1
|
Cheng YK, Chiang HS. The interrelationship between intestinal immune cells and enteric α-synuclein in the progression of Parkinson's disease. Neurol Sci 2025; 46:2965-2977. [PMID: 40085320 DOI: 10.1007/s10072-025-08114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor impairment, resulting from the accumulation of α-synuclein and neuronal cell death in the substantia nigra of the midbrain. Emerging evidence suggests that α-synuclein aggregation may originate in the enteric nervous system (ENS) and subsequently propagate to the brain via the vagus nerve. Clinical observations, such as prodromal gastrointestinal dysfunction in PD patients and the increased incidence of PD among individuals with inflammatory bowel disease, support the hypothesis that abnormal intestinal inflammation may contribute to the onset of motor dysfunction and neuropathology in PD. This review examines recent findings on the interplay between intestinal immune cells and α-synuclein aggregation within the framework of gut-originated PD pathogenesis. It begins by discussing evidence linking dysbiosis and intestinal inflammation to α-synuclein aggregation in the ENS. Additionally, it explores the potential role of intestinal immune cells in influencing enteric neurons and α-synuclein aggregation, furthering the understanding of PD development.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 PMCID: PMC11853208 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
| | | | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (A.G.); (J.L.)
| |
Collapse
|
3
|
de Souza Nascimento T, Oliveira AV, de Oliveira Bélem M, Bezerra JR, do Carmo MRS, da Silva ME, Cunha RA, Feitosa CRC, do Santos AA, Sampaio TL, de Andrade GM. The Rotenone-Induced Sporadic Parkinsonism Model: Timeline of Motor and Non-Motor Features. Eur J Neurosci 2025; 61:e16669. [PMID: 39930637 DOI: 10.1111/ejn.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 05/08/2025]
Abstract
The prevalence of Parkinson's disease (PD) requires better characterized animal models, in particular of the PD prodrome. Since pesticide are well-established triggers of Parkinsonism, we now undertook a detailed characterization of the time-dependent onset of behavioural and neurochemical alterations after the repeated daily intraperitoneal administration to adult male rats of a low dose of rotenone (2.75 mg/kg) during weekdays for 21 days. The onset of motor (bradykinesia in the open field test) and coordination deficits (balance in the rotarod and rearing in the open field) occurred after 14 days of exposure to rotenone, linked to a nigrostriatal dopaminergic degeneration and increased accumulation of α-synuclein, which are key features of PD. Moreover, we identified several modifications pre-dating the onset of PD-like motor symptoms, encompassing gastrointestinal alterations and a modified whole-body composition together with olfactory dysfunction and memory and emotional impairments, which were typified by: i) a delayed gastric emptying of liquids (13CO2 analysis), which was evident from the third day of rotenone administration and was aggravated over subsequent days; ii) a loss of total, visceral and subcutaneous body fat and dehydration (bioimpedance spectroscopy); iii) olfactory dysfunction (discrimination test and food buried test). The characterization of this prodrome period in this robust model of PD offers a new window of opportunity to investigate the pathophysiological mechanisms of PD onset and to devise and test novel neuroprotective strategies.
Collapse
Affiliation(s)
- Tyciane de Souza Nascimento
- Post-Graduate Program in Medical Sciences, Department of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Alfaete Vieira Oliveira
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Mônica de Oliveira Bélem
- Post-Graduate Program in Medical Sciences, Department of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Jéssica Rabelo Bezerra
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Mateus Edson da Silva
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Armenio Aguiar do Santos
- Post-Graduate Program in Medical Sciences, Department of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Tiago Lima Sampaio
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Post-Graduate Program in Medical Sciences, Department of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Gao V, Crawford CV, Burré J. The Gut-Brain Axis in Parkinson's Disease. Cold Spring Harb Perspect Med 2025; 15:a041618. [PMID: 38772708 PMCID: PMC11694753 DOI: 10.1101/cshperspect.a041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) involves both the central nervous system (CNS) and enteric nervous system (ENS), and their interaction is important for understanding both the clinical manifestations of the disease and the underlying disease pathophysiology. Although the neuroanatomical distribution of pathology strongly suggests that the ENS is involved in disease pathophysiology, there are significant gaps in knowledge about the underlying mechanisms. In this article, we review the clinical presentation and management of gastrointestinal dysfunction in PD. In addition, we discuss the current understanding of disease pathophysiology in the gut, including controversies about early involvement of the gut in disease pathogenesis. We also review current knowledge about gut α-synuclein and the microbiome, discuss experimental models of PD-linked gastrointestinal pathophysiology, and highlight areas for further research. Finally, we discuss opportunities to use the gut-brain axis for the development of biomarkers and disease-modifying treatments.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, New York 10065, USA
- Division of Movement Disorders, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, New York 10033, USA
| | - Carl V Crawford
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York 10065, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
5
|
Zhao Q, Xu B, Mao W, Ren Z, Chi T, Chan P. Helicobacter pylori infection is a risk factor for constipation in patients with Parkinson's disease: A multicenter prospective cohort study. Parkinsonism Relat Disord 2024; 126:107053. [PMID: 39008918 DOI: 10.1016/j.parkreldis.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND AND AIMS Constipation is one of the most common nonmotor symptoms (NMSs) of Parkinson's disease (PD). The infection rate of Helicobacter pylori (HP) is greater in PD patients. This study was a multicenter prospective cohort study in which propensity score matching (PSM) was used to determine whether HP infection was a risk factor for constipation in patients with PD. METHODS A total of 932 PD patients with 13C-urea breath test for HP were included in the study. The PSM was estimated with the use of a nonparsimonious multivariate logistic regression model, with HP infection as the dependent variable and all the baseline characteristics as covariates. A total of 697 patients composed the study cohort, including 252 (36.2 %) patients in the HP-positive (HPP) group and 445 (63.8 %) patients in the HP-negative (HPN) group. Before PSM, there were differences in several of the baseline variables between the two groups. After PSM, 250 HPP patients were matched with 250 HPN patients and the standardized differences were less than 0.1 for all variables. RESULTS The present results demonstrate that HP infection is a risk factor for constipation in patients with PD [RR (95 % CI) 1.412 (1.155-1.727), P < 0.001]. Subgroup analyses revealed that HP infection was both a risk factor for constipation in Hoehn-Yahr scale (1,1.5) group and Hoehn-Yahr scale (2-5) group [OR (95 % CI) 1.811 (1.079-3.038), P < 0.025; OR (95 % CI) 2.041 (1.177-3.541), P < 0.011]. CONCLUSIONS The results of our prospective cohort study suggest that Helicobacter pylori infection is a risk factor for constipation in patients with PD. TRIAL REGISTRATION ChiCTR2300071631.
Collapse
Affiliation(s)
- Quchuan Zhao
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Baolei Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Zhili Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tianyu Chi
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Zhang J, Shi M, Zhang Q, Chen Y, Yin X, Wang X, Zhang Y. Association between Constipation and the Risk of Parkinson's Disease among Participants in the UK Biobank. Neuroepidemiology 2024:1-10. [PMID: 39159603 DOI: 10.1159/000540955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Constipation is common in patients with Parkinson's disease (PD), but its impact on incident PD remains uncertain. We aimed to prospectively investigate constipation symptoms and the risk of PD. METHODS Participants without PD at baseline from the UK Biobank were included in the study. Information on the regular use of laxatives, bowel movement frequency, and the frequency of hard or lumpy stools was collected. Incident PD was defined by the ICD-10 code. Cox proportional hazards models were used to assess the association between constipation symptoms and incident PD. RESULTS In the analysis of regular laxative use and PD, 490,797 participants were included and 2,735 incident PD were detected. The multivariable adjusted HR of PD in participants who regularly used laxatives was 1.99 (95% confidence interval [CI], 1.70-2.33) compared with those who did not. In the analysis of bowel movement frequency and hard or lumpy stools and PD, 170,017 participants were included and 519 incident PD were detected. The multivariable adjusted HRs were 2.16 (95% CI, 1.74-2.68) and 2.57 (95% CI, 2.00-3.31) for participants with a bowel movement frequency of 3-6 times/week and <3 times/week, respectively, compared with those with a bowel movement frequency of ≥7 times/week; compared with participants who never had hard or lumpy stools, multivariable adjusted HRs were 1.31 (95% CI, 1.07-1.60), 2.32 (95% CI, 1.77-3.05), and 2.94 (95% CI, 2.14-4.05) for those who sometimes had hard or lumpy stools, often had hard or lumpy stools, and most of time/always had hard or lumpy stools, respectively. CONCLUSIONS Constipation measured by the regular use of laxatives, bowel movement frequency, and the frequency of hard or lumpy stools was significantly associated with an increased risk of incident PD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China,
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, China
| | - Qilu Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Chen
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangyan Yin
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoxiao Wang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Li Z, Niu Q, Yang K, Zhao K, Yin S, Zhu F. Acupuncture for constipation in Parkinson's disease: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e38937. [PMID: 39029044 PMCID: PMC11398760 DOI: 10.1097/md.0000000000038937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurological disease worldwide, and there is a potential interaction between PD and constipation. PD constipation often causes significant trouble for patients and seriously affects their quality of life. Acupuncture is widely used for treating constipation and has been clinically proven. However, it is unclear whether the current evidence is sufficient to support acupuncture to improve PD constipation. METHODS We searched the Cochrane Central Register of Controlled Trials, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, Wan Fang Data Knowledge Service Platform, and Chinese Scientific Journal Database (VIP database) for randomized controlled trials from inception through July 1, 2023. Randomized controlled trials (RCTs) included acupuncture, sham acupuncture, and medication for PD constipation. Stata 16.0 software and Cochrane RoB2.0 were used for data processing and migration risk analysis. RESULTS The 11 studies included a total of 960 patients. The results showed that acupuncture or acupuncture combined with conventional treatment seemed to have advantages in improving complete spontaneous bowel movements (WMD: 1.49, 95% CI: 0.86, 2.11; P < .00001), Patient-Assessment of Constipation Quality of Life questionnaire (WMD: -11.83, 95% CI: -15.67, -7.99; P < .00001), the chronic constipation severity scale (CCS) (SMD: -0.99, 95% CI: -1.40, -0.58; P < .01), and c(RRP) (WMD: 2.13, 95% CI: 0.44, 3.82; P < .05). CONCLUSION The present results show that compared with conventional treatment, acupuncture combined with conventional treatment seems to increase the number of spontaneous defecations in PD patients, improve quality of life, increase rectal resting pressure, and alleviate the severity of chronic constipation. Thus, acupuncture has the potential to treat PD constipation. However, due to the study's limitations, higher-quality RCTs are needed for verification.
Collapse
Affiliation(s)
- Zhao Li
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Yang
- Department of Orthopaedics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Keni Zhao
- Deriatric Department, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Shao Yin
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
8
|
Pasricha TS, Guerrero-Lopez IL, Kuo B. Management of Gastrointestinal Symptoms in Parkinson's Disease: A Comprehensive Review of Clinical Presentation, Workup, and Treatment. J Clin Gastroenterol 2024; 58:211-220. [PMID: 38260966 PMCID: PMC10855995 DOI: 10.1097/mcg.0000000000001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Gastrointestinal symptoms in Parkinson's disease (PD) are among the most prevalent and debilitating of complications and present unique diagnostic and management challenges. Patients with PD commonly experience dysphagia, nausea, bloating, and constipation related to pathologic involvement of the enteric nervous system. In turn, gastrointestinal complications may impact motor fluctuations and the efficacy of levodopa therapy. This review will explore the common gastrointestinal manifestations of PD with an emphasis on clinical presentation, workup, and treatment strategies.
Collapse
Affiliation(s)
- Trisha S. Pasricha
- Division of Gastroenterology, Massachusetts General Hospital
- Harvard Medical School, Boston, MA
| | | | - Braden Kuo
- Division of Gastroenterology, Massachusetts General Hospital
- Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Yuan XY, Chen YS, Liu Z. Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy. World J Gastroenterol 2024; 30:225-237. [PMID: 38314132 PMCID: PMC10835526 DOI: 10.3748/wjg.v30.i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.
Collapse
Affiliation(s)
- Xin-Yang Yuan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Yu-Sen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
10
|
Yun Q, Wang S, Chen S, Luo H, Li B, Yip P, Yu X, Yang Z, Sha F, Tang J. Constipation preceding depression: a population-based cohort study. EClinicalMedicine 2024; 67:102371. [PMID: 38264501 PMCID: PMC10803902 DOI: 10.1016/j.eclinm.2023.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024] Open
Abstract
Background Constipation is generally considered a common physical symptom of depression or a side effect of antidepressant treatments. However, according to the gut-brain axis hypothesis, the association between depression and constipation might be bi-directional. This study investigated the association between premorbid constipation and depression. Methods We conducted a retrospective cohort study using data from UK Biobank. Individuals free of depression between 2006 and 2010 were included. Constipation status was determined using diagnostic codes from electronic health records or a baseline questionnaire. Data on covariates, including socio-demographic characteristics, lifestyle factors, health conditions, and regular medication use, were also collected through a baseline questionnaire. The primary outcome is incident depression, which was extracted from hospital inpatient admissions, primary care, self-report, and death data from baseline to 2022. The secondary outcome is depressive symptoms, which was assessed by Patient Health Questionnaire-9 (PHQ-9) from an online survey in 2016. Cox proportional hazard regression models were employed to assess the prospective association between constipation and incident depression. Logistic regression models were used to assess its association with depressive symptoms. Findings Among the 449,459 participants included in the study, 18,596 (4.1%) experienced constipation at baseline, and 18,576 (4.1%) developed depression over a median follow-up period of 12.3 years. Premorbid constipation is associated with a 2.28-fold higher risk of depression. After adjusting the covariates, we found those with constipation still had a 48% higher risk of developing depression (adjusted hazard ratio [aHR] 1.48; 95% CI, 1.41-1.56) than those without constipation. Self-reported and diagnosed constipation were both associated with a higher risk of depression, with the aHR being 1.42 (95% CI: 1.34-1.51) and 1.66 (95% CI: 1.51-1.82), respectively. Participants with constipation were more likely to report depressive symptoms than people without (adjusted odds ratio 2.18; 95% CI, 1.97-2.43). These findings remained consistent in sensitivity analyses. Interpretation Diagnosed and self-reported constipation are both prospectively associated with an elevated risk of depression. These explorative findings suggest that constipation may be an independent risk factor or a prodromal symptom of depression. Gastroenterologists and primary care physicians should pay more attention to the depressive symptoms of their constipation patients. Funding The Shenzhen Science and Technology Program and the Strategic Priority Research Program of Chinese Academy of Sciences.
Collapse
Affiliation(s)
- Qingping Yun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Shiyu Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Shanquan Chen
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Hao Luo
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
- Sau Po Centre on Ageing, The University of Hong Kong, Hong Kong, China
- The Hong Kong Jockey Club Centre for Suicide Research and Prevention, The University of Hong Kong, Hong Kong, China
| | - Bingyu Li
- Department of Government, Shenzhen University, Shenzhen, China
| | - Paul Yip
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
- The Hong Kong Jockey Club Centre for Suicide Research and Prevention, The University of Hong Kong, Hong Kong, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Feng Sha
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jinling Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Division of Epidemiology, The JC School of Public Health & Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Dos Santos JCC, Rebouças CDSM, Oliveira LF, Cardoso FDS, Nascimento TDS, Oliveira AV, Lima MPP, de Andrade GM, de Castro Brito GA, de Barros Viana GS. The role of gut-brain axis in a rotenone-induced rat model of Parkinson's disease. Neurobiol Aging 2023; 132:185-197. [PMID: 37837734 DOI: 10.1016/j.neurobiolaging.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative condition affecting millions globally. This investigation centered on the gut-brain axis in a rotenone-induced PD rat model. Researchers monitored behavioral shifts, histological modifications, neurodegeneration, and inflammation markers throughout the rats' bodies. Results revealed that rotenone-treated rats displayed reduced exploration (p = 0.004) and motor coordination (p < 0.001), accompanied by decreased Nissl staining and increased alpha-synuclein immunoreactivity in the striatum (p = 0.009). Additionally, these rats exhibited weight loss (T3, mean = 291.9 ± 23.67; T19, mean = 317.5 ± 17.53; p < 0.05) and substantial intestinal histological alterations, such as shortened villi, crypt architecture loss, and inflammation. In various regions, researchers noted elevated immunoreactivity to ionized binding adapter molecule (IBA)-1 (p < 0.05) and reduced immunoreactivity to glial fibrillary acidic protein (p < 0.05) and S100B (p < 0.001), indicating altered glial cell activity. Overall, these findings imply that PD is influenced by gut-brain axis changes and may originate in the intestine, impacting bidirectional gut-brain communication.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Medical School of the Christus University Center-UNICHRISTUS, Fortaleza, CE, Brazil; Graduate Program in Morphofunctional Sciences, Federal University of Ceará-UFC, Fortaleza, CE, Brazil.
| | - Conceição da Silva Martins Rebouças
- Graduate Program in Morphofunctional Sciences, Federal University of Ceará-UFC, Fortaleza, CE, Brazil; Morphology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | | - Fabrizio Dos Santos Cardoso
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| | | | - Alfaete Vieira Oliveira
- Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | | - Geanne Matos de Andrade
- Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | - Gerly Anne de Castro Brito
- Morphology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil; Physiology and Pharmacology Department of the Federal University of Ceará-UFC, Fortaleza, CE, Brazil
| | | |
Collapse
|
12
|
Song LZX, Xu N, Yu Z, Yang H, Xu CC, Qiu Z, Dai JW, Xu B, Hu XM. The effect of electroacupuncture at ST25 on Parkinson's disease constipation through regulation of autophagy in the enteric nervous system. Anat Rec (Hoboken) 2023; 306:3214-3228. [PMID: 36655864 DOI: 10.1002/ar.25148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 01/20/2023]
Abstract
The effectiveness and safety of electroacupuncture (EA) for constipation have been confirmed by numerous clinical studies and experiments, and there are also studies on the efficacy of EA for Parkinson's disease (PD) motor symptoms. However, there are few researches on EA for PD constipation. Autophagy is thought to be involved in the mechanistic process of EA in the central nervous system (CNS) intervention in Parkinson's pathology. However, whether it has the same effect on the enteric nervous system (ENS) has not been elucidated. Therefore, we investigated whether EA at Tianshu (ST25) acupoint promotes the clearance of α-Syn and damaged mitochondria aggregated in the ENS in a model of rotenone-induced PD constipation. This study evaluated constipation symptoms by stool characteristics, excretion volume, and water content, and the expression levels of colonic ATG5, LC3II, and Parkin were detected by Western Blot (WB) and Real-Time Quantitative PCR (RT-qPCR). The relationship between the location of α-Syn and Parkin in the colonic ENS was observed by immunofluorescence (IF). The results showed that EA intervention significantly relieved the symptoms of rotenone-induced constipation in PD rats, reversed the rotenone-induced down-regulation of colonic ATG5, LC3II, and Parkin expression, and the positional relationship between colonic α-Syn and Parkin proved to be highly correlated. It is suggested that EA might be helpful in treating PD constipation by modulating Parkin-induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Li-Zhe-Xiong Song
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Cheng Xu
- Nanjing Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zi Qiu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Wen Dai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Ming Hu
- Nanjing Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Cui C, Shi Y, Hong H, Zhou Y, Qiao C, Zhao L, Jia X, Zhao W, Shen Y. 5-HT4 Receptor is Protective for MPTP-induced Parkinson's Disease Mice Via Altering Gastrointestinal Motility or Gut Microbiota. J Neuroimmune Pharmacol 2023; 18:610-627. [PMID: 37782386 DOI: 10.1007/s11481-023-10085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Serotonergic dysfunction is related to both motor and nonmotor symptoms in Parkinson's disease (PD). As a 5-HT receptor, 5-HT4 receptor (5-HT4R) is well-studied and already-used in clinical therapy of constipation, which is a typical non-motor symptom in PD. In this study, we investigated the role of 5-HT4R as a regulator of gut function in MPTP-induced acute PD mice model. Daily intraperitoneal injection of GR 125487 (5-HT4R antagonist) was administered 3 days before MPTP treatment until sacrifice. Seven days post-MPTP treatment, feces were collected and gastrointestinal transit time (GITT) was measured, 8 days post-MPTP treatment, behavioral tests were performed, and then animals were sacrificed for the further analysis. We found GR 125487 pretreatment not only increased GITT, but also aggravated MPTP-induced motor bradykinesia. In addition, GR 125487 pretreatment exacerbated the loss of dopaminergic neurons probably by suppressing JAK2/PKA/CREB signaling pathway and increased reactive glia and neuroinflammation in the striatum. 16 S rRNA sequencing of fecal microbiota showed that GR 125487 pretreatment altered the composition of gut microbiota, in which the abundance of Akkermansia muciniphila and Clostridium clostridioforme was increased, whereas that of Parabacteroides distasonis and Bacteroides fragilis was decreased, which are closely associated with inflammation condition. Taken together, we demonstrated that GR 125487 pretreatment exacerbates MPTP-induced striatal neurodegenerative processes possibly via the JAK2/PKA/CREB pathway and neuroinflammation by altering gut microbiota composition. In the microbiota-gut-brain axis of PD, 5-HT4R should be further explored and might serve as a target for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yun Shi
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui Hong
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yu Zhou
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chenmeng Qiao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liping Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuebing Jia
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weijiang Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanqin Shen
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
14
|
Miyaue N, Yabe H, Nagai M. Concomitant use of magnesium oxide significantly decreases absorption of levodopa preparations in patients with Parkinson's disease. Clin Park Relat Disord 2023; 9:100227. [PMID: 38021340 PMCID: PMC10656210 DOI: 10.1016/j.prdoa.2023.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Constipation is one of the most frequent non-motor symptoms of Parkinson's disease (PD), and magnesium oxide (MgO) is a frequently used laxative. This study aimed to investigate the effect of concomitant use of MgO on the pharmacokinetics of levodopa preparations in patients with PD. Methods We prospectively enrolled 35 patients with PD and compared the pharmacokinetics of levodopa and carbidopa and motor symptoms with and without MgO. The impact of alterations in pH and the addition of MgO on the solubility of levodopa formulations were also evaluated under in vitro conditions. Results Concomitant use of MgO significantly reduced the maximum plasma concentration of levodopa (Cmax) (from 7.66 ± 3.74 μmol/L to 5.82 ± 3.69 μmol/L; p = 0.006) and area under the plasma concentration-time curve 3 h after drug administration (AUC3h, from 9.64 ± 3.23 μmol·h/L to 7.39 ± 3.15 μmol·h/L; p < 0.001), and further decreased carbidopa Cmax (from 64.02 ± 27.02 ng/mL to 38.83 ± 21.94 μmol/L; p < 0.001) and AUC3h (from 130.58 ± 65.64 ng/mL to 76.48 ± 52.24 ng·h/mL; p < 0.001). The Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III score also deteriorated significantly (from 30.71 ± 11.34 to 32.06 ± 11.22; p = 0.007). MgO significantly affected the pharmacokinetics of levodopa and carbidopa. This also applied when the findings were analyzed by sex and age. In vitro dissolution experiments revealed a decrease in the relative concentrations of levodopa, carbidopa, and benserazide as the pH increased and in the presence of MgO suspension, with the most prominent impact on benserazide. Conclusions Concomitant use of MgO and levodopa should be discouraged to improve levodopa absorption.
Collapse
Affiliation(s)
- Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama, Ehime, Japan
| | - Hayato Yabe
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama, Ehime, Japan
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
15
|
Justich MB, Rojas OL, Fasano A. The Role of Helicobacter pylori and Small Intestinal Bacterial Overgrowth in Parkinson's Disease. Semin Neurol 2023; 43:553-561. [PMID: 37562451 DOI: 10.1055/s-0043-1771468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder whose etiology remains largely unexplained. Several studies have aimed to describe a causative effect in the interactions between the gastrointestinal tract and the brain, for both PD pathogenesis and disease course. However, the results have been controversial. Helicobacter pylori and small intestinal bacterial overgrowth (SIBO) are theorized to be agents capable of triggering chronic proinflammatory changes with a possible neurotoxic effect, as well as a cause of erratic L-dopa response in PD patients. This review evaluates the individual and possibly synergistic influence of H. pylori and SIBO on PD, to provide an opportunity to consider prospective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Belen Justich
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga L Rojas
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Parkinson's Disease and Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital - Gravedona ed Uniti, Como, Italy
| |
Collapse
|
16
|
Brown GC, Camacho M, Williams‐Gray CH. The Endotoxin Hypothesis of Parkinson's Disease. Mov Disord 2023; 38:1143-1155. [PMID: 37157885 PMCID: PMC10947365 DOI: 10.1002/mds.29432] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
The endotoxin hypothesis of Parkinson's disease (PD) is the idea that lipopolysaccharide (LPS) endotoxins contribute to the pathogenesis of this disorder. LPS endotoxins are found in, and released from, the outer membrane of Gram-negative bacteria, for example in the gut. It is proposed that gut dysfunction in early PD leads to elevated LPS levels in the gut wall and blood, which promotes both α-synuclein aggregation in the enteric neurons and a peripheral inflammatory response. Communication to the brain via circulating LPS and cytokines in the blood and/or the gut-brain axis leads to neuroinflammation and spreading of α-synuclein pathology, exacerbating neurodegeneration in brainstem nuclei and loss of dopaminergic neurons in the substantia nigra, and manifesting in the clinical symptoms of PD. The evidence supporting this hypothesis includes: (1) gut dysfunction, permeability, and bacterial changes occur early in PD, (2) serum levels of LPS are increased in a proportion of PD patients, (3) LPS induces α-synuclein expression, aggregation, and neurotoxicity, (4) LPS causes activation of peripheral monocytes leading to inflammatory cytokine production, and (5) blood LPS causes brain inflammation and specific loss of midbrain dopaminergic neurons, mediated by microglia. If the hypothesis is correct, then treatment options might include: (1) changing the gut microbiome, (2) reducing gut permeability, (3) reducing circulating LPS levels, or (4) blocking the response of immune cells and microglia to LPS. However, the hypothesis has a number of limitations and requires further testing, in particular whether reducing LPS levels can reduce PD incidence, progression, or severity. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Guy C. Brown
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Marta Camacho
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
17
|
Tai YC, Liao PH, Leta V, Lin CH, Chaudhuri KR. Irritable bowel syndrome based on Rome IV diagnostic criteria associates with non-motor symptoms of Parkinson's disease. Parkinsonism Relat Disord 2023; 113:105496. [PMID: 37385160 DOI: 10.1016/j.parkreldis.2023.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Recent concepts suggest that the neuropathological hallmark of Parkinson's disease (PD) may in part originate from the enteric nervous system. We evaluated the frequency of functional gastrointestinal disorders in PD patients using Rome IV criteria and correlated the clinical severity of PD. METHODS PD patients and matched controls were recruited between January 2020 and December 2021. Rome IV criteria were used to diagnose constipation and irritable bowel syndrome (IBS). Severity of PD motor symptoms was evaluated using UPDRS part III scores and non-motor symptoms using Non-motor Symptoms Scale (NMSS). RESULTS A total of 99 PD patients and 64 controls were enrolled. The prevalence of constipation (65.7% vs. 34.3%, P < 0.001) and IBS (18.1% vs 5%, P = 0.02) were significantly higher in PD patients than controls. The prevalence of IBS was higher in early-stage PD than advanced-stage PD (14.43% vs. 8.25%, P = 0.02), whereas constipation was more common in advanced stages (71.43% vs. 18.56%, P < 0.001). PD patients with IBS had higher NMSS total scores (P < 0.01) than those without IBS. The severity of IBS correlated with NMSS scores (r = 0.71, P < 0.001), especially subscores in domain 3 assessing mood disorders (r = 0.83, P < 0.001), but not UPDRS part III scores (r = 0.06, P = 0.45). The severity of constipation correlated with the UPDRS part III scores (r = 0.59, P < 0.001) but not the domain 3 mood subscores (r = 0.15, P = 0.07). CONCLUSION The prevalence of IBS and constipation was higher in PD patients than controls and phenotypic correlation supported the occurrence of IBS with higher non-motor symptom burden, especially mood symptoms, in PD patients.
Collapse
Affiliation(s)
- Yi-Cheng Tai
- Department of Neurology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | | | - Valentina Leta
- Parkinson Foundation International Centre of Excellence, Kings College Hospital, Institute of Psychiatry, Psychology and Neurosciences, Kings College, London, UK
| | - Chin-Hsien Lin
- School of Medicine, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence, Kings College Hospital, Institute of Psychiatry, Psychology and Neurosciences, Kings College, London, UK
| |
Collapse
|
18
|
Homolak J. Targeting the microbiota-mitochondria crosstalk in neurodegeneration with senotherapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:339-383. [PMID: 37437983 DOI: 10.1016/bs.apcsb.2023.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are a group of age-related disorders characterized by a chronic and progressive loss of function and/or structure of synapses, neurons, and glial cells. The etiopathogenesis of neurodegenerative diseases is characterized by a complex network of intricately intertwined pathophysiological processes that are still not fully understood. Safe and effective disease-modifying treatments are urgently needed, but still not available. Accumulating evidence suggests that gastrointestinal dyshomeostasis and microbial dysbiosis might play an important role in neurodegeneration by acting as either primary or secondary pathophysiological factors. The research on the role of microbiota in neurodegeneration is in its early phase; however, accumulating evidence suggests that dysbiosis might promote neurodegenerative diseases by disrupting mitochondrial function and inducing mitochondrial dysfunction-associated senescence (MiDAS), possibly due to bidirectional crosstalk based on the common evolutionary origin of mitochondria and bacteria. Cellular senescence is an onco-supressive homeostatic mechanism that results in an irreversible cell cycle arrest upon exposure to noxious stimuli. Senescent cells resist apoptosis via senescent cell anti-apoptotic pathways (SCAPs) and transition into a state known as senescence-associated secretory phenotype (SASP) that generates a cytotoxic proinflammatory microenvironment. Cellular senescence results in the adoption of a detrimental vicious cycle driven by dysbiosis, mitochondrial dysfunction, inflammation, and oxidative stress - a pathophysiological positive feedback loop that results in neuroinflammation and neurodegeneration. Detrimental effects of MiDAS might be prevented and abolished by mitochondria-targeted senotherapeutics, a group of drugs specifically designed to alleviate senescence by inhibiting SCAPs (senolytics), or inhibiting SASP (senomorphics).
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
19
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
20
|
Nakahara K, Nakane S, Ishii K, Ikeda T, Ando Y. Gut microbiota of Parkinson's disease in an appendectomy cohort: a preliminary study. Sci Rep 2023; 13:2210. [PMID: 36750613 PMCID: PMC9905566 DOI: 10.1038/s41598-023-29219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
In patients with Parkinson's disease (PD), α-synuclein pathology is thought to spread to the brain via the dorsal motor nucleus of the vagus nerve. The link between the gut microbiome and PD has been explored in various studies. The appendix might play an important role in immunity by maintaining the microbiota as a reservoir. In recent times, appendectomy has been linked to a lower risk of PD, possibly owing to the role of the appendix in altering the gut microbiome. We aimed to elucidate whether the gut microbiota affects PD development in the appendectomy cohort. We analyzed the fecal microbial composition in patients with PD and healthy controls with and without a history of appendectomy. The abundance of microbes from the family Enterobacteriaceae was higher in feces samples from patients with Parkinson's disease compared to that in samples collected from healthy controls. Furthermore, there was a significant phylogenetic difference between patients with PD and healthy controls who had undergone appendectomy. There was a significant phylogenetic difference between patients with PD and HCs who had undergone APP. These results suggest the correlation between gut microbiota and PD in patients who have undergone APP.
Collapse
Affiliation(s)
- Keiichi Nakahara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shunya Nakane
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Department of Neurology, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| | - Kazuo Ishii
- Biostatistics Center, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
21
|
Chen PC, Hong CT, Chen WT, Chan L, Chien LN. Metformin Adherence Reduces the Risk of Dementia in Patients With Diabetes: A Population-based Cohort Study. Endocr Pract 2023; 29:247-253. [PMID: 36657564 DOI: 10.1016/j.eprac.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Metformin is widely used as the first-line drug for type 2 diabetes mellitus and has numerous benefits apart from lowering blood glucose. However, metformin-retained regimen is challenged by newly launching, powerful glucose-lowering antiglycemic agents. This population-based cohort study examined the association between metformin adherence and the risk of dementia and Parkinson's disease (PD). METHODS Diabetic patients with metformin-included combination antiglycemic therapy were identified from the National Health Insurance Research Database and categorized into metformin-adherent and -nonadherent groups according to the medical record of the first year prescription. Patients contraindicated with metformin, severe diabetic complications, and poor drug compliance were excluded. The study outcome was the diagnosis of dementia or PD. RESULTS A total of 31 384 matched pairs were included after using propensity score matching and both groups were followed up for an average of 5 years. Metformin adherence was associated with a significantly lower risk of dementia (adjusted hazard risk ratio = 0.72, P < .001) but not PD (adjusted hazard risk ratio = 0.97, P = .825). Subgroup analysis revealed that the risk of dementia was significantly reduced in metformin-adherent patients, both male and female, aged >65 or ≤ 65 years, and with or without concurrent insulin treatment. This effect was not influenced by concurrent insulin treatment, which may eliminate the bias caused by the severity of diabetes mellitus. CONCLUSION Despite the launching of numerous new oral antiglycemic agents, metformin may provide further benefit on lowering risk of dementia beyond conventional glycemic control according to the real-world evidence.
Collapse
Affiliation(s)
- Po-Chih Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ting Chen
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| | - Li-Nien Chien
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei City, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan; School of Health Care Administration, College of Management, Taipei Medical University, Taipei City, Taiwan; Master of Public Health Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
22
|
Lee YF, Wu MC, Ma KSK, Huang JY, Wei JCC. Association of early childhood constipation with the risk of autism spectrum disorder in Taiwan: Real-world evidence from a nationwide population-based cohort study. Front Psychiatry 2023; 14:1116239. [PMID: 37065891 PMCID: PMC10098334 DOI: 10.3389/fpsyt.2023.1116239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental problem that presents with limited interests, repetitive behaviors, and deficits in reciprocal communication and social interactions. Mounting evidence indicates that an imbalanced gut microbiota contributes to autism via the gut-brain axis. Constipation may result in alteration of the gut microbiota. The clinical influence of constipation on ASD has not been fully researched. Thus, in this study we aimed to evaluate whether early childhood constipation influenced the risk of developing ASD using a nationwide population-based cohort study. Methods We identified 12,935 constipated children aged 3 years or younger from the National Health Insurance Research Database (NHIRD) in Taiwan from 1997 to 2013. Non-constipated children were also selected from the database and propensity score matching of age, gender, and underlying comorbidities was conducted with a ratio of 1:1. Kaplan-Meier analysis was applied to determine different levels of constipation severity and cumulative incidence of autism. Subgroup analysis was also applied in this study. Results The incidence rate of ASD was 12.36 per 100,000 person-months in the constipation group, which was higher than the rate of 7.84 per 100,000 person-months noted in the non-constipation controls. Constipated children had a significantly higher risk of autism when compared to the non-constipation group (crude relative risk = 1.458, 95% CI = 1.116-1.904; adjusted hazard ratio = 1.445, 95% CI = 1.095-1.907).Moreover, among constipated children, a higher number of laxative prescriptions, male gender, constipation during infancy, and atopic dermatitis were significantly associated with higher risks of ASD when compared to the non-constipation group. Conclusion Constipation in early childhood was correlated with a significantly increased risk of ASD. Clinicians should pay attention to the possibility of ASD in constipated children. Further research is necessary to study the possible pathophysiological mechanisms of this association.
Collapse
Affiliation(s)
- Yi-Feng Lee
- Division of Neonatology, Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Che Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Gastroenterology, Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kevin Sheng-Kai Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Orthodontics and Dentofacial Orthopedics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Jing-Yang Huang
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Jing-Yang Hung,
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: James Cheng-Chung Wei,
| |
Collapse
|
23
|
Camilleri M, Subramanian T, Pagan F, Isaacson S, Gil R, Hauser RA, Feldman M, Goldstein M, Kumar R, Truong D, Chhabria N, Walter BL, Eskenazi J, Riesenberg R, Burdick D, Tse W, Molho E, Robottom B, Bhatia P, Kadimi S, Klos K, Shprecher D, Marquez-Mendoza O, Hidalgo G, Grill S, Li G, Mandell H, Hughes M, Stephenson S, Vandersluis J, Pfeffer M, Duker A, Shivkumar V, Kinney W, MacDougall J, Zasloff M, Barbut D. Oral ENT-01 Targets Enteric Neurons to Treat Constipation in Parkinson Disease : A Randomized Controlled Trial. Ann Intern Med 2022; 175:1666-1674. [PMID: 36343348 DOI: 10.7326/m22-1438] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson disease (PD) is associated with α-synuclein (αS) aggregation within enteric neurons. ENT-01 inhibits the formation of αS aggregates and improved constipation in an open-label study in patients with PD. OBJECTIVE To evaluate the safety and efficacy of oral ENT-01 for constipation and neurologic symptoms in patients with PD and constipation. DESIGN Randomized, placebo-controlled phase 2b study. (ClinicalTrials.gov: NCT03781791). SETTING Outpatient. PATIENTS 150 patients with PD and constipation. INTERVENTION ENT-01 or placebo daily for up to 25 days. After baseline assessment of constipation severity, daily dosing was escalated to the prokinetic dose, the maximum dose (250 mg), or the tolerability limit, followed by a washout period. MEASUREMENTS The primary efficacy end point was the number of complete spontaneous bowel movements (CSBMs) per week. Neurologic end points included dementia (assessed using the Mini-Mental State Examination [MMSE]) and psychosis (assessed using the Scale for the Assessment of Positive Symptoms adapted for PD [SAPS-PD]). RESULTS The weekly CSBM rate increased from 0.7 to 3.2 in the ENT-01 group versus 0.7 to 1.2 in the placebo group (P < 0.001). Improvement in secondary end points included SBMs (P = 0.002), stool consistency (P < 0.001), ease of passage (P = 0.006), and laxative use (P = 0.041). In patients with dementia, MMSE scores improved by 3.4 points 6 weeks after treatment in the ENT-01 group (n = 14) versus 2.0 points in the placebo group (n = 14). Among patients with psychosis, SAPS-PD scores improved from 6.5 to 1.7 six weeks after treatment in the ENT-01 group (n = 5) and from 6.3 to 4.4 in the placebo group (n = 6). ENT-01 was well tolerated, with no deaths or drug-related serious adverse events. Adverse events were predominantly gastrointestinal, including nausea (34.4% [ENT-01] vs. 5.3% [placebo]; P < 0.001) and diarrhea (19.4% [ENT-01] vs. 5.3% [placebo]; P = 0.016). LIMITATION Longer treatment periods need to be investigated in future studies. CONCLUSION ENT-01 was safe and significantly improved constipation. PRIMARY FUNDING SOURCE Enterin, Inc.
Collapse
Affiliation(s)
| | | | - Fernando Pagan
- Department of Neurology, Georgetown University Hospital, Washington, DC (F.P.)
| | - Stuart Isaacson
- Parkinson's Disease and Movement Disorder Center of Boca Raton, Boca Raton, Florida (S.I.)
| | - Ramon Gil
- Parkinson's Disease Treatment Center of SW Florida, Port Charlotte, Florida (R.G.)
| | - Robert A Hauser
- USF Parkinson's Disease and Movement Disorder Center, Tampa, Florida (R.A.H.)
| | - Mary Feldman
- Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (M.F.)
| | - Mark Goldstein
- JEM Headlands Research Institute, Atlantis, Florida (M.G.)
| | - Rajeev Kumar
- Rocky Mountain Movement Disorder Center, Englewood, Colorado (R.K.)
| | - Daniel Truong
- The Parkinson's and Movement Disorder Institute, Fountain Valley, California (D.T.)
| | - Nisha Chhabria
- Palm Beach Neurology and Premiere Research Institute, West Palm Beach, Florida (N.C.)
| | - Benjamin L Walter
- Parkinson's and Movement Disorders Center, Cleveland Clinic, Cleveland, Ohio (B.L.W.)
| | | | | | - Daniel Burdick
- Booth Gardner Parkinson's Care Center, EvergreenHealth, Kirkland, Washington (D.B.)
| | - Winona Tse
- Parkinson's and Movement Disorders Center, Icahn School of Medicine at Mount Sinai, New York, New York (W.T.)
| | - Eric Molho
- Parkinson's Disease and Movement Center, Albany Medical College, Albany, New York (E.M.)
| | | | | | - Srinath Kadimi
- Associated Neurologists of Southern Connecticut, Fairfield, Connecticut (S.K.)
| | - Kevin Klos
- The Movement Disorder Clinic of Oklahoma, Tulsa, Oklahoma (K.K.)
| | - David Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona (D.S.)
| | | | - Gonzalo Hidalgo
- The Neuromedical Clinic of Central Louisiana, Alexandria, Louisiana (G.H.)
| | - Stephen Grill
- Parkinson's and Movement Disorders Center of Maryland, Elkridge, Maryland (S.G.)
| | - George Li
- MEDSOL Clinical Research, Port Charlotte, Florida (G.L.)
| | - Howard Mandell
- Metrolina Neurological Associates, Indian Land, South Carolina (H.M.)
| | - Mary Hughes
- Premier Neurology, Greer, South Carolina (M.H.)
| | | | - Joel Vandersluis
- Elias Research, Neurology Diagnostics, Inc., Dayton, Ohio (J.V.)
| | - Michael Pfeffer
- Allied Biomedical Neurologic Research Institute, Miami, Florida (M.P.)
| | - Andrew Duker
- University of Cincinnati, Cincinnati, Ohio (A.D.)
| | - Vikram Shivkumar
- University Physicians and Surgeons, Inc., Marshall Health, Huntington, West Virginia (V.S.)
| | | | - James MacDougall
- MacDougall Statistical Institute, Haverhill, Massachusetts (J.M.)
| | - Michael Zasloff
- Medstar-Georgetown Transplant Institute, Washington, DC, and Enterin Research Institute and Enterin, Inc., Philadelphia, Pennsylvania (M.Z.)
| | - Denise Barbut
- Enterin Research Institute and Enterin, Inc., Philadelphia, Pennsylvania (D.B.)
| |
Collapse
|
24
|
Miller-Patterson C, Hsu JY, Chahine LM, Morley JF, Willis AW. Selected autonomic signs and symptoms as risk markers for phenoconversion and functional dependence in prodromal Parkinson's disease. Clin Auton Res 2022; 32:463-476. [PMID: 36057046 PMCID: PMC10979289 DOI: 10.1007/s10286-022-00889-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE To determine whether dysautonomia can stratify individuals with other prodromal markers of Parkinson's disease (PD) for risk of phenoconversion and functional decline, which may help identify subpopulations appropriate for experimental studies. METHODS Data were obtained from Parkinson's Progression Markers Initiative. Cohorts without PD but with at-risk features were included (hyposmia and/or rapid-eye-movement-sleep behavior disorder, LRRK2 gene mutation, GBA gene mutation). Dysautonomia measures included Scales-for-Outcomes-in-Parkinson's-Disease Autonomic (SCOPA-AUT), seven SCOPA-AUT subscales, and cardiovascular dysfunction (supine hypertension, low pulse pressure, neurogenic orthostatic hypotension). Outcome measures were phenoconversion and Schwab-and-England Activities-of-Daily-Living (SE-ADL) ≤ 70, which indicates functional dependence. Cox proportional-hazards regression was used to evaluate survival to phenoconversion/SE-ADL ≤ 70 for each dysautonomia measure. If a significant association was identified, a likelihood-ratio test was employed to evaluate whether a significant interaction existed between the measure and cohort. If so, regression analysis was repeated stratified by cohort. RESULTS Median follow-up was 30 months. On multivariable analysis, gastrointestinal and female sexual dysfunction subscales were associated with increased risk of phenoconversion, while the cardiovascular subscale and neurogenic orthostatic hypotension were associated with increased risk of SE-ADL ≤ 70; respective hazard ratios (95% confidence intervals) were 1.13 (1.01-1.27), 3.26 (1.39-7.61), 1.87 (1.16-2.99), 5.45 (1.40-21.25). Only the association between the cardiovascular subscale and SE-ADL ≤ 70 was modified by cohort. CONCLUSIONS Symptoms of gastrointestinal and female sexual dysfunction predict phenoconversion in individuals with other risk markers for PD, while signs and symptoms of cardiovascular dysfunction may be associated with functional decline.
Collapse
Affiliation(s)
- Cameron Miller-Patterson
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| | - Jesse Y Hsu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Morley
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Allison W Willis
- Department of Epidemiology and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Pang M, Peng R, Wang Y, Zhu Y, Wang P, Moussian B, Su Y, Liu X, Ming D. Molecular understanding of the translational models and the therapeutic potential natural products of Parkinson's disease. Biomed Pharmacother 2022; 155:113718. [PMID: 36152409 DOI: 10.1016/j.biopha.2022.113718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease after Alzheimer's disease, mostly happened in the elder population and the prevalence gradually increased with age. Parkinson's disease is a movement disorder that severely affects patients' daily life. The mechanism of Parkinson's disease still remains unknown, however, studies already proved that the damage or absence of dopaminergic neurons located in the substantia nigra and the decreased dopamine in the striatum are significantly related to Parkinson's disease. To date, the mainstream treatment of Parkinson's disease has been achieved by alleviating its associated morbid symptoms, such as the use of levodopa, carbidopa, dopamine receptor agonists, monoamine oxidase type B inhibitors, anticholinergic drugs, etc. However, strong side effects, even toxicity, have been reported after using these drugs, with reduced effectiveness over time. Plant compounds have shown good therapeutic effects in neurodegenerative diseases as a less toxic treatment. In this review, we have compiled several natural plant compounds and classified the currently reported compounds for therapeutic use based on their structural parent nuclei and constituent elements. We wish to inspire new ideas for the treatment of Parkinson's disease by summarizing their mechanisms.
Collapse
Affiliation(s)
- Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Rui Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yi Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Peng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China; Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China.
| |
Collapse
|
26
|
Hong CT, Chen JH, Huang TW. Probiotics treatment for Parkinson disease: a systematic review and meta-analysis of clinical trials. Aging (Albany NY) 2022; 14:7014-7025. [PMID: 36084951 PMCID: PMC9512504 DOI: 10.18632/aging.204266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS People with Parkinson disease (PwP) exhibit gut dysbiosis and considerable gastrointestinal (GI) symptoms. Probiotics, beneficial strains of microorganisms, supplement and optimize the intestinal environment and alleviate GI symptoms among elderly people. We conducted a systematic review and meta-analysis of clinical trials to investigate the effects of probiotics on PwP. METHODS We searched the PubMed, Embase, and Cochrane Library databases. Major outcomes were the effects on GI symptoms, including bowel movement and stool characteristics. This study was registered with PROSPERO (CRD42021262036). RESULTS Six randomized controlled trials (RCTs) and two open-label studies were included. Most of the probiotic regimens were based on Lactobacillus and Bifidobacterium. Six studies investigated the benefit of probiotics for GI symptoms, especially for PwP with functional constipation, and two RCTs assessed probiotics' effect on systematic metabolism and inflammation. In the meta-analysis, probiotic treatment significantly increased the frequency of bowel movements among PwP (mean difference [MD]: 1.06 /week, 95% confidence interval [CI]: 0.61 to 1.51, p < 0.001, I2 = 40%). Additionally, probiotic treatment significantly normalized stool consistency (standard MD: 0.61, 95% CI = 0.31 to 0.91, p < 0.001, I2 = 0%). CONCLUSIONS Although the probiotic compositions varied, probiotic treatment significantly attenuated constipation for PwP and exhibited possible systematic effects on inflammation and metabolism. Given the tolerability of probiotics, the present meta-analysis may provide more consolidated evidence of the benefit of probiotics on constipation in PwP and a possible new therapeutic approach for disease modification.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tsai-Wei Huang
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Department of Nursing, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Chen SJ, Lin CH. Gut microenvironmental changes as a potential trigger in Parkinson's disease through the gut-brain axis. J Biomed Sci 2022; 29:54. [PMID: 35897024 PMCID: PMC9327249 DOI: 10.1186/s12929-022-00839-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease attributed to the synergistic effects of genetic risk and environmental stimuli. Although PD is characterized by motor dysfunction resulting from intraneuronal alpha-synuclein accumulations, termed Lewy bodies, and dopaminergic neuronal degeneration in the substantia nigra, multiple systems are involved in the disease process, resulting in heterogenous clinical presentation and progression. Genetic predisposition to PD regarding aberrant immune responses, abnormal protein aggregation, autophagolysosomal impairment, and mitochondrial dysfunction leads to vulnerable neurons that are sensitive to environmental triggers and, together, result in neuronal degeneration. Neuropathology studies have shown that, at least in some patients, Lewy bodies start from the enteric nervous system and then spread to the central dopaminergic neurons through the gut-brain axis, suggesting the contribution of an altered gut microenvironment in the pathogenesis of PD. A plethora of evidence has revealed different gut microbiomes and gut metabolites in patients with PD compared to unaffected controls. Chronic gut inflammation and impaired intestinal barrier integrity have been observed in human PD patients and mouse models of PD. These observations led to the hypothesis that an altered gut microenvironment is a potential trigger of the PD process in a genetically susceptible host. In this review, we will discuss the complex interplay between genetic factors and gut microenvironmental changes contributing to PD pathogenesis.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Fu SC, Shih LC, Wu PH, Hsieh YC, Lee CH, Lin SH, Wang H. Exploring the Causal Effect of Constipation on Parkinson’s Disease Through Mediation Analysis of Microbial Data. Front Cell Infect Microbiol 2022; 12:871710. [PMID: 35646722 PMCID: PMC9130588 DOI: 10.3389/fcimb.2022.871710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aims Parkinson’s disease (PD) is a worldwide neurodegenerative disease with an increasing global burden, while constipation is an important risk factor for PD. The gastrointestinal tract had been proposed as the origin of PD in Braak’s gut–brain axis hypothesis, and there is increasing evidence indicating that intestinal microbial alteration has a role in the pathogenesis of PD. In this study, we aim to investigate the role of intestinal microbial alteration in the mechanism of constipation-related PD. Methods We adapted our data from Hill‐Burns et al., in which 324 participants were enrolled in the study. The 16S rRNA gene sequence data were processed, aligned, and categorized using DADA2. Mediation analysis was used to test and quantify the extent by which the intestinal microbial alteration explains the causal effect of constipation on PD incidence. Results We found 18 bacterial genera and 7 species significantly different between groups of constipated and non-constipated subjects. Among these bacteria, nine genera and four species had a significant mediation effect between constipation and PD. All of them were short-chain fatty acid (SCFA)-producing bacteria that were substantially related to PD. Results from the mediation analysis showed that up to 76.56% of the effect of constipation on PD was mediated through intestinal microbial alteration. Conclusion Our findings support that gut dysbiosis plays a critical role in the pathogenesis of constipation-related PD, mostly through the decreasing of SCFA-producing bacteria, indicating that probiotics with SCFA-producing bacteria may be promising in the prevention and treatment of constipation-related PD. Limitations 1) Several potential confounders that should be adjusted were not provided in the original dataset. 2) Our study was conducted based on the assumption of constipation being the etiology of PD; however, constipation and PD may mutually affect each other. 3) Further studies are necessary to explain the remaining 23.44% effect leading to PD by constipation.
Collapse
Affiliation(s)
- Shih-Chen Fu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ling-Chieh Shih
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Hua Wu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Chen Hsieh
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Han Lee
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Sheng-Hsuan Lin
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- *Correspondence: Sheng-Hsuan Lin, ; Hsiuying Wang,
| | - Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- *Correspondence: Sheng-Hsuan Lin, ; Hsiuying Wang,
| |
Collapse
|
29
|
Talman LS, Pfeiffer RF. Movement Disorders and the Gut: A Review. Mov Disord Clin Pract 2022; 9:418-428. [PMID: 35586541 PMCID: PMC9092751 DOI: 10.1002/mdc3.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022] Open
Abstract
There is a close link between multiple movement disorders and gastrointestinal dysfunction. Gastrointestinal symptoms may precede the development of the neurologic syndrome or may arise following the neurologic presentation. This review will provide an overview of gastrointestinal accompaniments to several well-known as well as lesser known movement disorders. It will also highlight several disorders which may not be considered primary movement disorders but have an overlapping presentation of both gastrointestinal and movement abnormalities.
Collapse
Affiliation(s)
- Lauren S. Talman
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Ronald F. Pfeiffer
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
30
|
Santos García D, García Roca L, de Deus Fonticoba T, Cores Bartolomé C, Naya Ríos L, Canfield H, Paz González JM, Martínez Miró C, Jesús S, Aguilar M, Pastor P, Planellas L, Cosgaya M, García Caldentey J, Caballol N, Legarda I, Hernández Vara J, Cabo I, López Manzanares L, González Aramburu I, Ávila Rivera MA, Gómez Mayordomo V, Nogueira V, Puente V, Dotor García-Soto J, Borrué C, Solano Vila B, Álvarez Sauco M, Vela L, Escalante S, Cubo E, Carrillo Padilla F, Martínez Castrillo JC, Sánchez Alonso P, Alonso Losada MG, López Ariztegui N, Gastón I, Kulisevsky J, Blázquez Estrada M, Seijo M, Rúiz Martínez J, Valero C, Kurtis M, de Fábregues O, González Ardura J, Alonso Redondo R, Ordás C, López Díaz L LM, McAfee D, Martinez-Martin P, Mir P. Constipation Predicts Cognitive Decline in Parkinson's Disease: Results from the COPPADIS Cohort at 2-Year Follow-up and Comparison with a Control Group. JOURNAL OF PARKINSON'S DISEASE 2022; 12:315-331. [PMID: 34602501 DOI: 10.3233/jpd-212868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Constipation has been linked to cognitive impairment development in Parkinson's disease (PD). OBJECTIVE Our aim was to analyze cognitive changes observed in PD patients and controls from a Spanish cohort with regards to the presence or not of constipation. METHODS PD patients and controls recruited from 35 centers of Spain from the COPPADIS cohort from January 2016 to November 2017 were followed-up during 2 years. The change in cognitive status from baseline (V0) to 2-year follow-up was assessed with the PD-CRS (Parkinson's Disease Cognitive Rating Scale). Subjects with a score ≥1 on item 21 of the NMSS (Non-Motor Symptoms Scale) at baseline (V0) were considered as "with constipation". Regression analyses were applied for determining the contribution of constipation in cognitive changes. RESULTS At V0, 39.7% (198/499) of PD patients presented constipation compared to 11.4% of controls (14/123) (p < 0.0001). No change was observed in cognitive status (PD-CRS total score) neither in controls without constipation (from 100.24±13.72 to 100.27±13.68; p = 0.971) and with constipation (from 94.71±10.96 to 93.93±13.03; p = 0.615). The PD-CRS total score decreased significantly in PD patients with constipation (from 89.14±15.36 to 85.97±18.09; p < 0.0001; Coehn's effect = -0.35) compared to patients without constipation (from 93.92±15.58 to 93.14±17.52; p = 0.250) (p = 0.018). In PD patients, to suffer from constipation at V0 was associated with a decrease in the PD-CRS total score from V0 to V2 (β= -0.1; 95% CI, -4.36 - -0.27; p = 0.026) and having cognitive impairment at V2 (OR = 1.79; 95% CI, 1.01 - 3.17; p = 0.045). CONCLUSION Constipation is associated with cognitive decline in PD patients but not in controls.
Collapse
Affiliation(s)
| | - Lucía García Roca
- CHUAC, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | | | | | - Lucía Naya Ríos
- CHUF, Complejo Hospitalario Universitario de Ferrol, A Coruña, Spain
| | - Héctor Canfield
- CHUF, Complejo Hospitalario Universitario de Ferrol, A Coruña, Spain
| | | | | | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Spain
| | - Miquel Aguilar
- Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Pau Pastor
- Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | | | | | | | - Nuria Caballol
- Consorci Sanitari Integral, Hospital Moisés Broggi, Sant Joan Despí, Barcelona, Spain
| | - Ines Legarda
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Jorge Hernández Vara
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Spain.,Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Iria Cabo
- Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain
| | | | - Isabel González Aramburu
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Spain.,Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Maria A Ávila Rivera
- Consorci Sanitari Integral, Hospital General de L'Hospitalet, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | - Berta Solano Vila
- Institut d'Assistència Sanitária (IAS) - Institut Catalá de la Salut, Girona, Spain
| | | | - Lydia Vela
- Fundación Hospital de Alcorcón, Madrid, Spain
| | - Sonia Escalante
- Hospital de Tortosa Verge de la Cinta (HTVC), Tortosa, Tarragona, Spain
| | - Esther Cubo
- Complejo Asistencial Universitario de Burgos, Burgos, Spain
| | | | | | | | - Maria G Alonso Losada
- Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo (CHUVI), Vigo, Spain
| | | | | | - Jaime Kulisevsky
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Spain.,Hospital de Sant Pau, Barcelona, Spain
| | | | - Manuel Seijo
- Complejo Hospitalario Universitario de Pontevedra (CHOP), Pontevedra, Spain
| | | | | | | | | | | | | | - Carlos Ordás
- Hospital Rey Juan Carlos, Madrid, Spain, Madrid, Spain
| | | | - Darrian McAfee
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pablo Martinez-Martin
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Spain
| | - Pablo Mir
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
31
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
32
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
33
|
Chang TY, Yang CP, Chen YH, Lin CH, Chang MH. Age-Stratified Risk of Dementia in Parkinson's Disease: A Nationwide, Population-Based, Retrospective Cohort Study in Taiwan. Front Neurol 2022; 12:748096. [PMID: 35002917 PMCID: PMC8740231 DOI: 10.3389/fneur.2021.748096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Parkinson's disease (PD) manifests with dominant motor symptoms and a wide range of non-motor symptoms (NMS). Dementia is one of the most disabling and exhausting NMS throughout the clinical course. We conducted a population-based, age-stratified, retrospective cohort study to investigate the incidence rate and risk of dementia of patients with newly diagnosed PD, and linked to the clinicopathological PD subtypes. Methods: Patients with newly diagnosed PD (PD group, n = 760) and control subjects (non-PD group, n = 3,034) were selected from the Taiwan's National Health Insurance Research Database from January 2001 to December 2005. The dementia incidence rate and dementia-free survival rate were calculated. Results: The overall dementia incidence rate was 17.5 and 5.7 per 1,000 person-years in PD and non-PD groups, respectively. The PD group had a significantly higher overall risk of dementia than controls (p < 0.001). The younger PD patients had a lower dementia incidence rate than the older PD patients, but a higher dementia risk compared to the same age of controls (<60 years, adjusted HR 6.55, 95% CI 1.56–27.48, p = 0.010). The dementia-free survival rate was significantly lower in the PD group compared to the non-PD group during follow-up (p < 0.001). Conclusion: In our study, the older age of onset in PD patients resulted in a higher incidence rate of dementia. In the young age of PD patients, the incidence rate of dementia was lower than the older PD patients, but the dementia risk was higher than controls of the same age. These findings possibly implied that there were different pathogenesis and pathologies causing dementia in younger and older PD patients.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Department of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yi-Huei Chen
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Hong Chang
- Department of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
34
|
Katunina E, Shipilova N, Katunin D. Mechanisms of development of constipation in Parkinson’s disease and therapeutic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:21-26. [DOI: 10.17116/jnevro202212208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Song EM, Lee HJ, Jung KW, Kim MJ, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Choe J, Yang SK, Rao SSC, Myung SJ. Long-Term Risks of Parkinson's Disease, Surgery, and Colorectal Cancer in Patients With Slow-Transit Constipation. Clin Gastroenterol Hepatol 2021; 19:2577-2586.e6. [PMID: 32882425 DOI: 10.1016/j.cgh.2020.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Long-term outcomes of constipation have not been evaluated fully. We investigated the incidence of Parkinson's disease, constipation-related surgery, and colorectal cancer (CRC) in patients with constipation and slow-transit constipation (STC), followed up for up to 20 years. METHODS We collected data from 2165 patients (33.1% men; median patient age, 54 y; median symptom duration, 5.0 y) with a diagnosis of constipation (based on Rome II criteria) who underwent an anorectal function test and a colonic transit time study, from 2000 through 2010, at a tertiary university hospital in Seoul, South Korea. The presence of STC was determined from colonic transit time. We used the Kaplan-Meier method to analyze and compare cumulative probabilities of a new diagnosis of Parkinson's disease or CRC according to the presence of STC. The patients were followed up until the end of 2019. RESULTS During a median follow-up period of 4.7 years (interquartile range, 0.7-8.3 y), 10 patients underwent constipation-related surgery. The cumulative probabilities of constipation-related surgery were 0.7% at 5 years and 0.8% at 10 years after a diagnosis of constipation. Twenty-nine patients (1.3%) developed Parkinson's disease; the cumulative probabilities were 0.4% at 1 year, 1.0% at 5 years, and 2.6% at 10 years after a diagnosis of constipation. At 10 years, 1.3% of patients with STC required constipation-related surgery and 3.5% of patients with STC developed Parkinson's disease; in contrast, none of the patients without STC required constipation-related surgery (P = .003), and 1.5% developed Parkinson's disease (P = .019). In multivariate analysis, patient age of 65 years or older at the diagnosis of constipation (hazard ratio, 4.834; 95% CI, 2.088-11.190) and the presence of STC (hazard ratio, 2.477; 95% CI, 1.046-5.866) were associated independently with the development of Parkinson's disease. Only 5 patients had a new diagnosis of CRC during the follow-up period. The risk of CRC did not differ significantly between patients with vs without STC (P = .575). CONCLUSIONS In a long-term follow-up study of patients with constipation in Korea, most patients had no severe complications. However, patients older than age 65 years with a new diagnosis of STC might be considered for Parkinson's disease screening.
Collapse
Affiliation(s)
- Eun Mi Song
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hyo Jeong Lee
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kee Wook Jung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Mi Jung Kim
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaewon Choe
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Satish S C Rao
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Augusta, Augusta, Georgia
| | - Seung-Jae Myung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, Zasloff M. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep 2021; 39:742-753. [PMID: 34698757 DOI: 10.1039/d1np00042j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy. .,Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Denise Barbut
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| | - Michael Zasloff
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA.,MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC 20010, USA.
| |
Collapse
|
37
|
Ivan IF, Irincu VL, Diaconu Ș, Falup-Pecurariu O, Ciopleiaș B, Falup-Pecurariu C. Gastro-intestinal dysfunctions in Parkinson's disease (Review). Exp Ther Med 2021; 22:1083. [PMID: 34447476 DOI: 10.3892/etm.2021.10517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
In patients with Parkinson's disease (PD), gastrointestinal dysfunction occurs from the early stages of the disease and even in the pre-motor phase. This condition can include the entire digestive tract, with symptoms ranging from delays in gastric emptying to dysphagia, constipation and even malnutrition. Excess saliva accumulates in the mouth due to the low frequency of swallowing. Dysphagia develops in about 50% of patients and may be a reflection of both central nervous system and enteric nervous system disorder. Gastroparesis can cause a variety of symptoms, including nausea, and also may be responsible for some of the motor fluctuations observed with levodopa therapy. Intestinal dysfunction in PD may be the result of both delayed colon transit and impaired anorectal muscle coordination. In addition, recent studies have demonstrated the role of Helicobacter pylori infection in the pathogenesis of diseases but also the occurrence of motor fluctuations by affecting the absorption of anti-parkinsonian medication. In this review, the main gastrointestinal dysfunctions associated with PD are presented.
Collapse
Affiliation(s)
- Irina-Florina Ivan
- Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov, Romania
| | | | - Ștefania Diaconu
- Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
| | | | - Bogdan Ciopleiaș
- Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov, Romania
| | - Cristian Falup-Pecurariu
- Department of Neurology, County Emergency Clinic Hospital, 500365 Brașov, Romania.,Faculty of Medicine, Transilvania University, 500036 Brașov, Romania
| |
Collapse
|
38
|
Drobny A, Ngo PA, Neurath MF, Zunke F, López-Posadas R. Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Front Med (Lausanne) 2021; 8:655123. [PMID: 34368179 PMCID: PMC8339315 DOI: 10.3389/fmed.2021.655123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Phuong A Ngo
- Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Medicine 1, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
39
|
Sheng MZ, Fang TC, Chen YH, Chang MH, Yang CP, Lin CH. Is either anosmia or constipation associated with cognitive dysfunction in Parkinson's disease? PLoS One 2021; 16:e0252451. [PMID: 34086764 PMCID: PMC8177408 DOI: 10.1371/journal.pone.0252451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Objective To clarify the association of anosmia or constipation with cognitive dysfunction and disease severity in patients with Parkinson’s disease (PD). Methods Newly diagnosed patients with PD (less than 5 years) without a clinical diagnosis of dementia were included from February 2017 to August 2018. The subjects were further divided into subgroups based on whether anosmia occurred and the grade of constipation. The severity of PD motor symptoms was rated using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), and cognitive functions were evaluated by Montreal Cognitive Assessment (MoCA). Statistical analyses including t-tests, chi-square tests, multiple linear regression, and binary logistic regression were used to determine statistical significance. Results A total of 107 newly diagnosed PD patients were included in this study. The MoCA score was significantly lower in the anosmia group (p < 0.001). Constipation was associated with impaired olfaction in a post-hoc test. The correlation coefficient between MoCA and UPSIT score was 0.41 (p < 0.001). Total anosmia and age were associated with cognitive dysfunction (MoCA < 26) (odds ratio, 2.63, p = 0.003; 1.10, p < 0.001, respectively). The anosmia group had a higher MDS-UPDRS part 3 score with β coefficient of 7.30 (p = 0.02). Furthermore, grade 3 constipation was associated with a higher MDS-UPDRS total score with β coefficient of 14.88 (p = 0.02). Conclusions Anosmia but not constipation was associated with cognitive impairment in PD patients. Nevertheless, severe constipation was associated with impaired olfaction and PD disease severity. We suggest that the propagation of α-synuclein from the olfactory route is distinct from the enteric nervous system, but the intercommunication between these two routes is complex.
Collapse
Affiliation(s)
- Ming-Zhi Sheng
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Chun Fang
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Huei Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Hong Chang
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Murros KE, Huynh VA, Takala TM, Saris PEJ. Desulfovibrio Bacteria Are Associated With Parkinson's Disease. Front Cell Infect Microbiol 2021; 11:652617. [PMID: 34012926 PMCID: PMC8126658 DOI: 10.3389/fcimb.2021.652617] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is the most prevalent movement disorder known and predominantly affects the elderly. It is a progressive neurodegenerative disease wherein α-synuclein, a neuronal protein, aggregates to form toxic structures in nerve cells. The cause of Parkinson's disease (PD) remains unknown. Intestinal dysfunction and changes in the gut microbiota, common symptoms of PD, are evidently linked to the pathogenesis of PD. Although a multitude of studies have investigated microbial etiologies of PD, the microbial role in disease progression remains unclear. Here, we show that Gram-negative sulfate-reducing bacteria of the genus Desulfovibrio may play a potential role in the development of PD. Conventional and quantitative real-time PCR analysis of feces from twenty PD patients and twenty healthy controls revealed that all PD patients harbored Desulfovibrio bacteria in their gut microbiota and these bacteria were present at higher levels in PD patients than in healthy controls. Additionally, the concentration of Desulfovibrio species correlated with the severity of PD. Desulfovibrio bacteria produce hydrogen sulfide and lipopolysaccharide, and several strains synthesize magnetite, all of which likely induce the oligomerization and aggregation of α-synuclein protein. The substances originating from Desulfovibrio bacteria likely take part in pathogenesis of PD. These findings may open new avenues for the treatment of PD and the identification of people at risk for developing PD.
Collapse
Affiliation(s)
- Kari E. Murros
- Neurological Outpatient Clinic of Terveystalo Healthcare, Helsinki, Finland
| | - Vy A. Huynh
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Timo M. Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E. J. Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Zhang M, Yang S, Li XC, Zhu HM, Peng D, Li BY, Jia TX, Tian C. Study on the characteristics of intestinal motility of constipation in patients with Parkinson's disease. World J Gastroenterol 2021; 27:1055-1063. [PMID: 33776372 PMCID: PMC7985734 DOI: 10.3748/wjg.v27.i11.1055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Constipation is one of the most important nonmotor symptoms in Parkinson's disease (PD) patients, and constipation of different severities is closely related to the pathogenesis of PD. PD with constipation (PDC) is considered a unique type of constipation, but its mechanism of formation and factors affecting its severity have been less reported. Understanding the gastrointestinal motility characteristics and constipation classification of PDC patients is essential to guide the treatment of PDC. In this study, the colonic transit test and high-resolution anorectal manometry were used to identify the intestinal motility of PDC to provide a basis for the treatment of PDC. AIM To investigate the clinical classification of PDC, to clarify its characteristics of colonic motility and rectal anal canal pressure, and to provide a basis for further research on the pathogenesis of PDC. METHODS Twenty PDC patients and 20 patients with functional constipation (FC) who were treated at Xuanwu Hospital of Capital Medical University from August 6, 2018 to December 2, 2019 were included. A colonic transit test and high-resolution anorectal manometry were performed to compare the differences in colonic transit time, rectal anal canal pressure, and constipation classification between the two groups. RESULTS There were no statistically significant differences in sex, age, body mass index, or duration of constipation between the two groups. It was found that more patients in the PDC group exhibited difficulty in defecating than in the FC group, and the difference was statistically significant. The rectal resting pressure, anal sphincter resting pressure, intrarectal pressure, and anal relaxation rate in the PDC group were significantly lower than those in the FC group. The proportion of paradoxical contractions in the PDC group was significantly higher than that in the FC group. There was a statistically significant difference in the type composition ratio of defecatory disorders between the two groups (P < 0.05). The left colonic transit time, rectosigmoid colonic transit time (RSCTT), and total colonic transit time were prolonged in PDC and FC patients compared to normal values. The patients with FC had a significantly longer right colonic transit time and a significantly shorter RSCTT than patients with PDC (P < 0.05). Mixed constipation predominated in PDC patients and FC patients, and no significant difference was observed. CONCLUSION Patients with PDC and FC have severe functional dysmotility of the colon and rectum, but there are certain differences in segmental colonic transit time and rectal anal canal pressure between the two groups.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuang Yang
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiao-Cui Li
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hong-Ming Zhu
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ding Peng
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Bang-Yi Li
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tian-Xu Jia
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chen Tian
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
42
|
Abstract
Recent epidemiological evidence indicates that diagnosis of attention-deficit/hyperactivity disorder (ADHD) is associated with increased risk for diseases of the basal ganglia and cerebellum, including Parkinson's disease (PD). The evidence reviewed here indicates that deficits in striatal dopamine are a shared component of the causal chains that produce these disorders. Neuropsychological studies of adult ADHD, prodromal PD, and early-stage PD reveal similar deficits in executive functions, memory, attention, and inhibition that are mediated by similar neural substrates. These and other findings are consistent with the possibility that ADHD may be part of the PD prodrome. The mechanisms that may mediate the association between PD and ADHD include neurotoxic effects of stimulants, other environmental exposures, and Lewy pathology. Understanding the nature of the association between PD and ADHD may provide insight into the etiology and pathogenesis of both disorders. The possible contribution of stimulants to this association may have important clinical and public health implications.
Collapse
|
43
|
Kenna JE, Bakeberg MC, Gorecki AM, Chin Yen Tay A, Winter S, Mastaglia FL, Anderton RS. Characterization of Gastrointestinal Symptom Type and Severity in Parkinson's Disease: A Case-Control Study in an Australian Cohort. Mov Disord Clin Pract 2021; 8:245-253. [PMID: 33553495 DOI: 10.1002/mdc3.13134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background While constipation is a well-known non-motor symptom which may precede the onset of the classical motor symptoms of PD, there have been few comprehensive studies of gastrointestinal (GI) symptoms in people with PD (PwP). Objectives To investigate the spectrum of GI symptoms in an Australian PwP cohort and their relationship to use of anti-parkinsonian medications dietary habits and smoking. Methods The prevalence and severity of GI symptoms were compared in a group of 163 PwP and 113 healthy control subjects using the Gastrointestinal Symptom Rating Scale (GSRS). Corrected linear regression models were used to determine differences between PwP and controls, and to investigate the influence of different classes of anti-Parkinsonian medications. Results PwP reported a greater frequency of constipation and GI-associated illnesses when compared to healthy controls. Total GSRS scores (P < 0.0001), upper GI symptoms (P < 0.0001), and hypoactive GI Symptoms (P < 0.0001) were all significantly greater in the PD cohort than controls. Further analyses revealed a positive association between the use of anti-Parkinsonian medications and total GSRS scores (P < 0.001), as well as upper GI symptoms (P < 0.001) and hypoactive GI function (P < 0.001). Conclusions This study illustrates the frequency and array of GI symptoms in a large PD cohort. The findings indicate that anti-parkinsonian medications play an important role in the presentation and development of GI symptoms.
Collapse
Affiliation(s)
- Jade E Kenna
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia.,Centre for Neuromuscular and Neurological Disorders University of Western Australia Perth Western Australia Australia.,Centre for Clinical Neurosciences and Neurological Research St. Vincent's Hospital Melbourne Melbourne Australia
| | - Megan C Bakeberg
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia.,Centre for Neuromuscular and Neurological Disorders University of Western Australia Perth Western Australia Australia
| | - Anastazja M Gorecki
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia.,School of Biological Sciences University of Western Australia Perth Australia
| | - Alfred Chin Yen Tay
- School of Biological Sciences University of Western Australia Perth Australia.,Marshall Centre for Infectious Diseases Research and Training Nedlands Western Australia Australia
| | - Samantha Winter
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia.,Institute for Health Research and School of Health Sciences University of Notre Dame Australia Fremantle Western Australia Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia.,Centre for Neuromuscular and Neurological Disorders University of Western Australia Perth Western Australia Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia.,Centre for Neuromuscular and Neurological Disorders University of Western Australia Perth Western Australia Australia.,Institute for Health Research and School of Health Sciences University of Notre Dame Australia Fremantle Western Australia Australia
| |
Collapse
|
44
|
Sun BH, Wang T, Li NY, Wu Q, Qiao J. Clinical features and relative factors of constipation in a cohort of Chinese patients with Parkinson's disease. World J Gastrointest Pharmacol Ther 2021; 12:21-31. [PMID: 33564494 PMCID: PMC7844575 DOI: 10.4292/wjgpt.v12.i1.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Constipation as a most common non-motor symptom of Parkinson's disease (PD), has a higher prevalence compared to the general population. The etiologies of constipation in PD are diverse. In addition to physical weakness and other factors of disease, the lifestyles and eating habits are also important factors. Therefore, the prevalence and influencing factors of constipation may vary among different populations.
AIM To determine the prevalence of constipation and analyze relative factors in a cohort of Chinese patients with PD.
METHODS All the patients diagnosed with PD according to the movement disorders society criteria were consecutively collected by a self-developed questionnaire. Rome III diagnostic criteria were used to assess functional constipation and Wexner score was used to estimate the severity of constipation. Non-motor symptoms (NMS) were assessed with the non-motor symptoms assessment scale (NMSS). Unified Parkinson's disease Rating Scale III (UPDRS III) was used to evaluate the severity of motor symptoms. The modified Hoehn-Yahr stage was used to evaluate the severity of PD. Cognitive function was assessed using Montreal cognitive assessment (MoCA). Depression and anxiety were rated with the Hamilton depression scale (HAMD) and the Hamilton anxiety scale (HAMA). Quality of life was assessed using the Parkinson’s disease Questionnaire-39 items (PDQ-39).
RESULTS Of 166 patients enrolled, 87 (52.41%) were accompanied with constipation, and 30 (34.48%) experienced constipation for 6.30 ± 5.06 years before motor symptoms occurred. Age, Hoehn-Yahr stage, disease duration, levodopa medication times, incidence of motor complications, the scores of UPDRS total, UPDRS III, NMSS, HAMD, HAMA, and PDQ-39 in the constipation group were higher than those in the non-constipation group (P < 0.05), but there was no difference in the scores of MoCA, clinical types, or medications between the two groups (P > 0.05). There was a higher incidence of depression in patients with constipation (P < 0.05), but there were no difference in the incidence of anxiety and cognitive impairment between the two groups (P > 0.05). As Hoehn-Yahr stages increased, the severity of constipation increased (P < 0.05), but not the incidence of constipation (P > 0.05). Pearson correlation analysis showed that constipation was moderately positively correlated with age, Hoehn-Yahr stage, and scores of NMSS, UPDRS III, UPDRS total, PDQ-39, HAMD, and HAMA (r = 0.255, 0.172, 0.361, 0.194, 0.221, 0.237, 0.238, and 0.207, P < 0.05). Logistic regression analysis showed that only NMSS score was an independent risk factor for constipation (P < 0.001).
CONCLUSION Our findings confirm that constipation has a relatively high frequency in patients with PD. PD patients with constipation have a higher incidence of depression, which leads to worse quality of life.
Collapse
Affiliation(s)
- Bai-Hua Sun
- Department ofNeurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
- Department of Neurology, Xi'an Third Hospital, Xi'an 710021, Shaanxi Province, China
| | - Tao Wang
- Department ofNeurology, the Shaanxi Sengong Hospital, Xi'an 710300, Shaanxi Province, China
| | - Nian-Ying Li
- Department ofNeurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qiong Wu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jin Qiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
45
|
Karunaratne TB, Okereke C, Seamon M, Purohit S, Wakade C, Sharma A. Niacin and Butyrate: Nutraceuticals Targeting Dysbiosis and Intestinal Permeability in Parkinson's Disease. Nutrients 2020; 13:E28. [PMID: 33374784 PMCID: PMC7824468 DOI: 10.3390/nu13010028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis is implicated by many studies in the pathogenesis of Parkinson's disease (PD). Advances in sequencing technology and computing have resulted in confounding data regarding pathogenic bacterial profiles in conditions such as PD. Changes in the microbiome with reductions in short-chain fatty acid (SCFA)-producing bacteria and increases in endotoxin-producing bacteria likely contribute to the pathogenesis of PD. GPR109A, a G-protein coupled receptor found on the surface of the intestinal epithelium and immune cells, plays a key role in controlling intestinal permeability and the inflammatory cascade. The absence of GPR109A receptors is associated with decreased concentration of tight junction proteins, leading to increased intestinal permeability and susceptibility to inflammation. In inflammatory states, butyrate acts via GPR109A to increase concentrations of tight junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated in PD by dopaminergic medications. Niacin supplementation has been shown to shift macrophage polarization from pro-inflammatory to an anti-inflammatory profile. Niacin and butyrate, promising nutrients and unique ligands for the G protein-coupled receptor GPR109A, are reviewed in this paper in detail.
Collapse
Affiliation(s)
- Tennekoon B. Karunaratne
- Digestive Health Clinical Research Center, Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (T.B.K.); (C.O.)
| | - Chijioke Okereke
- Digestive Health Clinical Research Center, Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (T.B.K.); (C.O.)
| | - Marissa Seamon
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (M.S.); (S.P.); (C.W.)
- Department of Neuroscience, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (M.S.); (S.P.); (C.W.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
- Department of Undergraduate Health Professionals, College of Allied Health Sciences, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
| | - Chandramohan Wakade
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (M.S.); (S.P.); (C.W.)
- Department of Neuroscience, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
| | - Amol Sharma
- Digestive Health Clinical Research Center, Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (T.B.K.); (C.O.)
| |
Collapse
|
46
|
West CL, Mao YK, Delungahawatta T, Amin JY, Farhin S, McQuade RM, Diwakarla S, Pustovit R, Stanisz AM, Bienenstock J, Barbut D, Zasloff M, Furness JB, Kunze WA. Squalamine Restores the Function of the Enteric Nervous System in Mouse Models of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:1477-1491. [PMID: 32925094 DOI: 10.3233/jpd-202076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder thought to be caused by accumulation of α-synuclein (α-syn) within the brain, autonomic nerves, and the enteric nervous system (ENS). Involvement of the ENS in PD often precedes the onset of the classic motor signs of PD by many years at a time when severe constipation represents a major morbidity. Studies conducted in vitro and in vivo, have shown that squalamine, a zwitterionic amphipathic aminosterol, originally isolated from the liver of the dogfish shark, effectively displaces membrane-bound α-syn. OBJECTIVE Here we explore the electrophysiological effect of squalamine on the gastrointestinal (GI) tract of mouse models of PD engineered to express the highly aggregating A53T human α-syn mutant. METHODS GI motility and in vivo response to oral squalamine in PD model mice and controls were assessed using an in vitro tissue motility protocol and via fecal pellet output. Vagal afferent response to squalamine was measured using extracellular mesenteric nerve recordings from the jejunum. Whole cell patch clamp was performed to measure response to squalamine in the myenteric plexus. RESULTS Squalamine effectively restores disordered colonic motility in vivo and within minutes of local application to the bowel. We show that topical squalamine exposure to intrinsic primary afferent neurons (IPANs) of the ENS rapidly restores excitability. CONCLUSION These observations may help to explain how squalamine may promote gut propulsive activity through local effects on IPANs in the ENS, and further support its possible utility in the treatment of constipation in patients with PD.
Collapse
Affiliation(s)
- Christine L West
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yu-Kang Mao
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | | | - Jessica Y Amin
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Sohana Farhin
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Rachel M McQuade
- Department of Anatomy and Neuroscience, University of Melbourne, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Shanti Diwakarla
- Department of Anatomy and Neuroscience, University of Melbourne, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ruslan Pustovit
- Department of Anatomy and Neuroscience, University of Melbourne, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Andrew M Stanisz
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Michael Zasloff
- Enterin, Inc., Philadelphia, PA, USA.,MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Wolfgang A Kunze
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
47
|
Abstract
Recognition of the importance of nonmotor dysfunction as a component of Parkinson's disease has exploded over the past three decades. Autonomic dysfunction is a frequent and particularly important nonmotor feature because of the broad clinical spectrum it covers. Cardiovascular, gastrointestinal, urinary, sexual, and thermoregulatory abnormalities all can appear in the setting of Parkinson's disease. Cardiovascular dysfunction is characterized most prominently by orthostatic hypotension. Gastrointestinal dysfunction can involve virtually all levels of the gastrointestinal tract. Urinary dysfunction can entail either too frequent voiding or difficulty voiding. Sexual dysfunction is frequent and frustrating for both patient and partner. Alterations in sweating and body temperature are not widely recognized but often are present. Autonomic dysfunction can significantly and deleteriously impact quality of life for individuals with Parkinson's disease. Because effective treatment for many aspects of autonomic dysfunction is available, it is vitally important that assessment of autonomic dysfunction be a regular component of the neurologic history and exam and that appropriate treatment be initiated and maintained.
Collapse
Affiliation(s)
- Ronald F Pfeiffer
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| |
Collapse
|
48
|
Chao YX, Gulam MY, Chia NSJ, Feng L, Rotzschke O, Tan EK. Gut-Brain Axis: Potential Factors Involved in the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:849. [PMID: 32982910 PMCID: PMC7477379 DOI: 10.3389/fneur.2020.00849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests an association between gastrointestinal (GI) disorders and susceptibility and progress of Parkinson's disease (PD). Gut-brain axis has been proposed to play important roles in the pathogenesis of PD, though the exact pathophysiologic mechanism has yet to be elucidated. Here, we discuss the common factors involved in both PD and GI disorders, including genes, altered gut microbiota, diet, environmental toxins, and altered mucosal immunity. Large-scale prospective clinical studies are needed to define the exact relationship between dietary factors, microbiome, and genetic factors in PD. Identification of early diagnostic markers and demonstration of the efficacy of diet modulation and regulation of gut microbiome through specific therapeutics can potentially change the treatment paradigm for PD.
Collapse
Affiliation(s)
- Yin-Xia Chao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Department of Neurology, Singapore General Hospital, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | | | | | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Department of Neurology, Singapore General Hospital, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| |
Collapse
|
49
|
Distinctive Pathophysiology Underlying Constipation in Parkinson's Disease: Implications for Cognitive Inefficiency. J Clin Med 2020; 9:jcm9061916. [PMID: 32575365 PMCID: PMC7356098 DOI: 10.3390/jcm9061916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Depression is associated with constipation within and outside Parkinson’s disease (PD). Since inefficient cognitive-processing (bradyphrenia) features in PD and an enterokinetic agent improved cognitive performance in healthy individuals, bradyphrenia may be associated with constipation. We aim to define the archetypical bowel function of PD, and its association with cognition, mood, and motor features within and outside PD. We assessed colonic transit time (oral radio-opaque markers over 6 days), bowel function and psychometric questionnaires and measures of PD facets, including bradyphrenia, in 58 participants with diagnosed PD, and 71 without (controls). The best abdominal X-ray (day 7) predictors of PD status were total retained marker count and transverse colon segmental delay. However, Rome functional constipation status complemented segmental delay better, giving good specificity (85%) but low sensitivity (56%). Transverse colon marker count appeared to be age-associated only in PD. In PD, those correctly classified by bowel dysfunction had higher depression scores (p = 0.02) and longer cognitive-processing times than the misclassified (p = 0.05). Controls misclassified as PD by bowel dysfunction had higher depression and anxiety scores than the correctly classified (p = 0.002 and 0.003, respectively), but not slower cognitive processing. Measures of motor features were independent of sub-classification by bowel function in PD and in controls. In conclusion, constipation in PD has distinct localized pathophysiology, and is associated with bradyphrenia.
Collapse
|
50
|
Huh E, Choi JG, Noh D, Yoo HS, Ryu J, Kim NJ, Kim H, Oh MS. Ginger and 6-shogaol protect intestinal tight junction and enteric dopaminergic neurons against 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine in mice. Nutr Neurosci 2020; 23:455-464. [PMID: 30230979 DOI: 10.1080/1028415x.2018.1520477] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Ginger and its compound, 6-shogaol, have been known for improving gastrointestinal (GI) function and reducing inflammatory responses in GI tract. Recently, the treatment of GI dysfunction has been recognized as an important part of the management of neurodegenerative diseases, especially for Parkinson's disease (PD). In this study, we investigated whether ginger and 6-shogaol attenuate disruptions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the intestinal barrier and the enteric dopaminergic neurons.Methods: C57BL/6J mice received MPTP (30 mg/kg) for 5 days to induce GI alterations. Ginger (30, 100, 300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 15 days including the period of MPTP injection.Results: Ginger and 6-shogaol protected intestinal tight junction proteins disrupted by MPTP in mouse colon. In addition, ginger and 6-shogaol suppressed the increase of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α and IL-1β activated by macrophage. Moreover, ginger and 6-shogaol suppressed the MPTP-induced enteric dopaminergic neuronal damage via increasing the cell survival signaling pathway.Conclusion: These results indicate that ginger and 6-shogaol restore the disruption of intestinal integrity and enteric dopaminergic neurons in an MPTP-injected mouse PD model by inhibiting the processes of inflammation and apoptosis, suggesting that they may attenuate the GI dysfunction in PD patients.
Collapse
Affiliation(s)
- Eugene Huh
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dongjin Noh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeewon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hocheol Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|