1
|
Li S, Gong Y, Feng J, Luo Z, Xue J, Guo Z, Zhang L, Xia S, Lv S, Xu J. Spatiotemporal heterogeneity of schistosomiasis in mainland China: Evidence from a multi-stage continuous downscaling sentinel monitoring. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.335700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Landsat Observations of Two Decades of Wetland Changes in the Estuary of Poyang Lake during 2000–2019. WATER 2021. [DOI: 10.3390/w14010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stability of wetlands is threatened by the combined effects of global climate change and human activity. In particular, the vegetation cover status of lake wetlands has changed. Here, the change in vegetation cover at the estuary of Poyang Lake was monitored, and its influencing factors are studied to elucidate the dynamic change characteristics of vegetation at the inlet of this lake. Flood and water level changes are two of the main factors affecting the evolution of wetland vegetation at the estuary of Poyang Lake. Therefore, Landsat data from 2000 to 2019 were used to study the spatial and temporal variation in the Normalized Difference Vegetation Index (NDVI) in the vegetation cover area. Theil–Sen Median trend analysis and Mann–Kendall tests were used to study the long-term trend characteristics of NDVI. The response between NDVI and the explanatory variables at the estuary of Poyang Lake was quantified using regression tree analysis to study the regional climate, water level, and flood inundation duration. Results showed the following: (1) Vegetation in a large area of the study area improved significantly from 2000 to 2010 and only slightly from 2010 to 2019, and few areas with slight degradation of vegetation were found. In most of these areas, the vegetation from 2000 to 2010 exhibited a gradual change, from nothing to something, which started around 2004; (2) The main variable that separated the NDVI values was the mean water level in October. When the mean October water level was greater than 14.467 m, the study area was still flooded in October. Thus, the regional value of BestNDVI was approximately 0.3, indicating poor vegetation growth. When the mean water level in October was less than 14.467 m, the elevation of the study area was higher than the water level value, and after the water receded in October, the wetland vegetation exhibited autumn growth in that year. Thus, the vegetation in the study area grew more abundantly. These results could help manage and protect the degraded wetland ecology.
Collapse
|
3
|
Wu K, Yu Y, Chen C, Fu Z. Is One Health a Viable Strategy in Animal Health Litigation: Evidence from Civil Lawsuits in China. Animals (Basel) 2021; 11:ani11092560. [PMID: 34573525 PMCID: PMC8468116 DOI: 10.3390/ani11092560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Strategic litigation launched to protect animal welfare worldwide branches out with several tactical themes: environmental protection, child abuse, veterinarian malpractice, product liability and quasi-family member. Currently, the litigation strategy themed in One Health has been observed in legal practice in Chinese mainland. Using 1520 zoonosis related civil lawsuit judgments, this study aimed to assess the effectiveness of this litigation strategy in animal health cases from Chinese mainland. It has been confirmed that using the litigation strategy themed in One Health results in more successful outcomes and larger damage awards, so there might be a practical value in using this strategy in animal welfare lawsuits. Abstract Several litigation strategies are used to gain support from courts in order to protect animals. While the emerging litigation strategy themed in One Health stimulates judicial protection in the animal health sector, little is known about whether and how such strategies are supported by courts. In this article, we investigate how animal welfare litigation strategies influence judge’s choices within their discretion. We argue that litigators equipped with the litigation strategy themed in One Health are placed in an advantageous position in animal health cases, but that this tendency varies markedly across zoonoses. Specifically, we suggest that litigators utilizing One Health’s litigation strategy are associated with higher probabilities to win, whereas normal litigators are not. Further, we propose that litigators equipped with the One Health litigation strategy are awarded more damages from judges. We test and find support for our predictions using a cross sectional dataset of civil lawsuit cases centering on the animal health industry in Chinese mainland. Our findings indicate that courts indeed were persuaded by the One Health litigation strategy, even when bound by the discretion rules. At the same time, we suggest that for advocates who would like to litigate for animal welfare in the animal health sector, the litigation strategy themed in One Health might have potentially positive implications.
Collapse
Affiliation(s)
- Kai Wu
- School of Law, Zhongnan University of Economics and Law, Wuhan 430073, China;
| | - Ying Yu
- School of Public Administration, Zhongnan University of Economics and Law, Wuhan 430073, China
- Correspondence:
| | - Chen Chen
- School of Health Sciences, Wuhan University, Wuhan 430071, China;
| | - Zheming Fu
- School of Law, Peking University, Beijing 100871, China;
- Maurer School of Law, Indiana University Bloomington, Bloomington, IN 47405-7000, USA
| |
Collapse
|
4
|
Xue JB, Wang XY, Zhang LJ, Hao YW, Chen Z, Lin DD, Xu J, Xia S, Li SZ. Potential impact of flooding on schistosomiasis in Poyang Lake regions based on multi-source remote sensing images. Parasit Vectors 2021; 14:116. [PMID: 33618761 PMCID: PMC7898754 DOI: 10.1186/s13071-021-04576-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Flooding is considered to be one of the most important factors contributing to the rebound of Oncomelania hupensis, a small tropical freshwater snail and the only intermediate host of Schistosoma japonicum, in endemic foci. The aim of this study was to assess the risk of intestinal schistosomiasis transmission impacted by flooding in the region around Poyang Lake using multi-source remote sensing images. Methods Normalized Difference Vegetation Index (NDVI) data collected by the Landsat 8 satellite were used as an ecological and geographical suitability indicator of O. hupensis habitats in the Poyang Lake region. The expansion of the water body due to flooding was estimated using dual-polarized threshold calculations based on dual-polarized synthetic aperture radar (SAR). The image data were captured from the Sentinel-1B satellite in May 2020 before the flood and in July 2020 during the flood. A spatial database of the distribution of snail habitats was created using the 2016 snail survey in Jiangxi Province. The potential spread of O. hupensis snails after the flood was predicted by an overlay analysis of the NDVI maps in the flood-affected areas around Poyang Lake. The risk of schistosomiasis transmission was classified based on O. hupensis snail density data and the related NDVI. Results The surface area of Poyang Lake was approximately 2207 km2 in May 2020 before the flood and 4403 km2 in July 2020 during the period of peak flooding; this was estimated to be a 99.5% expansion of the water body due to flooding. After the flood, potential snail habitats were predicted to be concentrated in areas neighboring existing habitats in the marshlands of Poyang Lake. The areas with high risk of schistosomiasis transmission were predicted to be mainly distributed in Yongxiu, Xinjian, Yugan and Poyang (District) along the shores of Poyang Lake. By comparing the predictive results and actual snail distribution, we estimated the predictive accuracy of the model to be 87%, which meant the 87% of actual snail distribution was correctly identified as snail habitats in the model predictions. Conclusions Data on water body expansion due to flooding and environmental factors pertaining to snail breeding may be rapidly extracted from Landsat 8 and Sentinel-1B remote sensing images. Applying multi-source remote sensing data for the timely and effective assessment of potential schistosomiasis transmission risk caused by snail spread during flooding is feasible and will be of great significance for more precision control of schistosomiasis. ![]()
Collapse
Affiliation(s)
- Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xin-Yi Wang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Li-Juan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yu-Wan Hao
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhe Chen
- Jiangxi Institute of Parasitic Diseases, Nanchang, 330046, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Schistosomiasis Prevention and Control, Nanchang, 330046, Jiangxi, People's Republic of China
| | - Dan-Dan Lin
- Jiangxi Institute of Parasitic Diseases, Nanchang, 330046, Jiangxi, People's Republic of China.,Jiangxi Key Laboratory of Schistosomiasis Prevention and Control, Nanchang, 330046, Jiangxi, People's Republic of China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China. .,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, 200025, People's Republic of China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China. .,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China. .,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China. .,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
5
|
Shan X, Liu S, Liu J, Zhu H, Xiao Y, Chen Y. Geographical survey of the intermediate host of Schistosoma japonicum: Toward precise management of Oncomelania hupensis. PLoS Negl Trop Dis 2020; 14:e0008674. [PMID: 33027249 PMCID: PMC7571707 DOI: 10.1371/journal.pntd.0008674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/19/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis caused by Schistosoma japonicum is a public health concern in China, and Hubei is one of the most affected provinces. Although the routine surveillance since the mid 1950s has generated substantial data pertaining to the habitats of the intermediate snail host, Oncomelania hupensis, its spatiotemporal distribution is not known. A review of local chronicles on the annual records of schistosomiasis control program was conducted to retrospectively collect information about O. hupensis habitats. The habitats were mapped by a field survey in 2016. We categorized the habitats into five evolutionary types, namely, Type I, current habitat; Types II-IV, historical habitat; and Type V, suspected habitat according to habitat development. The shape of habitats was determined using geographical information systems. A visual database was established and managed on the ArcGIS platform. A total of 43 472 O. hupensis habitats, covering an area of approximately 430 000 hectares, were identified through the study. Over 60% of these habitats have been eliminated. The highest number of O. hupensis habitats was recorded in 1975; however, most of them were preserved until 1995. Our study, for the first time, sheds light on the spatiotemporal distribution of O. hupensis in the most affected province in China. The data will be valuable for policy making and for formulating strategies to eliminate schistosomiasis in Hubei Province.
Collapse
Affiliation(s)
- Xiaowei Shan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Si Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jianbing Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Hong Zhu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Ying Xiao
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yanyan Chen
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| |
Collapse
|
6
|
Epidemiology of schistosomiasis in China (2004-2016). Travel Med Infect Dis 2020; 36:101598. [PMID: 32084591 DOI: 10.1016/j.tmaid.2020.101598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
|
7
|
Xia C, Hu Y, Ward MP, Lynn H, Li S, Zhang J, Hu J, Xiao S, Lu C, Li S, Liu Y, Zhang Z. Identification of high-risk habitats of Oncomelania hupensis, the intermediate host of schistosoma japonium in the Poyang Lake region, China: A spatial and ecological analysis. PLoS Negl Trop Dis 2019; 13:e0007386. [PMID: 31206514 PMCID: PMC6597197 DOI: 10.1371/journal.pntd.0007386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 06/27/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Identifying and eliminating snail habitats is the key measure for schistosomiasis control, critical for the nationwide strategy of eliminating schistosomiasis in China. Here, our aim was to construct a new analytical framework to predict high-risk snail habitats based on a large sample field survey for Oncomelania hupensis, providing guidance for schistosomiasis control and prevention. METHODOLOGY/PRINCIPAL FINDINGS Ten ecological models were constructed based on the occurrence data of Oncomelania hupensis and a range of variables in the Poyang Lake region of China, including four presence-only models (Maximum Entropy Models, Genetic Algorithm for rule-set Production, Bioclim and Domain) and six presence-absence models (Generalized Linear Models, Multivariate Adaptive Regression Splines, Flexible Discriminant Analysis, as well as machine algorithmic models-Random Forest, Classification Tree Analysis, Generalized Boosted Model), to predict high-risk snail habitats. Based on overall predictive performance, we found Presence-absence models outperformed the presence-only models and the models based on machine learning algorithms of classification trees showed the highest accuracy. The highest risk was located in the watershed of the River Fu in Yugan County, as well as the watershed of the River Gan and the River Xiu in Xingzi County, covering an area of 52.3 km2. The other high-risk areas for both snail habitats and schistosomiasis were mainly concentrated at the confluence of Poyang Lake and its five main tributaries. CONCLUSIONS/SIGNIFICANCE This study developed a new distribution map of snail habitats in the Poyang Lake region, and demonstrated the critical role of ecological models in risk assessment to directing local field investigation of Oncomelania hupensis. Moreover, this study could also contribute to the development of effective strategies to prevent further spread of schistosomiasis from endemic areas to non-endemic areas.
Collapse
Affiliation(s)
- Congcong Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
- Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, P. R. China
- Department of Infection Control Administration, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
- Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, P. R. China
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Henry Lynn
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Jian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Shuang Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
| | - Chengfang Lu
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, P. R. China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, P. R. China
| | - Ying Liu
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, P. R. China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, P. R. China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, P. R. China
- Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, P. R. China
| |
Collapse
|
8
|
Hu F, Ge J, Lv SB, Li YF, Li ZJ, Yuan M, Chen Z, Liu YM, Li YS, Ross AG, Lin DD. Distribution pattern of the snail intermediate host of schistosomiasis japonica in the Poyang Lake region of China. Infect Dis Poverty 2019; 8:23. [PMID: 30922403 PMCID: PMC6440081 DOI: 10.1186/s40249-019-0534-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND With the closure of the Three Gorges Dam in 2003 the hydrology of Poyang Lake was altered dramatically leading to significant changes in the environment. In order to assess the impact on schistosomiasis this study assessed the spatial and temporal patterns of the snail intermediate host, Oncomelania hupensis in the Poyang Lake tributaries. The results of the study have important implications for future snail control strategies leading to disease elimination. METHODS The marshland area surrounding Poyang Lake was divided randomly into 200 × 200 m vector grids using ArcGIS software, and the surveyed grids were randomly selected by the software. The snail survey was conducted in each selected grid using a survey frame of 50 × 50 m with one sideline of each grid serving as the starting line. No less than ten frames were used in each surveyed grid with Global Positioning System (GPS) recordings for each. All snails in each frame were collected to determine infection status by microscopy. Altitude data for all frames were extracted from a lake bottom topographic map in order to analyze the average altitude. All snail survey data were collected and statistically analyzed with SPSS 20.0 software in order to determine the difference of the percentage of frames with living snails and mean density of living snails in different regions of Poyang Lake. The altitude of the snail-infested marshlands and snail dens were subsequently identified. RESULTS A total of 1159 potential snail sampling grids were surveyed, of which 15 231 frames (0.1 m2/frame) were investigated. 1241 frames had live Oncomelania snails corresponding to 8.15% of the total number of frames. The mean density of living snails was 0.463/0.1 m2 with a maximum of 57 snails per frame. The percent of frames with snails in the southern sector (8.13%) of Poyang Lake did not differ statistically from the north (8.21%). However, the mean density of live snails in the northern sector (0.164/0.1 m2) of the lake was statistically higher (F = 6.727; P = 0.010) than the south (0.141/0.1 m2). In the south of the lake, the elevation of snail-inhabited marshland ranged between 11 - 16 m, and could be further subdivided into two snail-concentrated belts at 12-13 m of elevation and 15-16 m of elevation respectively. In the north of the lake, the elevation of snail-inhabited marshland ranged between 9- 16 m with the elevation of 12-14 m being the snail-concentrated zone. CONCLUSIONS The elevation of snail-infested marshlands in the Poyang Lake region ranged from 9 to 16 m. The snail distribution and habitat has moved north of the lake and to a lower altitude due to changes in the water level post dam closure. Based on the current geological features of the snail habitant focused mollusciciding should occur in snail dense northern regions with frequent bovine and human traffic. Targeting these identified 'hotspots' of transmission will assist in elimination efforts.
Collapse
Affiliation(s)
- Fei Hu
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Jun Ge
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Shang-Biao Lv
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Yi-Feng Li
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Zhao-Jun Li
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Min Yuan
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Zhe Chen
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Yue-Ming Liu
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| | - Yue-Sheng Li
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Allen G. Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Dan-Dan Lin
- Jiangxi Provincial Institute of Parasitic Diseases, No. 239, First Gaoxin Rd., Gaoxin District, 330096 Nanchang, Jiangxi Province People’s Republic of China
| |
Collapse
|
9
|
Chuah C, Gobert GN, Latif B, Heo CC, Leow CY. Schistosomiasis in Malaysia: A review. Acta Trop 2019; 190:137-143. [PMID: 30448471 DOI: 10.1016/j.actatropica.2018.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Schistosomiasis, a neglected tropical parasitic disease caused by the trematode flatworms of the genus Schistosoma, affects approximately 207 million people worldwide. Among the five main species infecting humans, Schistosoma mansoni and S. japonicum are responsible for the majority of hepatointestinal schistosomiasis. Human settlements near fresh water sites that lack proper sanitary systems often contribute to the transmission of disease. This risk particularly impacts on travellers or immigrants who come into contact with larvae-contaminated water. This review discusses the central features of schistosomiasis; including clinical manifestations, diagnosis, treatments, and the preventive measures available for the control of this disease. The description of the Malaysian schistosome species Schistosoma malayensis and the current status of schistosomiasis in Malaysia including the compilation of cases diagnosed from 1904 to 2015 are also discussed in this paper.
Collapse
Affiliation(s)
- Candy Chuah
- School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Baha Latif
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Chong Chin Heo
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia; Institute of Pathology, Laboratory & Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Level 4, Academic Building, Faculty of Medicine, 47000, Sungai Buloh, Selangor, Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Cao ZG, Li S, Zhao YE, Wang TP, Bergquist R, Huang YY, Gao FH, Hu Y, Zhang ZJ. Spatio-temporal pattern of schistosomiasis in Anhui Province, East China: Potential effect of the Yangtze River - Huaihe River Water Transfer Project. Parasitol Int 2018; 67:538-546. [PMID: 29753097 DOI: 10.1016/j.parint.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Anhui Province has been one of typical epidemic areas of schistosomiasis in East China as a wide range of large lake and marshland regions provide an ideal environment for growth and reproduction of the intermediate snail host. With the completion of the Yangtze River-Huaihe River Water Transfer Project (YHWTP), launched by the end of 2016, the epidemic areas are expected to expand and controlling schistosomiasis remains a challenge. Based on annual surveillance data at the county level in Anhui for the period 2006-2015, spatial and temporal cluster analyses were conducted to assess the pattern of risk through spatial (Local Moran's I and flexible scan statistic) and space-time scan statistic (Kulldorff). It was found that schistosomiasis sero-prevalence was dramatically reduced and maintained at a low level. Cluster results showed that spatial extent of schistosomiasis contracted, but snail distribution remained geographically stable across the study area. Clusters, both for schistosomiasis and snail presence, were common along the Yangtze River. Considering the effect of the ongoing YHWTP on the potential spread of schistosomiasis, Zongyang County and Anqing, which will be transected by the new water-transfer route, should be given a priority for strengthened surveillance and control. Attention should also be paid to Guichi since it is close to one of the planned inlets of the YHWTP.
Collapse
Affiliation(s)
- Zhi-Guo Cao
- Department of Immunology and Pathogen Biology, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi Province 710061, China; Anhui Institute of Schistosomiasis Control, No. 377 Wuhu Road, Hefei, Anhui Province 230061, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ya-E Zhao
- Department of Immunology and Pathogen Biology, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi Province 710061, China.
| | - Tian-Ping Wang
- Anhui Institute of Schistosomiasis Control, No. 377 Wuhu Road, Hefei, Anhui Province 230061, China
| | | | - Yin-Yin Huang
- Anhui Institute of Schistosomiasis Control, No. 377 Wuhu Road, Hefei, Anhui Province 230061, China
| | - Feng-Hua Gao
- Anhui Institute of Schistosomiasis Control, No. 377 Wuhu Road, Hefei, Anhui Province 230061, China
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Zhi-Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Sun LP, Wang W, Zuo YP, Zhang ZQ, Hong QB, Yang GJ, Zhu HR, Liang YS, Yang HT. An integrated environmental improvement of marshlands: impact on control and elimination of schistosomiasis in marshland regions along the Yangtze River, China. Infect Dis Poverty 2017; 6:72. [PMID: 28330510 PMCID: PMC5361825 DOI: 10.1186/s40249-017-0287-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis is a global snail-transmitted infectious disease of poverty. Transmission control had been achieved in China in 2015 after the control efforts for over 60 years. Currently, the remaining core regions endemic for Schistosoma japonicum are mainly located in the marshland and lake regions along the Yangtze River basin. METHODS During the period from 2001 through 2015, an integrated environmental improvement of the marshlands was carried out through the implementation of industrial, agricultural and resources development projects in Yizheng County along the Yangtze River. S. japonicum infection in humans, livestock and snails was estimated by serology, stool examination, hatching technique and microscopy during the 15-year study period to evaluate the effect of the integrated environmental improvement on control and elimination of schistosomiasis. RESULTS A 0.05% overall rate of S. japonicum infection was observed in snails during the 15-year study period, and no infected snails were detected since 2012. The overall prevalence of S. japonicum infection was 0.09% in humans during the study period, and no human infection was found since 2012. In addition, only 13 bovines were identified with S. japonicum infection in 2003 during the 15-year study period, and since 2004, no infection was found in livestock. CONCLUSION The results of the present study demonstrate that the implementation of industrial, agricultural and water resources development projects, not only alters snail habitats in marshland regions, and promotes local economic development, which appears a win-to-win strategy to block the transmission of S. japonicum and accelerate socio-economic development along the Yangtze River.
Collapse
Affiliation(s)
- Le-Ping Sun
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Wei Wang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Yin-Ping Zuo
- Yangzhou Municipal Center for Disease Control and Prevention, No. 36 Yanfu East Road, Yangzhou City, Jiangsu Province 225000 China
| | - Zheng-Qiu Zhang
- Yizheng County Center for Disease Control and Prevention, NO. 1 Jiankang Road, Yangzhou City, Jiangsu Province 211440 China
| | - Qing-Biao Hong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Guo-Jing Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Hong-Ru Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - You-Sheng Liang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| | - Hai-Tao Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
- Jiangsu Institute of Parasitic Diseases, No. 117 Yangxiang, Meiyuan, Wuxi City, Jiangsu Province 214064 China
| |
Collapse
|
12
|
Xia C, Bergquist R, Lynn H, Hu F, Lin D, Hao Y, Li S, Hu Y, Zhang Z. Village-based spatio-temporal cluster analysis of the schistosomiasis risk in the Poyang Lake Region, China. Parasit Vectors 2017; 10:136. [PMID: 28270197 PMCID: PMC5341164 DOI: 10.1186/s13071-017-2059-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
Background The Poyang Lake Region, one of the major epidemic sites of schistosomiasis in China, remains a severe challenge. To improve our understanding of the current endemic status of schistosomiasis and to better control the transmission of the disease in the Poyang Lake Region, it is important to analyse the clustering pattern of schistosomiasis and detect the hotspots of transmission risk. Results Based on annual surveillance data, at the village level in this region from 2009 to 2014, spatial and temporal cluster analyses were conducted to assess the pattern of schistosomiasis infection risk among humans through purely spatial (Local Moran’s I, Kulldorff and Flexible scan statistic) and space-time scan statistics (Kulldorff). A dramatic decline was found in the infection rate during the study period, which was shown to be maintained at a low level. The number of spatial clusters declined over time and were concentrated in counties around Poyang Lake, including Yugan, Yongxiu, Nanchang, Xingzi, Xinjian, De’an as well as Pengze, situated along the Yangtze River and the most serious area found in this study. Space-time analysis revealed that the clustering time frame appeared between 2009 and 2011 and the most likely cluster with the widest range was particularly concentrated in Pengze County. Conclusions This study detected areas at high risk for schistosomiasis both in space and time at the village level from 2009 to 2014 in Poyang Lake Region. The high-risk areas are now more concentrated and mainly distributed at the river inflows Poyang Lake and along Yangtze River in Pengze County. It was assumed that the water projects including reservoirs and a recently breached dyke in this area were partly to blame. This study points out that attempts to reduce the negative effects of water projects in China should focus on the Poyang Lake Region.
Collapse
Affiliation(s)
- Congcong Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.,Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | | | - Henry Lynn
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China.,Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.,Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, 200032, China.,Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Fei Hu
- Jiangxi Institute of Schistosomiasis Prevention and Control, Nanchang, 330000, China
| | - Dandan Lin
- Jiangxi Institute of Schistosomiasis Prevention and Control, Nanchang, 330000, China
| | - Yuwan Hao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200032, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200032, China.
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China. .,Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, 200032, China. .,Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China. .,Laboratory for Spatial Analysis and Modeling, School of Public Health, Fudan University, Shanghai, 200032, China. .,Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Qian M, Wei L, Hao L, Tang S. Pharmacokinetics of new high-concentration and long-acting praziquantel oily suspensions after intramuscular administration in cattle. J Vet Pharmacol Ther 2016; 40:454-458. [DOI: 10.1111/jvp.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- M. Qian
- College of Veterinary Medicine; China Agricultural University; Beijing China
| | - L. Wei
- College of Veterinary Medicine; China Agricultural University; Beijing China
- Beijing Animal Health Inspection; Beijing China
| | - L. Hao
- China Institute of Veterinary Drug Control; Beijing China
| | - S. Tang
- College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
14
|
Yang J, Fu Z, Hong Y, Wu H, Jin Y, Zhu C, Li H, Lu K, Shi Y, Yuan C, Cheng G, Feng X, Liu J, Lin J. The Differential Expression of Immune Genes between Water Buffalo and Yellow Cattle Determines Species-Specific Susceptibility to Schistosoma japonicum Infection. PLoS One 2015; 10:e0130344. [PMID: 26125181 PMCID: PMC4488319 DOI: 10.1371/journal.pone.0130344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/19/2015] [Indexed: 01/10/2023] Open
Abstract
Water buffalo are less susceptible to Schistosoma japonicum infection than yellow cattle. The factors that affect such differences in susceptibility remain unknown. A Bos taurus genome-wide gene chip was used to analyze gene expression profiles in the peripheral blood of water buffalo and yellow cattle pre- and post-infection with S. japonicum. This study showed that most of the identified differentially expressed genes (DEGs) between water buffalo and yellow cattle pre- and post-infection were involved in immune-related processes, and the expression level of immune genes was lower in water buffalo. The unique DEGs (390) in yellow cattle were mainly associated with inflammation pathways, while the unique DEGs (2,114) in water buffalo were mainly associated with immune-related factors. The 83 common DEGs may be the essential response genes during S. japonicum infection, the highest two gene ontology (GO) functions were associated with the regulation of fibrinolysis. The pathway enrichment analysis showed that the DEGs constituted similar immune-related pathways pre- and post-infection between the two hosts. This first analysis of the transcriptional profiles of natural hosts has enabled us to gain new insights into the mechanisms that govern their susceptibility or resistance to S. japonicum infections.
Collapse
Affiliation(s)
- Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Haiwei Wu
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Yaojun Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People’s Republic of China
| |
Collapse
|
15
|
Abstract
Schistosomiasis is one of the most prevalent, insidious and serious of the tropical parasitic diseases. Although the effective anthelmintic drug, praziquantel, is widely available and cheap, it does not protect against re-infection, drug-resistant schistosome may evolve and mass drug administration programmes based around praziquantel are probably unsustainable long term. Whereas protective anti-schistosome vaccines are not yet available, the zoonotic nature of Schistosoma japonicum provides a novel approach for developing a transmission-blocking veterinary vaccine in domestic animals, especially bovines, which are major reservoir hosts, being responsible for up to 90% of environmental egg contamination in China and the Philippines. However, a greater knowledge of schistosome immunology is required to understand the processes associated with anti-schistosome protective immunity and to reinforce the rationale for vaccine development against schistosomiasis japonica. Importantly as well, improved diagnostic tests, with high specificity and sensitivity, which are simple, rapid and able to diagnose light S. japonicum infections, are required to determine the extent of transmission interruption and the complete elimination of schistosomiasis following control efforts. This article discusses aspects of the host immune response in schistosomiasis, the current status of vaccine development against S. japonicum and reviews approaches for diagnosing and detecting schistosome infections in mammalian hosts.
Collapse
|
16
|
Abdel-Hafeez EH, Watanabe K, Kamei K, Kikuchi M, Chen H, Daniel B, Yu C, Hirayama K. Pilot Study on Interferon-γ-producing T Cell Subsets after the Protective Vaccination with Radiation-attenuated Cercaria of Schistosoma japonicum in the Miniature Pig Model. Trop Med Health 2014; 42:155-62. [PMID: 25473375 PMCID: PMC4219940 DOI: 10.2149/tmh.2014-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022] Open
Abstract
CLAWN miniature pig has been shown to serve as a suitable host for the experimental infection of Schistosoma japonicum. In this study, we found that radiation-attenuated cercaria (RAC) vaccine gave CLAWN miniature pigs protective immunity against subsequent challenge infection with S. japonicum cercaria. To characterize the protective immune response of the pig model vaccinated by attenuated cercaria, flow cytometric analysis of the reactive T cell subsets was performed. The intracellular interferon (IFN)-γ and the cell surface markers revealed the peripheral blood CD3+ T-lymphocytes produced significant amounts of IFN-γ during the immunization period and after the challenge infection. CD4+ αβ-T cells as well as CD4+/CD8αmid double positive and/or CD8αhigh αβ-T cells were the major IFN-γ-producing CD3+ T cells. On the contrary, γδ T cells did not produce intracellular IFN-γ. Our results suggested that RAC-vaccinated miniature pigs showed effective protective immunity through the activation of αβ T cells bearing antigen specific T-cell receptors but not through the activation of γδ T cells.
Collapse
Affiliation(s)
- Ekhlas Hamed Abdel-Hafeez
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University , 1-14-2 Sakamoto, Nagasaki 852-8523, Japan ; Department of Parasitology, Faculty of Medicine, Minia University , Minia, 61519, Egypt
| | - Kanji Watanabe
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University , 1-14-2 Sakamoto, Nagasaki 852-8523, Japan
| | - Kaori Kamei
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University , 1-14-2 Sakamoto, Nagasaki 852-8523, Japan
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University , 1-14-2 Sakamoto, Nagasaki 852-8523, Japan
| | - Honggen Chen
- Jiangxi Provintial Institute of Parasitic Diseases , Nanchang 330046, P.R. China
| | - Boamah Daniel
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University , 1-14-2 Sakamoto, Nagasaki 852-8523, Japan
| | - Chuanxin Yu
- Jiangsu Institute of Parasitic Diseases , Wuxi, Jiangsu 214064, P.R. China
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University , 1-14-2 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
17
|
Hu Y, Gao J, Chi M, Luo C, Lynn H, Sun L, Tao B, Wang D, Zhang Z, Jiang Q. Spatio-temporal patterns of schistosomiasis japonica in lake and marshland areas in China: the effect of snail habitats. Am J Trop Med Hyg 2014; 91:547-54. [PMID: 24980498 DOI: 10.4269/ajtmh.14-0251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The progress of the integrated control policy for schistosomiasis implemented since 2005 in China, which is aiming at reducing the roles of bovines and humans as infection sources, may be challenged by persistent presence of infected snails in lake and marshland areas. Based on annual parasitologic data for schistosomiasis during 2004-2011 in Xingzi County, a spatio-temporal kriging model was used to investigate the spatio-temporal pattern of schistosomiasis risk. Results showed that environmental factors related to snail habitats can explain the spatio-temporal variation of schistosomiasis. Predictive maps of schistosomiasis risk illustrated that clusters of the disease fluctuated during 2004-2008; there was an extensive outbreak in 2008 and attenuated disease occurrences afterwards. An area with an annually constant cluster of schistosomiasis was identified. Our study suggests that targeting snail habitats located within high-risk areas for schistosomiasis would be an economic and sustainable way of schistosomiasis control in the future.
Collapse
Affiliation(s)
- Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Jie Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Meina Chi
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Can Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Henry Lynn
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Liqian Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Bo Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| | - Qingwu Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Biomedical Statistical Center, Fudan University, Shanghai, China; Shandong Institute of Prevention and Control for Endemic Disease, Jinan, China; Shanghai Institute of Occupational Disease for Chemical Industry, Shanghai, China; Department of Environmental Art and Architecture, Changsha Environmental Protection Vocational Technical College, Changsha, China; Xingzi Station for Schitosomiasis Prevention and Control, Jiangxi Province, China; Medical Science College, China Three Gorges University, Yichang, China
| |
Collapse
|
18
|
Impact and cost-effectiveness of a comprehensive Schistosomiasis japonica control program in the Poyang Lake region of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6409-21. [PMID: 24287861 PMCID: PMC3881122 DOI: 10.3390/ijerph10126409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 11/15/2022]
Abstract
Schistosomiasis japonica remains a significant public-health problem in China. This study evaluated cost-effectiveness of a comprehensive schistosomiasis control program (2003–2006). The comprehensive control program was implemented in Zhangjia and Jianwu (cases); while standard interventions continued in Koutou and Xiajia (controls). Incurred costs were documented and the schistosomiasis comprehensive impact index (SCI) and cost-effectiveness ratio (Comprehensive Control Program Cost/SCI) were applied. In 2003, prevalence of Schistosoma japonicum infection was 11.3% (Zhangjia), 6.7% (Jianwu), 6.5% (Koutou), and 8.0% (Xiajia). In 2006, the comprehensive control program in Zhangjia and Jianwu reduced infection to 1.6% and 0.6%, respectively; while Koutou and Xiajia had a schistosomiasis prevalence of 3.2% and 13.0%, respectively. The year-by-year SCIs in Zhangjia were 0.28, 105.25, and 47.58, with an overall increase in cost-effectiveness ratio of 374.9%–544.8%. The SCIs in Jianwu were 16.21, 52.95, and 149.58, with increase in cost-effectiveness of 226.7%–1,149.4%. Investment in Koutou and Xiajia remained static (US$10,000 unit cost). The comprehensive control program implemented in the two case villages reduced median prevalence of schistosomiasis 8.5-fold. Further, the cost effectiveness ratio demonstrated that the comprehensive control program was 170% (Zhangjia) and 922.7% (Jianwu) more cost-effective. This work clearly shows the improvements in both cost and disease prevention effectiveness that a comprehensive control program-approach has on schistosomiasis infection prevalence.
Collapse
|
19
|
A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China. Parasitol Int 2013; 62:118-26. [DOI: 10.1016/j.parint.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/26/2012] [Accepted: 10/26/2012] [Indexed: 11/20/2022]
|
20
|
Schistosomiasis in the People's Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 2010; 23:442-66. [PMID: 20375361 DOI: 10.1128/cmr.00044-09] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential impact of the Three Gorges Dam (TGD) on schistosomiasis transmission in China has invoked considerable global concern. The TGD will result in changes in the water level and silt deposition downstream, favoring the reproduction of Oncomelania snails. Combined with blockages of the Yangtze River's tributaries, these changes will increase the schistosomiasis transmission season within the marshlands along the middle and lower reaches of the Yangtze River. The changing schistosome transmission dynamics necessitate a comprehensive strategy to control schistosomiasis. This review discusses aspects of the epidemiology and transmission of Schistosoma japonicum in China and considers the pathology, clinical outcomes, diagnosis, treatment, immunobiology, and genetics of schistosomiasis japonica together with an overview of current progress in vaccine development, all of which will have an impact on future control efforts. The use of synchronous praziquantel (PZQ) chemotherapy for humans and domestic animals is only temporarily effective, as schistosome reinfection occurs rapidly. Drug delivery requires a substantial infrastructure to regularly cover all parts of an area of endemicity. This makes chemotherapy expensive and, as compliance is often low, a less than satisfactory control option. There is increasing disquiet about the possibility that PZQ-resistant schistosomes will develop. Consequently, as mathematical modeling predicts, vaccine strategies represent an essential component in the future control of schistosomiasis in China. With the inclusion of focal mollusciciding, improvements in sanitation, and health education into the control scenario, China's target of reducing the level of schistosome infection to less than 1% by 2015 may be achievable.
Collapse
|
21
|
The sensitivity of artesunate against Schistosoma japonicum decreased after 10 years of use in China. Parasitol Res 2010; 107:873-8. [DOI: 10.1007/s00436-010-1944-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
|
22
|
Zhu Y, Lu F, Dai Y, Wang X, Tang J, Zhao S, Zhang C, Zhang H, Lu S, Wang S. Synergistic enhancement of immunogenicity and protection in mice against Schistosoma japonicum with codon optimization and electroporation delivery of SjTPI DNA vaccines. Vaccine 2010; 28:5347-55. [PMID: 20483191 DOI: 10.1016/j.vaccine.2010.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/09/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022]
Abstract
Schistosomiasis is an endemic, zoonotic parasitic disease caused by Schistosoma japonicum that remains a public health concern and an effective vaccine is needed. Triose-phosphate isomerase from S. japonicum is a promising schistosome vaccine antigen shown to be immunogenic when delivered as a DNA vaccine, however, the previous S. japonicum triose-phosphate isomerase (SjTPI) DNA vaccine needs to be further optimized to achieve higher protection. In the current study, codon optimization of SjTPI DNA insert, combined with electroporation but not with the addition of a tPA leader or heat-shock protein in-frame with the SjTPI gene insert, enhanced Th1-type antibody and cytokine production and most significantly, achieved great than 50% reduction of infection against challenge with S. japonicum cercariae, a major milestone in S. japonicum vaccine development. Our results suggest that the combination of a codon optimized vaccine design and an efficient vaccine delivery system can greatly improve the potential of a SjTPI DNA vaccine as a viable schistosome vaccine candidate.
Collapse
Affiliation(s)
- Yinchang Zhu
- Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, 117 Yangxiang Meiyuan, Wuxi 214064, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Location of active transmission sites of Schistosoma japonicum in lake and marshland regions in China. Parasitology 2009; 136:737-46. [PMID: 19416552 DOI: 10.1017/s0031182009005885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Schistosomiasis control in China has, in general, been very successful during the past several decades. However, the rebounding of the epidemic situation in some areas in recent years raises concerns about a sustainable control strategy of which locating active transmission sites (ATS) is a necessary first step. This study presents a systematic approach for locating schistosomiasis ATS by combining the approaches of identifying high risk regions for schisotosmiasis and extracting snail habitats. Environmental, topographical, and human behavioural factors were included in the model. Four significant high-risk regions were detected and 6 ATS were located. We used the normalized difference water index (NDWI) combined with the normalized difference vegetation index (NDVI) to extract snail habitats, and the pointwise 'P-value surface' approach to test statistical significance of predicted disease risk. We found complicated non-linear relationships between predictors and schistosomiasis risk, which might result in serious biases if data were not properly treated. We also found that the associations were related to spatial scales, indicating that a well-designed series of studies were needed to relate the disease risk with predictors across various study scales. Our approach provides a useful tool, especially in the field of vector-borne or environment-related diseases.
Collapse
|
24
|
Wang LD, Chen HG, Guo JG, Zeng XJ, Hong XL, Xiong JJ, Wu XH, Wang XH, Wang LY, Xia G, Hao Y, Chin DP, Zhou XN. A strategy to control transmission of Schistosoma japonicum in China. N Engl J Med 2009; 360:121-8. [PMID: 19129526 DOI: 10.1056/nejmoa0800135] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Schistosoma japonicum causes an infection involving humans, livestock, and snails and is a significant cause of morbidity in China. METHODS We evaluated a comprehensive control strategy in two intervention villages and two control villages along Poyang Lake in the southeastern province of Jiangxi, where annual synchronous chemotherapy is routinely used. New interventions, implemented from 2005 through 2007, included removing cattle from snail-infested grasslands, providing farmers with mechanized farm equipment, improving sanitation by supplying tap water and building lavatories and latrines, providing boats with fecal-matter containers, and implementing an intensive health-education program. During the intervention period, we observed changes in S. japonicum infection in humans, measured the rate of infection in snails, and tested the infectivity of lake water in mice. RESULTS After three transmission seasons, the rate of infection in humans decreased to less than 1.0% in the intervention villages, from 11.3% to 0.7% in one village and from 4.0% to 0.9% in the other (P<0.001 for both comparisons). The rate of infection in humans in control villages fluctuated but remained at baseline levels. In intervention villages, the percentage of sampling sites with infected snails decreased from 2.2% to 0.1% in one grassland area and from 0.3% to no infection in the other (P<0.001 for both comparisons). The rate of infection in mice after exposure to lake water decreased from 79% to no infection (P<0.001). CONCLUSIONS A comprehensive control strategy based on interventions to reduce the rate of transmission of S. japonicum infection from cattle and humans to snails was highly effective. These interventions have been adopted as the national strategy to control schistosomiasis in China.
Collapse
|
25
|
Seto EYW, Wu W, Liu HY, Chen HG, Hubbard A, Holt A, Davis GM. Impact of changing water levels and weather on Oncomelania hupensis hupensis populations, the snail host of Schistosoma japonicum, downstream of the Three Gorges Dam. ECOHEALTH 2008; 5:149-58. [PMID: 18787918 DOI: 10.1007/s10393-008-0169-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 02/22/2008] [Accepted: 03/10/2008] [Indexed: 05/15/2023]
Abstract
Increasing evidence indicates that dams impact riverine ecosystems and human diseases. Poyang Lake, one of the largest schistosomiasis endemic environments in China, will change due to the construction of the Yangtze River Three Gorges Dam. We assess changes in Oncomelania hupensis hupensis, the snail host for Schistosoma japonicum, in response to changing water levels and weather from 1998 to 2002. In the 5 years following the major flooding of Poyang Lake in 1998, seasonal water levels have gradually decreased, concomitant with decreases in mean and variance of fall snail densities. Nonlinear relationships suggest that the highest spring density is associated with current, 2-, and 3-month prior temperatures of 18 degrees, 9.1 degrees, and 5.8 degrees C, while the highest fall density is associated with 2- and 3-month prior water levels of 17 and 18 m, respectively. This suggests that lower, more stable water levels downstream of the dam may result in a reduction in mean fall densities and their variance. However, additional data are needed to determine whether snail populations that are typically destroyed by seasonal floods may live longer in more stable environments created by the dam.
Collapse
Affiliation(s)
- Edmund Y W Seto
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Schistosomiasis, caused by trematode blood flukes of the genus Schistosoma, is recognized as the most important human helminth infection in terms of morbidity and mortality. Infection follows direct contact with freshwater harboring free-swimming larval (cercaria) forms of the parasite. Despite the existence of the highly effective antischistosome drug praziquantel (PZQ), schistosomiasis is spreading into new areas, and although it is the cornerstone of current control programs, PZQ chemotherapy does have limitations. In particular, mass treatment does not prevent reinfection. Furthermore, there is increasing concern about the development of parasite resistance to PZQ. Consequently, vaccine strategies represent an essential component for the future control of schistosomiasis as an adjunct to chemotherapy. An improved understanding of the immune response to schistosome infection, both in animal models and in humans, suggests that development of a vaccine may be possible. This review considers aspects of antischistosome protective immunity that are important in the context of vaccine development. The current status in the development of vaccines against the African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes is then discussed, as are new approaches that may improve the efficacy of available vaccines and aid in the identification of new targets for immune attack.
Collapse
|
27
|
Seto EYW, Lee YJ, Liang S, Zhong B. Individual and village-level study of water contact patterns and Schistosoma japonicum infection in mountainous rural China. Trop Med Int Health 2007; 12:1199-209. [PMID: 17956502 DOI: 10.1111/j.1365-3156.2007.01903.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe the exposure patterns related to schistosomiasis transmission in 10 villages in rural Xichang County, Sichuan, China. METHODS Individual and village-level study of water contact exposure and Schistosoma japonicum reinfection; after initial infection survey and treatment, reinfection was determined 2 years later for 1604 individuals, of whom 578 also participated in a cross-sectional survey to assess their water contact behaviours. RESULTS The highest intensity of reinfection was observed in farmers aged 20-29 years, with no difference between sexes. While water contact measured as m(2)-minutes of contact was not associated with reinfection, an exposure metric computed by spatially weighting water contact by cercarial risk was correlated with both infection status and intensity. Village-level indicators based on snail density, number of infected snails, mouse bioassay data, and averaged individual-level exposures were associated with village reinfection rates. CONCLUSION Age-acquired immunity may be present in this population, but the study lacked sufficient power to discern differences in the exposure infection relationship with age.
Collapse
Affiliation(s)
- Edmund Y W Seto
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
28
|
Ellis MK, Raso G, Li YS, Rong Z, Chen HG, McManus DP. Familial aggregation of human susceptibility to co- and multiple helminth infections in a population from the Poyang Lake region, China. Int J Parasitol 2007; 37:1153-61. [PMID: 17407778 PMCID: PMC2757303 DOI: 10.1016/j.ijpara.2007.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/09/2007] [Accepted: 02/19/2007] [Indexed: 11/25/2022]
Abstract
Human helminthiases are common in China, especially in rural areas where sanitation conditions are poor. Co- and multiple infections with helminths are strikingly frequent. A cross-sectional parasitological and questionnaire survey was carried out in a population of 3205 individuals belonging to 498 families from five villages in the Poyang Lake region, Jiangxi Province, China, to assess their helminth infection status and to collect information on risk factors for infection. The prevalences for Ascaris lumbricoides, Schistosoma japonicum and Trichuris trichiura were 30.9%, 15.7% and 47%, respectively. Hookworm infection prevalence was low (0.7%). A significant association was observed between A. lumbricoides and T. trichiura infection, and also between S. japonicum and T. trichiura infection. Variance components analysis was undertaken to investigate the aggregation of S. japonicum and the soil-transmitted helminths, A. lumbricoides and T. trichiura. While A. lumbricoides was found to aggregate only at a household level, T. trichiura was shown to cluster predominantly in families. Both genetic and household effects were found to be important in determining the risk of infection with S. japonicum. Variance components analysis for A. lumbricoides/T. trichiura co-infections indicated a significant domestic environmental effect, attributable for 32.7% of the co-infection risk. Aggregation of S. japonicum/T. trichiura co-infection was also observed at a household level. The risk of infection with multiple helminth species, although mainly environmentally influenced, was also shown to have significant involvement of genetic and household components. The results of this study indicate that a shared household is a major contributing risk factor for helminth co-infections and emphasises the need for increased standards of sanitation and hygiene to prevent parasite transmission. Further, the results suggest that susceptibility to one helminth infection is not completely independent of another, and that there exist common genetic factors underlying infection with multiple helminth species.
Collapse
Affiliation(s)
- Magda K Ellis
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, The University of Queensland, Herston, Brisbane, Qld 4029, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
McManus DP, Dalton JP. Vaccines against the zoonotic trematodesSchistosoma japonicum,Fasciola hepaticaandFasciola gigantica. Parasitology 2007; 133 Suppl:S43-61. [PMID: 17274848 DOI: 10.1017/s0031182006001806] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schistosoma japonicum,Fasciola hepaticaandF. giganticaare digenetic trematodes and, therefore, possess similar life cycles. While schistosomiasis japonica has for a long time been recognised as a major disease of both humans and animals, infection with fasciolids has only been considered of relevance to animals. However, a number of recent reports indicate that fasciolosis is becoming a serious public health problem, especially in South America, Egypt and Iran (sporadic cases are also on the increase throughout Europe). Vaccines targeted at animals could play an important role in controlling these three diseases in animals and, by blocking transmission of infection, have a concurrent beneficial effect on disease in humans. Approaches towards identifying and producing vaccines against these parasites are similar and are discussed in this reveiw.
Collapse
Affiliation(s)
- D P McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Q 4006, Australia.
| | | |
Collapse
|
30
|
Suzuki T, Osada Y, Kumagai T, Hamada A, Okuzawa E, Kanazawa T. Early detection of Schistosoma mansoni infection by touchdown PCR in a mouse model. Parasitol Int 2006; 55:213-8. [PMID: 16822708 DOI: 10.1016/j.parint.2006.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/11/2006] [Accepted: 05/17/2006] [Indexed: 11/21/2022]
Abstract
A detection assay for Schistosoma mansoni DNA in mouse serum samples based on touchdown PCR was developed and evaluated. The serum samples could be assayed directly without the need to extract DNA. No cross reactions between S. mansoni and related species inducing human schistosomiasis were observed. After the infection, mouse sera and feces were collected for 8 weeks. Anti-worm antigen IgG and anti-soluble egg antigen IgG were detected in the sera at 6 weeks post-infection by ELISA. The parasite's eggs were detected in the feces at 8 weeks. In contrast, S. mansoni DNA was detected in the sera at 2 weeks post-infection. These data suggest that touchdown PCR is a potential tool for the early diagnosis of S. mansoni infection.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Department of Parasitology and Tropical Public Health, University of Occupational and Environmental Health, Japan 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Guo JG, Cao CL, Hu GH, Lin H, Li D, Zhu R, Xu J. The role of 'passive chemotherapy' plus health education for schistosomiasis control in China during maintenance and consolidation phase. Acta Trop 2005; 96:177-83. [PMID: 16112637 DOI: 10.1016/j.actatropica.2005.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In order to explore the possibility of further optimising schistosomiasis control during the maintenance and consolidation phase in China, two highly endemic villages were selected to compare the strategy of 'passive chemotherapy' plus health education to that of mass chemotherapy singly. Emphasis was placed on treatment coverage with praziquantel among individuals infected with Schistosoma japonicum and costs incurred for treating an infected person. The results show that the former strategy was almost as good as the latter producing treatment coverage rates among egg-positives of 96.2-97.1% during 2 years, while corresponding rates of 100% were achieved in the village where mass chemotherapy was employed. Importantly, the cost of the former strategy was only about half that of mass chemotherapy, i.e. 49.0% in the first year and 54.6% in the following. Moreover, 'passive chemotherapy' together with health education can conveniently be integrated into the primary health care system making it an attractive strategy for schistosomiasis control during the maintenance and consolidation phase.
Collapse
Affiliation(s)
- Jia-Gang Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hu GH, Hu J, Song KY, Lin DD, Zhang J, Cao CL, Xu J, Li D, Jiang WS. The role of health education and health promotion in the control of schistosomiasis: experiences from a 12-year intervention study in the Poyang Lake area. Acta Trop 2005; 96:232-41. [PMID: 16154103 DOI: 10.1016/j.actatropica.2005.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objectives of this study were to examine the short-term effects of health education and health promotion in the control of schistosomiasis, and to monitor the long-term impact on re-infection patterns. The study was carried out in six Schistosoma japonicum-endemic villages located in the Poyang Lake area. Three different interventions were implemented, namely (i) health education by means of video tapes, training in prevention of infection, and a 'rewards/punishment' programme for schoolchildren, (ii) promotion of an understanding of schistosomiasis and its control plus training in prevention of infection for women, and (iii) encouragement of compliance with regard to chemotherapy plus training in prevention of infection for men. The 1-year post-intervention follow-up showed that both awareness and appropriate behaviour were strengthened in all three study groups along with a significant increase in the level of knowledge on how to avoid schistosomiasis. For example, the majority of women had abandoned the practice of washing clothes in schistosome-infested water and re-infection rates were sharply reduced as a consequence. In addition, the frequency of water contact among schoolchildren decreased and remained so for the long term. Overall, the approach emphasising health education and health promotion in combination with chemotherapy was highly successful in reducing re-infection rates among inhabitants of S. japonicum-endemic villages and people's compliance with regard to chemotherapy increased significantly over the course of the study.
Collapse
Affiliation(s)
- Guang-Han Hu
- Jiangxi Provincial Institute of Parasitic Diseases, and Jiangxi Medical College, Nanchang 330046, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guo JG, Vounatsou P, Cao CL, Utzinger J, Zhu HQ, Anderegg D, Zhu R, He ZY, Li D, Hu F, Chen MG, Tanner M. A geographic information and remote sensing based model for prediction of Oncomelania hupensis habitats in the Poyang Lake area, China. Acta Trop 2005; 96:213-22. [PMID: 16140246 DOI: 10.1016/j.actatropica.2005.07.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A model was developed using remote sensing and geographic information system technologies for habitat identification of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum, in the Poyang Lake area, China. In a first step, two multi-temporal Landsat TM 5 satellite images, one from the wet and the second from the dry season, were visually classified into different land-use types. Next, the normalized difference vegetation index was extracted from the images and the tasseled-cap transformation was employed to derive the wetness feature. Our model predicted an estimated 709 km2 of the marshlands in Poyang Lake as potential habitats for O. hupensis. Near-ground temperature measurements in April and August yielded a range of 22.8-24.2 degrees C, and pH values of 6.0-8.5 were derived from existing records. Both climatic features represent suitable breeding conditions for the snails. Preliminary validation of the model at 10 sites around Poyang Lake revealed an excellent accuracy for predicting the presence of O. hupensis. We used the predicted snail habitats as centroids and established buffer zones around them. Villages with an overall prevalence of S. japonicum below 3% were located more than 1200m away from the centroids. Furthermore, a gradient of high-to-low prevalence was observed with increasing distance from the centroids. In conclusion, the model holds promise for identifying high risk areas of schistosomiasis japonica and may become an important tool for the ongoing national schistosomiasis control programme. The model is of particular relevance for schistosome-affected regions that lack accurate surveillance capabilities and are large enough to be detected at most commercially available remote sensing scales.
Collapse
Affiliation(s)
- Jia-Gang Guo
- National Institute of Parasitic Disease, Chinese Center for Diseases Control and Preventive, Shanghai 200025, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McManus DP. Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol 2005; 27:297-308. [PMID: 16138851 DOI: 10.1111/j.1365-3024.2005.00784.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite intensive long-term control programmes, schistosomiasis japonica remains a serious public health problem in China and the Philippines. The termination of mass praziquantel-treatment has seen a dramatic recent rebound in both its prevalence and associated morbidity. Schistosomiasis japonica is a zoonosis but, despite complicating control efforts, this feature provides a practical method for attacking Schistosoma japonicum through development and deployment of a transmission blocking veterinary vaccine. A recently completed bovine drug intervention trial and mathematical modelling of the transmission of S. japonicum underpin the concept that such a vaccine, targeting water buffalo, would have major implications for future integrated schistosomiasis control in China. A major block to success is the low ceiling efficacy achieved with current vaccine molecules. To solve this challenge, an antigen discovery pipeline needs to be established for identification of new vaccine targets that induce greater potency than the current anti-S. japonicum candidate vaccines. Excretory-secretory products and molecules exposed on epithelial surfaces (including receptors) which interact directly with the host immune system warrant especial attention. Extensive schistosome genomics programmes currently underway coupled with new advances in proteomics and microarray technology provide an unparalleled opportunity to identify new molecules exploitable as vaccine targets. These will then need to be produced in quantity and rigorously tested first in the laboratory and then the field. If a transmission blocking veterinary vaccine developed for bovines can be put into practice in combination with other control strategies such as human chemotherapy, elimination of S. japonicum from China may be achievable.
Collapse
Affiliation(s)
- D P McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia.
| |
Collapse
|