PMID: 34680034 PMCID: PMC8533644 DOI: 10.3390/biom11101401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.
Collapse
Affiliation(s)
- Katharina E. M. Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
- Correspondence: ; Tel.: +49-251-83-46837
| |
Collapse
|
29
|
Lajoso W, Flower G, Giacco V, Kaul A, La Mache C, Brăban A, Roxas A, Hamilton NB. Transient Receptor Potential Ankyrin-1 (TRPA1) Block Protects against Loss of White Matter Function during Ischaemia in the Mouse Optic Nerve. Pharmaceuticals (Basel) 2021; 14:ph14090909. [PMID: 34577609 PMCID: PMC8469017 DOI: 10.3390/ph14090909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Oligodendrocytes produce myelin, which provides insulation to axons and speeds up neuronal transmission. In ischaemic conditions, myelin is damaged, resulting in mental and physical disabilities. Recent evidence suggests that oligodendrocyte damage during ischaemia can be mediated by Transient Receptor Potential Ankyrin-1 (TRPA1), whose activation raises intracellular Ca2+ concentrations and damages compact myelin. Here, we show that TRPA1 is constitutively active in oligodendrocytes and the optic nerve, as the specific TRPA1 antagonist, A-967079, decreases basal oligodendrocyte Ca2+ concentrations and increases the size of the compound action potential (CAP). Conversely, TRPA1 agonists reduce the size of the optic nerve CAP in an A-967079-sensitive manner. These results indicate that glial TRPA1 regulates neuronal excitability in the white matter under physiological as well as pathological conditions. Importantly, we find that inhibition of TRPA1 prevents loss of CAPs during oxygen and glucose deprivation (OGD) and improves the recovery. TRPA1 block was effective when applied before, during, or after OGD, indicating that the TRPA1-mediated damage is occurring during both ischaemia and recovery, but importantly, that therapeutic intervention is possible after the ischaemic insult. These results indicate that TRPA1 has an important role in the brain, and that its block may be effective in treating many white matter diseases.
Collapse
|
30
|
Jin L, Lorkiewicz P, Xie Z, Bhatnagar A, Srivastava S, Conklin DJ. Acrolein but not its metabolite, 3-Hydroxypropylmercapturic acid (3HPMA), activates vascular transient receptor potential Ankyrin-1 (TRPA1): Physiological to toxicological implications. Toxicol Appl Pharmacol 2021; 426:115647. [PMID: 34271065 PMCID: PMC8343963 DOI: 10.1016/j.taap.2021.115647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Acrolein, an electrophilic α,β-unsaturated aldehyde, is present in foods and beverages, and is a product of incomplete combustion, and thus, reaches high ppm levels in tobacco smoke and structural fires. Exposure to acrolein is linked with cardiopulmonary toxicity and cardiovascular disease risk. The hypothesis of this study is the direct effects of acrolein in isolated murine blood vessels (aorta and superior mesenteric artery, SMA) are transient receptor potential ankyrin-1 (TRPA1) dependent. Using isometric myography, isolated aorta and SMA were exposed to increasing levels of acrolein. Acrolein inhibited phenylephrine (PE)-induced contractions (approximately 90%) in aorta and SMA of male and female mice in a concentration-dependent (0.01-100 μM) manner. The major metabolite of acrolein, 3-hydroxypropylmercapturic acid (3HPMA), also relaxed PE-precontracted SMA. As the SMA was 20× more sensitive to acrolein than aorta (SMA EC50 0.8 ± 0.2 μM; aorta EC50 > 29.4 ± 4.4 μM), the mechanisms of acrolein-induced relaxation were studied in SMA. The potency of acrolein-induced relaxation was inhibited significantly by: 1) mechanically-impaired endothelium; 2) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); 3) guanylyl cyclase (GC) inhibitor (ODQ); and, 4) a TRPA1 antagonist (A967079). TRPA1 positive immunofluorescence was present in the endothelium. Compared with other known TRPA1 agonists, including allyl isothiocyanate (AITC), cinnamaldehyde, crotonaldehyde, and formaldehyde, acrolein stimulated a more potent TRPA1-dependent relaxation. Acrolein, at high concentration [100 μM], induced tension oscillations (spasms) independent of TRPA1 in precontracted SMA but not in aorta. In conclusion, acrolein is vasorelaxant at low levels (physiological) yet vasotoxic at high levels (toxicological).
Collapse
Affiliation(s)
- L Jin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA
| | - P Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA
| | - Z Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - A Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - S Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA
| | - D J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA; Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY, USA; Superfund Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
31
|
Singh R, Adhya P, Sharma SS. Redox-sensitive TRP channels: a promising pharmacological target in chemotherapy-induced peripheral neuropathy. Expert Opin Ther Targets 2021; 25:529-545. [PMID: 34289785 DOI: 10.1080/14728222.2021.1956464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain is a major side effect of certain chemotherapeutic agents used in cancer treatment. Available analgesics are mostly symptomatic, and on prolonged treatment, patients become refractive to them. Hence, the development of improved therapeutics that act on novel therapeutic targets is necessary. Potential targets include the redox-sensitive TRP channels [e.g. TRPA1, TRPC5, TRPC6, TRPM2, TRPM8, TRPV1, TRPV2, and TRPV4] which are activated under oxidative stress associated with CIPN. AREAS COVERED We have examined numerous neuropathy-inducing cancer chemotherapeutics and their pathophysiological mechanisms. Oxidative stress and its downstream targets, the redox-sensitive TRP channels, together with their potential pharmacological modulators, are discussed. Finally, we reflect upon the barriers to getting new therapeutic approaches into the clinic. The literature search was conducted in PubMed upto and including April 2021. EXPERT OPINION Redox-sensitive TRP channels are a promising target in CIPN. Pharmacological modulators of these channels have reduced pain in preclinical models and in clinical studies. Clinical scrutiny suggests that TRPA1, TRPM8, and TRPV1 are the most promising targets because of their pain-relieving potential. In addition to the analgesic effect, TRPV1 agonist-Capsaicin possesses a disease-modifying effect in CIPN through its restorative property in damaged sensory nerves.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Pratik Adhya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
32
|
Huang H, Tay SH, Ng W, Ng SY, Soong TW. Targeting novel human transient receptor potential ankyrin 1 splice variation with splice-switching antisense oligonucleotides. Pain 2021; 162:2097-2109. [PMID: 33938719 PMCID: PMC8208096 DOI: 10.1097/j.pain.0000000000002216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
ABSTRACT Activation of transient receptor potential ankyrin 1 (TRPA1) channels by both environmental irritants and endogenous inflammatory mediators leads to excitation of the nerve endings, resulting in acute sensation of pain, itch, or chronic neurogenic inflammation. As such, TRPA1 channels are actively pursued as therapeutic targets for various pathological nociception and pain disorders. We uncovered that exon 27 of human TRPA1 (hTRPA1) could be alternatively spliced into hTRPA1_27A and hTRPA1_27B splice variants. The resulting channel variants displayed reduced expression, weakened affinity to interact with WT, and suffered from complete loss of function because of disruption of the C-terminal coiled-coil domain. Using a human minigene construct, we revealed that binding of splicing factor serine/arginine-rich splicing factor 1 (SRSF1) to the exonic splicing enhancer was critical for the inclusion of intact exon 27. Knockdown of SRSF1, mutation within exonic splicing enhancer, or masking SRSF1 binding with antisense oligonucleotides promoted alternative splicing within exon 27. Finally, antisense oligonucleotides-induced alternative splicing produced transcript and protein variants that could be functionally determined as diminished endogenous TRPA1 activity in human Schwann cell-line SNF96.2 and hiPSCs-derived sensory neurons. The outcome of the work could potentially offer a novel therapeutic strategy for treating pain by targeting alternative splicing of hTRPA1.
Collapse
Affiliation(s)
- Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, Singapore
- Cardiovascular Diseases Program, National University of Singapore, Singapore
| | | | - Winanto Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
| | - Shi Yan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
- National Neuroscience Institute, Jalan Tan Tock Seng, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, Singapore
- Cardiovascular Diseases Program, National University of Singapore, Singapore
- National Neuroscience Institute, Jalan Tan Tock Seng, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
| |
Collapse
|
33
|
Horváth ÁI, Szentes N, Tékus V, Payrits M, Szőke É, Oláh E, Garami A, Fliszár-Nyúl E, Poór M, Sár C, Kálai T, Pál S, Percze K, Scholz ÉN, Mészáros T, Tóth B, Mátyus P, Helyes Z. Proof-of-Concept for the Analgesic Effect and Thermoregulatory Safety of Orally Administered Multi-Target Compound SZV 1287 in Mice: A Novel Drug Candidate for Neuropathic Pain. Biomedicines 2021; 9:biomedicines9070749. [PMID: 34209525 PMCID: PMC8301340 DOI: 10.3390/biomedicines9070749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
SZV 1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime) is a novel multi-target candidate under preclinical development for neuropathic pain. It inhibits amine oxidase copper containing 3, transient receptor potential ankyrin 1 and vanilloid 1 (TRPV1) receptors. Mainly under acidic conditions, it is transformed to the cyclooxygenase inhibitor oxaprozin, which is ineffective for neuropathy. Therefore, an enterosolvent capsule is suggested for oral formulation, which we investigated for nociception, basic kinetics, and thermoregulatory safety in mice. The antihyperalgesic effect of SZV 1287 (10, 20, 50, and 200 mg/kg, p.o.) was determined in partial sciatic nerve ligation-induced traumatic neuropathy by aesthesiometry, brain and plasma concentrations by HPLC, and deep body temperature by thermometry. Its effect on proton-induced TRPV1 activation involved in thermoregulation was assessed by microfluorimetry in cultured trigeminal neurons. The three higher SZV 1287 doses significantly, but not dose-dependently, reduced neuropathic hyperalgesia by 50% of its maximal effect. It was quickly absorbed; plasma concentration was stable for 2 h, and it entered into the brain. Although SZV 1287 significantly decreased the proton-induced TRPV1-mediated calcium-influx potentially leading to hyperthermia, it did not alter deep body temperature. Oral SZV 1287 inhibited neuropathic hyperalgesia and, despite TRPV1 antagonistic action and brain penetration, it did not influence thermoregulation, which makes it a promising analgesic candidate.
Collapse
Affiliation(s)
- Ádám István Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Á.I.H.); (N.S.); (V.T.); (M.P.); (É.S.)
- Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Á.I.H.); (N.S.); (V.T.); (M.P.); (É.S.)
- Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Á.I.H.); (N.S.); (V.T.); (M.P.); (É.S.)
- Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Á.I.H.); (N.S.); (V.T.); (M.P.); (É.S.)
- Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Á.I.H.); (N.S.); (V.T.); (M.P.); (É.S.)
- Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- ALGONIST Biotechnologies GmBH, 1030 Vienna, Austria
| | - Emőke Oláh
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary; (E.O.); (A.G.)
| | - András Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary; (E.O.); (A.G.)
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.F.-N.); (M.P.)
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.F.-N.); (M.P.)
| | - Cecília Sár
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (C.S.); (T.K.)
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (C.S.); (T.K.)
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Krisztina Percze
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Semmelweis University, H-1094 Budapest, Hungary; (K.P.); (É.N.S.); (T.M.)
| | - Éva Nagyné Scholz
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Semmelweis University, H-1094 Budapest, Hungary; (K.P.); (É.N.S.); (T.M.)
| | - Tamás Mészáros
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Semmelweis University, H-1094 Budapest, Hungary; (K.P.); (É.N.S.); (T.M.)
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary;
| | - Péter Mátyus
- Institute of Digital Health Sciences, Faculty of Health and Public Services, Semmelweis University, H-1094 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (Á.I.H.); (N.S.); (V.T.); (M.P.); (É.S.)
- Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- ALGONIST Biotechnologies GmBH, 1030 Vienna, Austria
- PharmInVivo Ltd., H-7629 Pécs, Hungary
- Correspondence:
| |
Collapse
|
34
|
de Almeida AS, Bernardes LDB, Trevisan G. TRP channels in cancer pain. Eur J Pharmacol 2021; 904:174185. [PMID: 34015320 DOI: 10.1016/j.ejphar.2021.174185] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Chronic pain is a common symptom experienced during cancer progression. Additionally, some patients experience bone pain caused by cancer metastasis, which further complicates the prognosis. Cancer pain is often treated using opioid-based pharmacotherapy, but these drugs possess several adverse effects. Accordingly, new mechanisms for cancer pain management are being explored, including transient receptor potential channels (TRPs). TRP ion channels are expressed in several tissues and play a key role in pain detection, especially TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1). In the present review, we describe the role of TRPV1 and TRPA1 involved in cancer pain mechanisms. Several studies have revealed that the administration of TRPV1 or TRPA1 agonists/antagonists and TRPV1 or TRPA1 knockdown reduced sensitivity to nociception in cancer pain models. TRPV1 was also found to be involved in various models of cancer-induced bone pain (CIBP), with TRPV1 expression reportedly enhanced in some models. These studies have demonstrated the TRPV1 or TRPA1 association with cancer pain in models induced by tumour cell inoculation into the bone cavity, hind paw, mammary fat pad, and sciatic nerve in mice or rats. To date, only resiniferatoxin, a TRPV1 agonist, has been evaluated in clinical trials for cancer pain and showed preliminary positive results. Thus, TRP channels are potential targets for managing cancer-related pain syndromes.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Laura de Barros Bernardes
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Sinica V, Vlachová V. Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor. Physiol Res 2021; 70:363-381. [PMID: 33982589 DOI: 10.33549/physiolres.934697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The discovery of the role of the transient receptor potential ankyrin 1 (TRPA1) channel as a polymodal detector of cold and pain-producing stimuli almost two decades ago catalyzed the consequent identification of various vertebrate and invertebrate orthologues. In different species, the role of TRPA1 has been implicated in numerous physiological functions, indicating that the molecular structure of the channel exhibits evolutionary flexibility. Until very recently, information about the critical elements of the temperature-sensing molecular machinery of thermosensitive ion channels such as TRPA1 had lagged far behind information obtained from mutational and functional analysis. Current developments in single-particle cryo-electron microscopy are revealing precisely how the thermosensitive channels operate, how they might be targeted with drugs, and at which sites they can be critically regulated by membrane lipids. This means that it is now possible to resolve a huge number of very important pharmacological, biophysical and physiological questions in a way we have never had before. In this review, we aim at providing some of the recent knowledge on the molecular mechanisms underlying the temperature sensitivity of TRPA1. We also demonstrate how the search for differences in temperature and chemical sensitivity between human and mouse TRPA1 orthologues can be a useful approach to identifying important domains with a key role in channel activation.
Collapse
Affiliation(s)
- V Sinica
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | |
Collapse
|
36
|
Martínez-Rojas VA, Salinas-Abarca AB, Gómez-Víquez NL, Granados-Soto V, Mercado F, Murbartián J. Interaction of NHE1 and TRPA1 Activity in DRG Neurons Isolated from Adult Rats and its Role in Inflammatory Nociception. Neuroscience 2021; 465:154-165. [PMID: 33957206 DOI: 10.1016/j.neuroscience.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/07/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is expressed in a subset of nociceptive neurons. This channel integrates several nociceptive signals. Particularly, it is modulated by intracellular pH (pHi). Na+/H+ exchanger 1 (NHE1) contributes to the maintenance of pHi in nociceptors. However, it is currently unknown whether the interaction between TRPA1 and NHE1 contributes to the nociceptive processing. Thus, the purpose of this study was to assess the functional interaction between NHE1 and TRPA1 in small dorsal root ganglion (DRG) neurons from primary culture obtained from adult rats. Moreover, we also evaluated their possible interaction in acute and inflammatory pain. Zoniporide (selective NHE1 inhibitor) reduced pHi and increased intracellular calcium in a concentration-dependent fashion in DRG neurons. Zoniporide and allyl isothiocyanate (AITC, TRPA1 agonist) increased calcium transients in the same DRG neuron, whereas that A-967079 (TRPA1 antagonist) prevented the effect of zoniporide in DRG neurons. Repeated AITC induced TRPA1 desensitization and this effect was prevented by zoniporide. Both NHE1 and TRPA1 were localized at the membrane surface of DRG neurons in culture. Local peripheral zoniporide enhanced AITC-induced pronociception and this effect was prevented by A-967079. Likewise, zoniporide potentiated Complete Freund's Adjuvant (CFA)-induced hypersensitivity, effect which was prevented by A-967079 in vivo. CFA paw injection increased TRPA1 and decresed NHE1 protein expression in DRG. These results suggest a functional interaction between NHE1 and TRPA1 in DRG neurons in vitro. Moreover, data suggest that this interaction participates in acute and inflamatory pain conditions in vivo.
Collapse
Affiliation(s)
| | - Ana B Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Francisco Mercado
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
37
|
Liu JYH, Du P, Lu Z, Kung JSC, Huang IB, Hui JCM, Ng HSH, Ngan MP, Cui D, Jiang B, Chan SW, Rudd JA. Involvement of TRPV1 and TRPA1 in the modulation of pacemaker potentials in the mouse ileum. Cell Calcium 2021; 97:102417. [PMID: 33962108 DOI: 10.1016/j.ceca.2021.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The roles of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and subfamily A, member 1 (TRPA1) in mechanisms of gastrointestinal motility are complex. This study aimed to clarify the effects of several TRPV1 and TRPA1 ligands on the electrical potentials generated by pacemaker cells in the mouse-isolated ileum. METHOD The pacemaker potentials of ileal segments of mice were recorded extracellularly using a 60-channel microelectrode array. The dominant frequencies, average waveform periods and propagation velocities were quantified. The effects of TRPV1 and TRPA1 agonist and antagonist were compared with the baseline recordings. RESULTS The electrophysiological recordings showed that capsaicin (30 μM to 3 mM), resiniferatoxin (300 μM), capsazepine (100-300 μM), allyl isothiocyanate (300 μM), isovelleral (300 μM), icilin (300 μM), A-967,079 (10 μM), AP18 (20 μM) and HC-030,031 (50 μM) significantly reduced the pacemaker frequency and increased the waveform period relative to the baseline. Conversely, ruthenium red (300 μM) significantly increased the pacemaker frequency and reduced the waveform period. Capsaicin (3 mM) and AP18 (20 μM) also significantly reduced the propagation velocity. However, all tested antagonists failed to inhibit the effects of agonists. AMG9810 (300 μM), but not A-967,079 (300 μM), significantly inhibited the increases in pacemaker frequency caused by increased temperatures. CONCLUSION Our findings suggest that TRPV1 and TRPA1 play a minor role in regulating pacemaker potentials and that at non-specific actions at other TRP and ion channels most likely contributed to the overall effects on the electrophysiological recordings that we observed.
Collapse
Affiliation(s)
- Julia Y H Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jeng S C Kung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ianto B Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jessica C M Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Heidi S H Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - M P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Dexuan Cui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Bin Jiang
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, Hong Kong SAR, China
| | - S W Chan
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
38
|
Terrett JA, Chen H, Shore DG, Villemure E, Larouche-Gauthier R, Déry M, Beaumier F, Constantineau-Forget L, Grand-Maître C, Lépissier L, Ciblat S, Sturino C, Chen Y, Hu B, Lu A, Wang Y, Cridland AP, Ward SI, Hackos DH, Reese RM, Shields SD, Chen J, Balestrini A, Riol-Blanco L, Lee WP, Liu J, Suto E, Wu X, Zhang J, Ly JQ, La H, Johnson K, Baumgardner M, Chou KJ, Rohou A, Rougé L, Safina BS, Magnuson S, Volgraf M. Tetrahydrofuran-Based Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonists: Ligand-Based Discovery, Activity in a Rodent Asthma Model, and Mechanism-of-Action via Cryogenic Electron Microscopy. J Med Chem 2021; 64:3843-3869. [PMID: 33749283 DOI: 10.1021/acs.jmedchem.0c02023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium-permeable ion channel highly expressed in the primary sensory neurons functioning as a polymodal sensor for exogenous and endogenous stimuli and has generated widespread interest as a target for inhibition due to its implication in neuropathic pain and respiratory disease. Herein, we describe the optimization of a series of potent, selective, and orally bioavailable TRPA1 small molecule antagonists, leading to the discovery of a novel tetrahydrofuran-based linker. Given the balance of physicochemical properties and strong in vivo target engagement in a rat AITC-induced pain assay, compound 20 was progressed into a guinea pig ovalbumin asthma model where it exhibited significant dose-dependent reduction of inflammatory response. Furthermore, the structure of the TRPA1 channel bound to compound 21 was determined via cryogenic electron microscopy to a resolution of 3 Å, revealing the binding site and mechanism of action for this class of antagonists.
Collapse
Affiliation(s)
- Jack A Terrett
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huifen Chen
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel G Shore
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Martin Déry
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Francis Beaumier
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | | | - Luce Lépissier
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Stéphane Ciblat
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Claudio Sturino
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Yong Chen
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Baihua Hu
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Aijun Lu
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Yunli Wang
- Pharmaron-Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Andrew P Cridland
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Stuart I Ward
- Charles River Laboratories, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - David H Hackos
- Department of Neurosciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca M Reese
- Department of Neurosciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shannon D Shields
- Department of Neurosciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alessia Balestrini
- Department of Discovery Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lorena Riol-Blanco
- Department of Discovery Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Suto
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Q Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hank La
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kevin Johnson
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matt Baumgardner
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kang-Jye Chou
- Department of Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexis Rohou
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lionel Rougé
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian S Safina
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Magnuson
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Volgraf
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
39
|
Luostarinen S, Hämäläinen M, Moilanen E. Transient Receptor Potential Ankyrin 1 (TRPA1)-An Inflammation-Induced Factor in Human HaCaT Keratinocytes. Int J Mol Sci 2021; 22:ijms22073322. [PMID: 33805042 PMCID: PMC8037497 DOI: 10.3390/ijms22073322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is an ion channel mainly studied in sensory neurons where it mediates itch, pain and neurogenic inflammation. Recently, some nonneuronal cells have also been shown to express TRPA1 to support inflammatory responses. To address the role of TRPA1 in skin inflammation, we aimed to investigate TRPA1 expression in keratinocytes. HaCaT cells (a model of human keratinocytes) and skin biopses from wild-type and TRPA1 deficient mice were used in the studies. TRPA1 expression in nonstimulated keratinocytes was very low but significantly inducible by the proinflammatory cytokine tumor necrosis factor (TNF) in an nuclear factor kappa B (NF-κB), and mitogen-activated protein (MAP) kinase (p38 and c-Jun N-terminal kinase, JNK)-dependent manner. Interestingly, drugs widely used to treat skin inflammation, the calcineurin inhibitors tacrolimus and cyclosporine and the glucocorticoid dexamethasone, significantly decreased TRPA1 expression. Furthermore, pharmacological inhibition and genetic deletion of TRPA1 reduced the synthesis of TNF-induced monocyte chemoattractant protein 1 (MCP-1) in keratinocytes and mouse skin biopsies. In conclusion, these findings point to an inflammatory role for TRPA1 in keratinocytes and present TRPA1 as a potential drug target in inflammatory skin diseases.
Collapse
|
40
|
Thermoregulatory Response to Cold at Various Levels of Activation of Peripheral TRPA1 Ion Channel. Bull Exp Biol Med 2021; 170:420-424. [PMID: 33713225 DOI: 10.1007/s10517-021-05079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 10/21/2022]
Abstract
The effect of TRPA1-ion channel on thermoregulatory responses depending on the level of its activity was studied in Wistar rats. To activate the TRPA1 ion channel localized in the skin, its agonist allyl isothiocyanate (AITC) was used in different concentrations (0.04, 0.4, 1, and 2.5%). Low concentration of AITC (0.04%) enhanced and high concentrations (1 and 2.5%), on the contrary, inhibited cold-defense responses (decreased their magnitude and led to their later initiation due to an increase in temperature thresholds). With an increase in TRPA1 activation, the increase in temperature thresholds (afferent link) was ahead of the decrease in the magnitude of responses (efferent link), which can attest to different sensitivity of these processes to TRPA1 activation.
Collapse
|
41
|
Balestrini A, Joseph V, Dourado M, Reese RM, Shields SD, Rougé L, Bravo DD, Chernov-Rogan T, Austin CD, Chen H, Wang L, Villemure E, Shore DGM, Verma VA, Hu B, Chen Y, Leong L, Bjornson C, Hötzel K, Gogineni A, Lee WP, Suto E, Wu X, Liu J, Zhang J, Gandham V, Wang J, Payandeh J, Ciferri C, Estevez A, Arthur CP, Kortmann J, Wong RL, Heredia JE, Doerr J, Jung M, Vander Heiden JA, Roose-Girma M, Tam L, Barck KH, Carano RAD, Ding HT, Brillantes B, Tam C, Yang X, Gao SS, Ly JQ, Liu L, Chen L, Liederer BM, Lin JH, Magnuson S, Chen J, Hackos DH, Elstrott J, Rohou A, Safina BS, Volgraf M, Bauer RN, Riol-Blanco L. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med 2021; 218:211821. [PMID: 33620419 PMCID: PMC7918756 DOI: 10.1084/jem.20201637] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described. GDC-0334 inhibited TRPA1 function on airway smooth muscle and sensory neurons, decreasing edema, dermal blood flow (DBF), cough, and allergic airway inflammation in several preclinical species. In a healthy volunteer Phase 1 study, treatment with GDC-0334 reduced TRPA1 agonist-induced DBF, pain, and itch, demonstrating GDC-0334 target engagement in humans. These data provide therapeutic rationale for evaluating TRPA1 inhibition as a clinical therapy for asthma.
Collapse
Affiliation(s)
- Alessia Balestrini
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Victory Joseph
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Rebecca M Reese
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Lionel Rougé
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Daniel D Bravo
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Tania Chernov-Rogan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Cary D Austin
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Huifen Chen
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Lan Wang
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Daniel G M Shore
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Vishal A Verma
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Baihua Hu
- Pharmaron-Beijing Co. Ltd., BDA, Beijing, People's Republic of China
| | - Yong Chen
- Pharmaron-Beijing Co. Ltd., BDA, Beijing, People's Republic of China
| | - Laurie Leong
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Chris Bjornson
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Kathy Hötzel
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Alvin Gogineni
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Eric Suto
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Vineela Gandham
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Jianyong Wang
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | | | - Jens Kortmann
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Ryan L Wong
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Jose E Heredia
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Jonas Doerr
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Min Jung
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA
| | | | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Kai H Barck
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Han Ting Ding
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Bobby Brillantes
- Department of Biomolecular Resources, Genentech, Inc., South San Francisco, CA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech, Inc., South San Francisco, CA
| | - Xiaoying Yang
- Department of Product Development Biometric Biostatistics, Genentech, Inc., South San Francisco, CA
| | - Simon S Gao
- Department of Clinical Imaging, Genentech, Inc., South San Francisco, CA
| | - Justin Q Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Liling Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Bianca M Liederer
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Joseph H Lin
- Department of Early Clinical Development, Genentech, Inc., South San Francisco, CA
| | - Steven Magnuson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Justin Elstrott
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Alexis Rohou
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Brian S Safina
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Matthew Volgraf
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Rebecca N Bauer
- Department of OMNI-Biomarker Development, Genentech, Inc., South San Francisco, CA
| | - Lorena Riol-Blanco
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| |
Collapse
|
42
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
43
|
Roh J, Go EJ, Park JW, Kim YH, Park CK. Resolvins: Potent Pain Inhibiting Lipid Mediators via Transient Receptor Potential Regulation. Front Cell Dev Biol 2020; 8:584206. [PMID: 33363143 PMCID: PMC7758237 DOI: 10.3389/fcell.2020.584206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain is a serious condition that occurs in the peripheral nervous system (PNS) and the central nervous system (CNS). It is caused by inflammation or nerve damage that induces the release of inflammatory mediators from immune cells and/or protein kinase activation in neuronal cells. Both nervous systems are closely linked; therefore, inflammation or nerve damage in the PNS can affect the CNS (central sensitization). In this process, nociceptive transient receptor potential (TRP) channel activation and expression are increased. As a result, nociceptive neurons are activated, and pain signals to the brain are amplified and prolonged. In other words, suppressing the onset of pain signals in the PNS can suppress pain signals to the CNS. Resolvins, endogenous lipid mediators generated during the resolution phase of acute inflammation, inhibit nociceptive TRP ion channels and alleviate chronic pain. This paper summarizes the effect of resolvins in chronic pain control and discusses future scientific perspectives. Further study on the effect of resolvins on neuropathic pain will expand the scope of pain research.
Collapse
Affiliation(s)
- Jueun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
44
|
A Non-covalent Ligand Reveals Biased Agonism of the TRPA1 Ion Channel. Neuron 2020; 109:273-284.e4. [PMID: 33152265 DOI: 10.1016/j.neuron.2020.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The TRPA1 ion channel is activated by electrophilic compounds through the covalent modification of intracellular cysteine residues. How non-covalent agonists activate the channel and whether covalent and non-covalent agonists elicit the same physiological responses are not understood. Here, we report the discovery of a non-covalent agonist, GNE551, and determine a cryo-EM structure of the TRPA1-GNE551 complex, revealing a distinct binding pocket and ligand-interaction mechanism. Unlike the covalent agonist allyl isothiocyanate, which elicits channel desensitization, tachyphylaxis, and transient pain, GNE551 activates TRPA1 into a distinct conducting state without desensitization and induces persistent pain. Furthermore, GNE551-evoked pain is relatively insensitive to antagonist treatment. Thus, we demonstrate the biased agonism of TRPA1, a finding that has important implications for the discovery of effective drugs tailored to different disease etiologies.
Collapse
|
45
|
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24:997-1008. [PMID: 32838583 PMCID: PMC7610834 DOI: 10.1080/14728222.2020.1815191] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Chronic pain affects approximatively 30–50% of the population globally. Pathologies such as migraine, diabetic neuropathy, nerve injury and treatment with chemotherapeutic agents, can induce chronic pain. Members of the transient receptor potential (TRP) channels, including the TRP ankyrin 1 (TRPA1), have a major role in pain. Areas covered We focus on TRPA1 as a therapeutic target for pain relief. The structure, localization, and activation of the channel and its implication in different pathways to signal pain are described. This paper underlines the role of pharmacological interventions on TRPA1 to reduce pain in numerous pain conditions. We conducted a literature search in PubMed up to and including July 2020. Expert opinion Our understanding of the molecular mechanisms underlying the sensitization of central and peripheral nociceptive pathways is limited. Preclinical evidence indicates that, in murine models of pain diseases, numerous mechanisms converge on the pathway that encompasses oxidative stress and Schwann cell TRPA1 to sustain chronic pain. Programs to identify and develop treatments to attenuate TRPA1-mediated chronic pain have emerged from this knowledge. Antagonists explored as a novel class of analgesics have a new and promising target in the TRPA1 expressed by peripheral glial cells.
Collapse
Affiliation(s)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| |
Collapse
|
46
|
Calcium activates purified human TRPA1 with and without its N-terminal ankyrin repeat domain in the absence of calmodulin. Cell Calcium 2020; 90:102228. [DOI: 10.1016/j.ceca.2020.102228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/23/2022]
|
47
|
Chen H, Terrett JA. Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019). Expert Opin Ther Pat 2020; 30:643-657. [PMID: 32686526 DOI: 10.1080/13543776.2020.1797679] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION TRPA1 is a non-selective cation channel predominantly expressed in sensory neurons, and functions as an irritant sensor for a plethora of noxious external stimuli and endogenous ligands. Due to its involvement in pain, itch, and respiratory syndromes, TRPA1 has been pursued as a promising drug target. AREAS COVERED In this review, the small molecule patent literature of TRPA1 antagonists from 2015-2019 was surveyed. The patent applications are described with a focus on chemical structures, biochemical/pharmacological activities, and potential clinical applications. The development of TRPA1 antagonists in clinical trials has been highlighted. EXPERT OPINION During 2015-2019, significant progress was made toward the discovery of new TRPA1 antagonists. A total of 14 organizations published 28 patent applications disclosing several distinct classes of chemical matter and potential uses. During this period, three new molecules entered the clinic (ODM-108, HX-100, and GDC-0334) bringing the total number of TRPA1 antagonists to reach clinical trials to five (including earlier molecules CB-625 and GRC 17536); however, to our knowledge, development of all five molecules have been discontinued. Further clinical trials of recent TRPA1 antagonists with good pharmacokinetics would be needed to help understand TRPA1 involvement in human diseases and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Huifen Chen
- Department of Discovery Chemistry, Genentech, Inc ., South San Francisco, California, United States
| | - Jack A Terrett
- Department of Discovery Chemistry, Genentech, Inc ., South San Francisco, California, United States
| |
Collapse
|
48
|
Lin B, Wang Y, Zhang P, Yuan Y, Zhang Y, Chen G. Gut microbiota regulates neuropathic pain: potential mechanisms and therapeutic strategy. J Headache Pain 2020; 21:103. [PMID: 32807072 PMCID: PMC7433133 DOI: 10.1186/s10194-020-01170-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain (NP) is a sustained and nonreversible condition characterized by long-term devastating physical and psychological damage. Therefore, it is urgent to identify an effective treatment for NP. Unfortunately, the precise pathogenesis of NP has not been elucidated. Currently, the microbiota-gut-brain axis has drawn increasing attention, and the emerging role of gut microbiota is investigated in numerous diseases including NP. Gut microbiota is considered as a pivotal regulator in immune, neural, endocrine, and metabolic signaling pathways, which participates in forming a complex network to affect the development of NP directly or indirectly. In this review, we conclude the current understanding of preclinical and clinical findings regarding the role of gut microbiota in NP and provide a novel therapeutic method for pain relief by medication and dietary interventions.
Collapse
Affiliation(s)
- Binbin Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Yuting Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Yanyan Yuan
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China.
| |
Collapse
|
49
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
50
|
Yuan M, Li X, Lu W. The caudal neurosecretory system: A novel thermosensitive tissue and its signal pathway in olive flounder (Paralichthys olivaceus). J Neuroendocrinol 2020; 32:e12876. [PMID: 32542811 DOI: 10.1111/jne.12876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
Ectotherm animals, such as fish, are vulnerable when facing an extreme temperature fluctuation as a result of their inability to maintain body temperature. The caudal neurosecretory system (CNSS) is unique to fish and has been shown to maintain homeostasis in response to seasonal changes. However, its temperature sensitivity is unknown. Here, we used in vitro electrophysiological and anatomical approaches to investigate a thermosensory pathway in the CNSS. We showed that the CNSS responds directly to local hypothermal challenge via the TRP channel, and transmits this signal using the neurotransmitter, GABA, to the neurosecretory Dahlgren cells of the CNSS. These findings are the first demonstration of the thermal perception of the CNSS and add to our understanding of the physiological role of the CNSS in thermoregulation and seasonal adaptation.
Collapse
Affiliation(s)
- Mingzhe Yuan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- 2The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Xiaoxue Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- 2The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- 2The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|