1
|
Castillo-Mendieta T, Bautista-Poblet G, Coyoy-Salgado A, Castillo-García EL, Pinto-Almazán R, Fuentes-Venado CE, Neri-Gómez T, Guerra-Araiza C. Effect of Chronic Tibolone Administration on Memory and Choline Acetyltransferase and Tryptophan Hydroxylase Content in Aging Mice. Brain Sci 2024; 14:903. [PMID: 39335399 PMCID: PMC11430777 DOI: 10.3390/brainsci14090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Gonadal steroids exert different effects on the central nervous system (CNS), such as preserving neuronal function and promoting neuronal survival. Estradiol, progesterone, and testosterone reduce neuronal loss in the CNS in animal models of neurodegeneration. However, hormone replacement therapy has been associated with higher rates of endometrial, prostate, and breast cancer. Tibolone (TIB), the metabolites of which show estrogenic and progestogenic effects, is an alternative to reduce this risk. However, the impact of TIB on memory and learning, as well as on choline acetyltransferase (ChAT) and tryptophan hydroxylase (TPH) levels in the hippocampus of aging males, is unknown. We administered TIB to aged C57BL/6J male mice at different doses (0.01 or 1.0 mg/kg per day for 12 weeks) and evaluated its effects on memory and learning and the content of ChAT and TPH. We assessed memory and learning with object recognition and elevated T-maze tasks. Additionally, we determined ChAT and TPH protein levels in the hippocampus by Western blotting. TIB administration increased the percentage of time spent on the novel object in the object recognition task. In addition, the latency of leaving the enclosed arm increased in both TIB groups, suggesting an improvement in fear-based learning. We also observed decreased ChAT content in the group treated with the 0.01 mg/kg TIB dose. In the case of TPH, no changes were observed with either TIB dose. These results show that long-term TIB administration improves memory without affecting locomotor activity and modulates cholinergic but not serotonergic systems in the hippocampus of aged male mice.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Guadalupe Bautista-Poblet
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| | - Emily L. Castillo-García
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
| | - Claudia Erika Fuentes-Venado
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197 IMSS, Texcoco C.P. 56108, Mexico
| | - Teresa Neri-Gómez
- Laboratorio de Patología Molecular, Unidad de Investigación Biomolecular en Cardiología, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| |
Collapse
|
2
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Orsini CA, Truckenbrod LM, Wheeler AR. Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behav Processes 2022; 200:104663. [PMID: 35661794 PMCID: PMC9893517 DOI: 10.1016/j.beproc.2022.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Men and women differ in their ability to evaluate options that vary in their rewards and the risks that are associated with these outcomes. Most studies have shown that women are more risk averse than men and that gonadal hormones significantly contribute to this sex difference. Gonadal hormones can influence risk-based decision making (i.e., risk taking) by modulating the neurobiological substrates underlying this cognitive process. Indeed, estradiol, progesterone and testosterone modulate activity in the prefrontal cortex, amygdala and nucleus accumbens associated with reward and risk-related information. The use of animal models of decision making has advanced our understanding of the intersection between the behavioral, neural and hormonal mechanisms underlying sex differences in risk taking. This review will outline the current state of this literature, identify the current gaps in knowledge and suggest the neurobiological mechanisms by which hormones regulate risky decision making. Collectively, this knowledge can be used to understand the potential consequences of significant hormonal changes, whether endogenously or exogenously induced, on risk-based decision making as well as the neuroendocrinological basis of neuropsychiatric diseases that are characterized by impaired risk taking, such as substance use disorder and schizophrenia.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Texas at Austin, Austin, TX, USA,Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA,Correspondence to: Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, 108 E. Dean Keaton St., Stop A8000, Austin, TX 78712, USA. (C.A. Orsini)
| | - Leah M. Truckenbrod
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Alexa-Rae Wheeler
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
5
|
Orsini CA, Blaes SL, Hernandez CM, Betzhold SM, Perera H, Wheeler AR, Ten Eyck TW, Garman TS, Bizon JL, Setlow B. Regulation of risky decision making by gonadal hormones in males and females. Neuropsychopharmacology 2021; 46:603-613. [PMID: 32919406 PMCID: PMC8027379 DOI: 10.1038/s41386-020-00827-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Abstract
Psychiatric diseases characterized by dysregulated risky decision making are differentially represented in males and females. The factors that govern such sex differences, however, remain poorly understood. Using a task in which rats make discrete trial choices between a small, "safe" food reward and a large food reward accompanied by varying probabilities of footshock punishment, we recently showed that females are more risk averse than males. The objective of the current experiments was to test the extent to which these sex differences in risky decision making are mediated by gonadal hormones. Male and female rats were trained in the risky decision-making task, followed by ovariectomy (OVX), orchiectomy (ORX), or sham surgery. Rats were then retested in the task, under both baseline conditions and following administration of estradiol and/or testosterone. OVX increased choice of the large, risky reward (increased risky choice), an effect that was attenuated by estradiol administration. In contrast, ORX decreased risky choice, but testosterone administration was without effect in either ORX or sham males. Estradiol, however, decreased risky choice in both groups of males. Importantly, none of the effects of hormonal manipulation on risky choice were due to altered shock sensitivity or food motivation. These data show that gonadal hormones are required for maintaining sex-typical profiles of risk-taking behavior in both males and females, and that estradiol is sufficient to promote risk aversion in both sexes. The findings provide novel information about the mechanisms supporting sex differences in risk taking and may prove useful in understanding sex differences in the prevalence of psychiatric diseases associated with altered risk taking.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Hassan Perera
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Tyler S Garman
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
- Department of Psychology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Fattoretti P, Malatesta M, Mariotti R, Zancanaro C. Testosterone administration increases synaptic density in the gyrus dentatus of old mice independently of physical exercise. Exp Gerontol 2019; 125:110664. [DOI: 10.1016/j.exger.2019.110664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
7
|
Thériault RK, Perreault ML. Hormonal regulation of circuit function: sex, systems and depression. Biol Sex Differ 2019; 10:12. [PMID: 30819248 PMCID: PMC6394099 DOI: 10.1186/s13293-019-0226-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating chronic illness that is two times more prevalent in women than in men. The mechanisms associated with the increased female susceptibility to depression remain poorly characterized. Aberrant neuronal oscillatory activity within the putative depression network is an emerging mechanism underlying MDD. However, innate sex differences in network activity and its contribution to depression vulnerability have not been well described. In this review, current evidence of sex differences in neuronal oscillatory activity, including the influence of sex hormones and female cycling, will first be described followed by evidence of disrupted neuronal circuit function in MDD and the effects of antidepressant treatment. Lastly, current knowledge of sex differences in MDD-associated aberrant circuit function and oscillatory activity will be highlighted, with an emphasis on the role of sex steroids and female cycling. Collectively, it is clear that there are significant gaps in the literature regarding innate and pathologically associated sex differences in network activity and that the elucidation of these differences is invaluable to our understanding of sex-specific vulnerabilities and therapies for MDD.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph (ON), 50 Stone Rd. E, Guelph, Ontario N1G 2W1 Canada
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph (ON), 50 Stone Rd. E, Guelph, Ontario N1G 2W1 Canada
- Collaborative Neuroscience Program, University of Guelph (ON), Guelph, Canada
| |
Collapse
|
8
|
Ujjainwala AL, Courtney CD, Wojnowski NM, Rhodes JS, Christian CA. Differential impacts on multiple forms of spatial and contextual memory in diazepam binding inhibitor knockout mice. J Neurosci Res 2019; 97:683-697. [PMID: 30680776 DOI: 10.1002/jnr.24393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 02/03/2023]
Abstract
Learning and memory are fundamental processes that are disrupted in many neurological disorders including Alzheimer's disease and epilepsy. The hippocampus plays an integral role in these functions, and modulation of synaptic transmission mediated by γ-aminobutyric acid (GABA) type-A receptors (GABAA Rs) impacts hippocampus-dependent learning and memory. The protein diazepam binding inhibitor (DBI) differentially modulates GABAA Rs in various brain regions, including hippocampus, and changes in DBI levels may be linked to altered learning and memory. The effects of genetic loss of DBI signaling on these processes, however, have not been determined. In these studies, we examined male and female constitutive DBI knockout mice and wild-type littermates to investigate the role of DBI signaling in modulating multiple forms of hippocampus-dependent spatial learning and memory. DBI knockout mice did not show impaired discrimination of objects in familiar and novel locations in an object location memory test, but did exhibit reduced time spent exploring the objects. Multiple parameters of Barnes maze performance, testing the capability to utilize spatial reference cues, were disrupted in DBI knockout mice. Furthermore, whereas most wild-type mice adopted a direct search strategy upon learning the location of the target hole, knockout mice showed higher rates of using an inefficient random strategy. In addition, DBI knockout mice displayed typical levels of contextual fear conditioning, but lacked a sex difference observed in wild-type mice. Together, these data suggest that DBI selectively influences certain forms of spatial learning and memory, indicating novel roles for DBI signaling in modulating hippocampus-dependent behavior in a task-specific manner.
Collapse
Affiliation(s)
- Ammar L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Connor D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Natalia M Wojnowski
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Catherine A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
9
|
Ramzan F, Azam AB, Monks DA, Zovkic IB. Androgen receptor is a negative regulator of contextual fear memory in male mice. Horm Behav 2018; 106:10-18. [PMID: 30172646 DOI: 10.1016/j.yhbeh.2018.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Although sex-hormones have a well-documented role in memory formation, most literature has focused on estrogens, whereas the role of androgens and their receptor (the androgen receptor; AR) in fear memory is relatively unexplored. To address this gap, we used a transgenic mouse model of AR overexpression (CMV-AR) to determine if AR regulates fear memory, and if this effect can be reversed either by the removal of circulating androgens via gonadectomy, or by antagonising AR activity with flutamide. We found that AR overexpression results in reduced freezing in response to foot shock, and that this difference is reversed with both gonadectomy and flutamide treatment. Differences between genotypes were reinstated by testosterone replacement in gonadectomized mice, suggesting that reduced fear memory in mutants results from AR activation by testosterone and is not secondary to group differences in circulating testosterone. Potential transcriptional mechanisms by which CMV-AR exerts its effects on fear memory were assessed by quantitating the expression of memory-related genes in area CA1 of the hippocampus. Several genes that are altered with AR inhibition and activation, including genes that encode for the histone variant H2A.Z, cholinergic receptors, glutamate receptors, and brain-derived neurotrophic factor. Overall, our findings suggest that AR is a negative regulator of fear memory and identify potential gene targets through which AR may mediate this effect.
Collapse
Affiliation(s)
- Firyal Ramzan
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Amber B Azam
- Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - D Ashley Monks
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
10
|
Barakat R, Lin PC, Park CJ, Best-Popescu C, Bakry HH, Abosalem ME, Abdelaleem NM, Flaws JA, Ko C. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice. Toxicol Sci 2018; 164:439-452. [PMID: 29688563 PMCID: PMC6061835 DOI: 10.1093/toxsci/kfy103] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200 μg, 500 mg, or 750 mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16-22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by Spatial light interference microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing to the impaired neurobehavior in the DEHP mice.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - Catherine Best-Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Hatem H Bakry
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Mohamed E Abosalem
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Nabila M Abdelaleem
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| |
Collapse
|
11
|
Wibowo E. Cognitive Impacts of Estrogen Treatment in Androgen-Deprived Males: What Needs to be Resolved. Curr Neuropharmacol 2018; 15:1043-1055. [PMID: 28294068 PMCID: PMC5652012 DOI: 10.2174/1570159x15666170313122555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Many prostate cancer (PCa) patients are on androgen deprivation therapy (ADT) as part of their cancer treatments but ADT may lead to cognitive impairments. ADT depletes men of both androgen and estrogen. Whether estradiol supplementation can improve cognitive impairments in patients on ADT is understudied. Objective: To summarize data on the effects of estradiol treatment on cognitive function of androgen-deprived genetic male populations (PCa patients and male-to-female transsexuals) and castrated male animals. Method: Publications were identified by a literature search on PubMed and Google Scholar. Results: While some studies showed that estradiol improves cognitive function (most notably, spatial ability) for castrated rats, what remains uninvestigated are: 1) whether estradiol can improve cognition after long-term androgen deprivation, 2) how estradiol affects memory retention, and 3) how early vs. delayed estradiol treatment after castration influences cognition. For androgen-deprived genetic males, estradiol treatment may improve some cognitive functions (e.g., verbal and visual memory), but the findings are not consistent due to large variability in the study design between studies. Conclusion: Future studies are required to determine the best estradiol treatment protocol to maximize cognitive benefits for androgen-deprived genetic males. Tests that assess comparable cognitive domains in human and rodents are needed. What particularly under-investigated is how the effects of estradiol on cognitive ability intersect with other parameters; sleep, depression and physical fatigue. Such studies have clinical implications to improve the quality of life for both PCa patients on ADT as well as for male-to-female transsexuals.
Collapse
Affiliation(s)
- Erik Wibowo
- Level 6, 2775 Laurel Street, Gordon & Leslie Diamond Health Care Centre, Vancouver, British Columbia, V5Z 1M9. Canada
| |
Collapse
|
12
|
Wagner BA, Braddick VC, Batson CG, Cullen BH, Miller LE, Spritzer MD. Effects of testosterone dose on spatial memory among castrated adult male rats. Psychoneuroendocrinology 2018; 89:120-130. [PMID: 29414025 PMCID: PMC5878712 DOI: 10.1016/j.psyneuen.2017.12.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
Previous research on the activational effects of testosterone on spatial memory has produced mixed results, possibly because such effects are dose-dependent. We tested a wide range of testosterone doses using two spatial memory tasks: a working-reference memory version of the radial-arm maze (RAM) and an object location memory task (OLMT). Adult male Sprague-Dawley rats were castrated or sham-castrated and given daily injections of drug vehicle (Oil Sham and Oil GDX) or one of four doses of testosterone propionate (0.125, 0.250, 0.500, and 1.000 mg T) beginning seven days before the first day of behavioral tests and continuing throughout testing. For the RAM, four arms of the maze were consistently baited on each day of testing. Testosterone had a significant effect on working memory on the RAM, with the Oil Sham, 0.125 mg T, and 0.500 mg T groups performing better than the Oil GDX group. In contrast, there was no significant effect of testosterone on spatial reference memory on the RAM. For the OLMT, we tested long-term memory using a 2 h inter-trial interval between first exposure to two identical objects and re-exposure after one object had been moved. Only the 0.125 and 0.500 mg T groups showed a significant increase in exploration of the moved object during the testing trials, indicating better memory than all other groups. Testosterone replacement restored spatial memory among castrated male rats on both behavioral tasks, but there was a complex dose-response relationship; therefore, the therapeutic value of testosterone is likely sensitive to dose.
Collapse
Affiliation(s)
- Benjamin A. Wagner
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | | | | | - Brendan H. Cullen
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - L. Erin Miller
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A
| | - Mark D. Spritzer
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, U.S.A,Department of Biology, Middlebury College, Middlebury, VT 05753, U.S.A,Corresponding author: Mark Spritzer, Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA, phone: 802-443-5676, FAX: 802-443-2072
| |
Collapse
|
13
|
Borbélyová V, Domonkos E, Bábíčková J, Tóthová Ľ, Bosý M, Hodosy J, Celec P. No effect of testosterone on behavior in aged Wistar rats. Aging (Albany NY) 2017; 8:2848-2861. [PMID: 27852981 PMCID: PMC5191874 DOI: 10.18632/aging.101096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022]
Abstract
In men, aging is accompanied by a gradual decline in androgen secretion. Studies suggest beneficial effects of endogenous and exogenous testosterone on affective behavior and cognitive functions. The aim of this study was to describe behavioral and cognitive sex differences and to analyze the effects of long-term androgen deficiency in aged male rats. Thirty-months old rats divided into three groups (males, females and males gonadectomized as young adults) underwent a battery of behavioral tests assessing locomotor activity, anxiety, memory, anhedonia, sociability and depression-like behavior. No major effect of gonadectomy was found in any of the analyzed behavioral measures in male rats. The only consistent sex difference was confirmed in depression-like behavior with longer immobility time observed in males. In an interventional experiment, a single dose of testosterone had no effect on gonadectomized male and female rats in the forced swim test. In contrast to previous studies this comprehensive behavioral phenotyping of aged rats revealed no major role of endogenous testosterone. Based on our results long-term hypogonadism does not alter the behavior of aged male rats, neither does acute testosterone treatment. Whether these findings have any consequences on androgen replacement therapy in aged men remains to be elucidated.
Collapse
Affiliation(s)
- Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Emese Domonkos
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Janka Bábíčková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| | - Martin Bosý
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia.,Biomedical Research Center, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia
| |
Collapse
|
14
|
Arfa-Fatollahkhani P, Nahavandi A, Abtahi H, Anjidani S, Borhani S, Jameie SB, Shabani M, Mehrzadi S, Shahbazi A. The Effect of Luteinizing Hormone Reducing Agent on Anxiety and Novel Object Recognition Memory in Gonadectomized Rats. Basic Clin Neurosci 2017; 8:113-119. [PMID: 28539995 PMCID: PMC5440920 DOI: 10.18869/nirp.bcn.8.2.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Mood disorders such as anxiety and depression are common following menopause and andropause. Lack of sex steroid hormones is suggested as the primary cause of these disturbances. The level of luteinizing hormone (LH) would also rise 3-4 times than normal in these people. The potential effects of LH on mood and cognitive symptoms following menopause and andropause are still unknown. This study aimed to investigate the effect of increased LH on novel object discrimination (NOD) memory and anxiety like behavior in gonadectomized rats. METHODS Four-month-old male and female Wistar rats were randomly assigned into 4 groups (in each sex): control rats (Cont), gonadectomized without treatment (GnX), gonadectomized treated with triptorelin, a GnRH agonist which reduces LH release eventually, (GnX+Tr), gonadectomized treated with triptorelin plus sex steroid hormone, estradiol in female and testosterone in male rats (GnX+Tr+S/T). After 4 weeks treatment, anxiety score (elevated plus maze) and NOD were measured. Data were analyzed using One-way ANOVA, and P-values less than 0.05 were considered as significant. RESULTS Gonadectomy increased anxiety like behaviors (decrease of presence time in the open arms) in female rats (P=0.012), but not in male ones (P=0.662). Additionally, triptorelin alone reduced the increased anxiety score in gonadectomized female rats, compared to group treated with both triptorelin and estradiol. Furthermore, it was shown that gonadectomy and or treatment with triptorelin and sex steroids had no significant effect on novel object recognition memory in both female (P=0.472) and male rats (P=0.798). CONCLUSION Findings of this study revealed that increased level of LH following menopause or andropause should be considered as a possible cause for increased anxiety. Also, this study showed that LH reducing agents would reduce anxiety like behavior in gonadectomized female rats. The effect of increased LH on cognitive functions such as novel object recognition memory was not evident in this study and needs further studies.
Collapse
Affiliation(s)
- Paria Arfa-Fatollahkhani
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezo Nahavandi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Abtahi
- Department of Biochemistry and Nutrition, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shabnam Anjidani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Borhani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Behnam Jameie
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Competition, testosterone, and adult neurobehavioral plasticity. PROGRESS IN BRAIN RESEARCH 2016; 229:213-238. [PMID: 27926439 DOI: 10.1016/bs.pbr.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Motivation in performance is often measured via competitions. Winning a competition has been found to increase the motivation to perform in subsequent competitions. One potential neurobiological mechanism that regulates the motivation to compete involves sex hormones, such as the steroids testosterone and estradiol. A wealth of studies in both nonhuman animals and humans have shown that a rise in testosterone levels before and after winning a competition enhances the motivation to compete. There is strong evidence for acute behavioral effects in response to steroid hormones. Intriguingly, a substantial testosterone surge following a win also appears to improve an individual's performance in later contests resulting in a higher probability of winning again. These effects may occur via androgen and estrogen pathways modulating dopaminergic regions, thereby behavior on longer timescales. Hormones thus not only regulate and control social behavior but are also key to adult neurobehavioral plasticity. Here, we present literature showing hormone-driven behavioral effects that persist for extended periods of time beyond acute effects of the hormone, highlighting a fundamental role of sex steroid hormones in adult neuroplasticity. We provide an overview of the relationship between testosterone, motivation measured from objective effort, and their influence in enhancing subsequent effort in competitions. Implications for an important role of testosterone in enabling neuroplasticity to improve performance will be discussed.
Collapse
|
16
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Moghadami S, Jahanshahi M, Sepehri H, Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat's hippocampus: testosterone replacement compensates it. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:5. [PMID: 26822779 PMCID: PMC4730763 DOI: 10.1186/s12993-016-0089-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the present study, the role of gonadectomy on memory impairment and the density of androgen receptor-immunoreactive neurons in rats' hippocampus as well as the ability of testosterone to compensate of memory and the density of androgen receptors in the hippocampus was evaluated. METHODS Adult male rats (except intact-no testosterone group) were bilaterally castrated, and behavioral tests performed 2 weeks later. Animals bilaterally cannulated into lateral ventricles and then received testosterone (10, 40 and 120 µg/0.5 µl DMSO) or vehicle (DMSO; 0.5 µl) for gonadectomized-vehicle group, 30 min before training in water maze test. The androgen receptor-immunoreactive neurons were detected by immunohistochemical technique in the hippocampal areas. RESULTS In the gonadectomized male rats, a memory deficit was found in Morris water maze test on test day (5th day) after DMSO administration. Gonadectomy decreased density of androgen receptor-immunoreactive neurons in the rats' hippocampus. The treatment with testosterone daily for 5 days attenuated memory deficits induced by gonadectomy. Testosterone also significantly increased the density of androgen receptor-immunoreactive neurons in the hippocampal areas. The intermediate dose of this hormone (40 µg) appeared to have a significant effect on spatial memory and the density of androgen receptor-immunoreactive neurons in gonadectomized rats' hippocampus. CONCLUSIONS The present study suggests that testosterone can compensate memory failure in gonadectomized rats. Also testosterone replacement can compensate the reduction of androgen receptor-immunoreactive neurons density in the rats' hippocampus after gonadectomy.
Collapse
Affiliation(s)
- Sajjad Moghadami
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Hamid Sepehri
- Neuroscience Research Center, Department of Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hossein Amini
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
18
|
Di Mauro M, Tozzi A, Calabresi P, Pettorossi VE, Grassi S. Neo-synthesis of estrogenic or androgenic neurosteroids determine whether long-term potentiation or depression is induced in hippocampus of male rat. Front Cell Neurosci 2015; 9:376. [PMID: 26483631 PMCID: PMC4591489 DOI: 10.3389/fncel.2015.00376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/17/2022] Open
Abstract
Estrogenic and androgenic steroids synthesized in the brain may rapidly modulate synaptic plasticity interacting with specific membrane receptors. We explored by electrophysiological recordings in hippocampal slices of male rat the influence of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) neo-synthesis on the synaptic changes induced in the CA1 region. Induction of long-term depression (LTD) and depotentiation (DP) by low frequency stimulation (LFS, 15 min-1 Hz) and of long-term potentiation (LTP) by high frequency stimulation (HFS, 1 s-100 Hz), medium (MFS, 1 s-50 Hz), or weak (WFS, 1 s-25 Hz) frequency stimulation was assayed under inhibitors of enzymes converting testosterone (T) into DHT (5α-reductase) and T into E2 (P450-aromatase). We found that LFS-LTD depends on DHT synthesis, since it was fully prevented under finasteride, an inhibitor of DHT synthesis, and rescued by exogenous DHT, while the E2 synthesis was not involved. Conversely, the full development of HFS-LTP requires the synthesis of E2, as demonstrated by the LTP reduction observed under letrozole, an inhibitor of E2 synthesis, and its full rescue by exogenous E2. For intermediate stimulation protocols DHT, but not E2 synthesis, was involved in the production of a small LTP induced by WFS, while the E2 synthesis was required for the MFS-dependent LTP. Under the combined block of DHT and E2 synthesis all stimulation frequencies induced partial LTP. Overall, these results indicate that DHT is required for converting the partial LTP into LTD whereas E2 is needed for the full expression of LTP, evidencing a key role of the neo-synthesis of sex neurosteroids in determining the direction of synaptic long-term effects.
Collapse
Affiliation(s)
- Michela Di Mauro
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Alessandro Tozzi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy ; Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia - I.R.C.C.S. Roma, Italy ; Dipartimento di Medicina, Clinica Neurologica, Università di Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| | - Silvarosa Grassi
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia e Biochimica, Università di Perugia Perugia, Italy
| |
Collapse
|
19
|
Mennenga SE, Koebele SV, Mousa AA, Alderete TJ, Tsang CWS, Acosta JI, Camp BW, Demers LM, Bimonte-Nelson HA. Pharmacological blockade of the aromatase enzyme, but not the androgen receptor, reverses androstenedione-induced cognitive impairments in young surgically menopausal rats. Steroids 2015; 99:16-25. [PMID: 25159107 PMCID: PMC4398574 DOI: 10.1016/j.steroids.2014.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 02/05/2023]
Abstract
Androstenedione, the main circulating ovarian hormone present after menopause, has been shown to positively correlate with poor spatial memory in an ovary-intact rodent model of follicular depletion, and to impair spatial memory when administered exogenously to surgically menopausal ovariectomized rats. Androstenedione can be converted directly to estrone via the aromatase enzyme, or to testosterone. The current study investigated the hormonal mechanism underlying androstenedione-induced cognitive impairments. Young adult ovariectomized rats were given either androstenedione, androstenedione plus the aromatase inhibitor anastrozole to block conversion to estrone, androstenedione plus the androgen receptor blocker flutamide to block androgen receptor activity, or vehicle treatment, and were then administered a battery of learning and memory maze tasks. Since we have previously shown that estrone administration to ovariectomized rats impaired cognition, we hypothesized that androstenedione's conversion to estrone underlies, in part, its negative cognitive impact. Here, androstenedione administration impaired spatial reference and working memory. Further, androstenedione did not induce memory deficits when co-administered with the aromatase inhibitor, anastrozole, whereas pharmacological blockade of the androgen receptor failed to block the cognitive impairing effects of androstenedione. Anastrozole alone did not impact performance on any cognitive measure. The current data support the tenet that androstenedione impairs memory through its conversion to estrone, rather than via actions on the androgen receptor. Studying the effects of aromatase and estrogen metabolism is critical to elucidating how hormones impact women's health across the lifespan, and results hold important implications for understanding and optimizing the hormone milieu from the many endogenous and exogenous hormone exposures across the lifetime.
Collapse
Affiliation(s)
- Sarah E Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Abeer A Mousa
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States
| | - Tanya J Alderete
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States
| | - Candy W S Tsang
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States
| | - Jazmin I Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Bryan W Camp
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Laurence M Demers
- The Pennsylvania State University College of Medicine, The M. S. Hershey Medical Center, Hershey, PA 17033, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
20
|
Yehuda R, Lehrner A, Rosenbaum TY. PTSD and Sexual Dysfunction in Men and Women. J Sex Med 2015; 12:1107-19. [DOI: 10.1111/jsm.12856] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol 2015; 145:254-60. [PMID: 24704258 DOI: 10.1016/j.jsbmb.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate bound form (DHEAS) are important steroids of mainly adrenal origin. They are produced also in gonads and in the brain. Dehydroepiandrosterone easily crosses the brain-blood barrier and in part is also produced locally in the brain tissue. In the brain, DHEA exerts its effects after conversion to either testosterone and dihydrotestosterone or estradiol via androgen and estrogen receptors present in the most parts of the human brain, through mainly non-genomic mechanisms, or eventually indirectly via the effects of its metabolites formed locally in the brain. As a neuroactive hormone, DHEA in co-operation with other hormones and transmitters significantly affects some aspects of human mood, and modifies some features of human emotions and behavior. It has been reported that its administration can increase feelings of well-being and is useful in ameliorating atypical depressive disorders. It has neuroprotective and antiglucocorticoid activity and modifies immune reactions, and some authors have also reported its role in degenerative brain diseases. Here we present a short overview of the possible actions of dehydroepiandrosterone and its sulfate in the brain, calling attention to various mechanisms of their action as neurosteroids and to prospects for the knowledge of their role in brain disorders.
Collapse
Affiliation(s)
- Luboslav Stárka
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Michaela Dušková
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| | - Martin Hill
- Institute of Endocrinology, Národní 8, 11694 Prague, Czech Republic.
| |
Collapse
|
22
|
Narenji SA, Naghdi N, Azadmanesh K, Edalat R. 3α-diol administration decreases hippocampal PKA (II) mRNA expression and impairs Morris water maze performance in adult male rats. Behav Brain Res 2014; 280:149-59. [PMID: 25451551 DOI: 10.1016/j.bbr.2014.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/15/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
The effect of testosterone and its metabolites on learning and memory has been the subject of many studies. This study used the Morris water maze task to investigate the effect of intra-hippocampal injection of 3α-diol (one of the metabolites of testosterone) on acquisition stage of spatial memory in adult male rats. During the experiment we observed that 3α-diol, significantly impaired Morris water maze performance in treated rat's compared with controls. Because signaling event mediated by protein kinase A (PKA) especially PKA (II) are critical for many neuronal functions such as learning and memory, the hippocampus was analyzed for mRNA expression of PKA (II) using TaqMan real time RT-PCR. The results indicated that the transcription levels of PKA (II) were significantly decreased in animals treated with 3α-diol compared with controls. Thus, the findings suggest that administration of 3α-diol in hippocampus of adult male rats impairs memory function, possibly via down-regulation of PKA.
Collapse
Affiliation(s)
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Kayhan Azadmanesh
- Department of Virology, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Rosita Edalat
- Department of Virology, Pasteur Institute of Iran, Tehran 13164, Iran
| |
Collapse
|
23
|
Joel D, Yankelevitch-Yahav R. Reconceptualizing sex, brain and psychopathology: interaction, interaction, interaction. Br J Pharmacol 2014; 171:4620-35. [PMID: 24758640 DOI: 10.1111/bph.12732] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023] Open
Abstract
In recent years there has been a growing recognition of the influence of sex on brain structure and function, and in relation, on the susceptibility, prevalence and response to treatment of psychiatric disorders. Most theories and descriptions of the effects of sex on the brain are dominated by an analogy to the current interpretation of the effects of sex on the reproductive system, according to which sex is a divergence system that exerts a unitary, overriding and serial effect on the form of other systems. We shortly summarize different lines of evidence that contradict aspects of this analogy. The new view that emerges from these data is of sex as a complex system whose different components interact with one another and with other systems to affect body and brain. The paradigm shift that this understanding calls for is from thinking of sex in terms of sexual dimorphism and sex differences, to thinking of sex in terms of its interactions with other factors and processes. Our review of data obtained from animal models of psychopathology clearly reveals the need for such a paradigmatic shift, because in the field of animal behaviour whether a sex difference exists and its direction depend on the interaction of many factors including, species, strain, age, specific test employed and a multitude of environmental factors. We conclude by explaining how the new conceptualization can account for sex differences in psychopathology.
Collapse
Affiliation(s)
- D Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
24
|
Khakpai F. The effect of opiodergic system and testosterone on anxiety behavior in gonadectomized rats. Behav Brain Res 2014; 263:9-15. [PMID: 24468308 DOI: 10.1016/j.bbr.2014.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Removal of the testes (gonadectomy; GDX), the primary source of androgens, increases anxiety behavior in several tasks. Opioids are known to play a role in mediating the effects of androgen. In the present study, the effect of testosterone and opioidergic system on anxiety behavior was investigated. METHODS Adult male Wistar rats were bilaterally castrated. The elevated plus maze which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents was used. RESULTS The data indicated that there is a decrease, 10 days after castration, in the percentage of OAT (the ratio of time spent in the open arms to total times spent in any arms × 100) and OAE (the ratio of entries into open arms to total entries × 100) but not locomotor activity, showing anxiogenic-like effects of gonadectomy. Intraperitoneal injection of testosterone (200, 300 and 450 mg/kg) and morphine (2.5, 5 and 7.5mg/kg), before testing 10 days after castration, showed an increase in OAT and OAE. Furthermore, injection of naloxone (5 and 7.5mg/kg, i.p.), 5 min before testing 10 days after castration, decreased OAT and OAE. Also, injection of a significant dose of testosterone (300 mg/kg, i.p.), 1h before the injection of different doses of morphine (1, 2.5, 5 and 7.5mg/kg, i.p.), 10 days after castration, did not significantly alter OAT, OAE and locomotor activity. While, administration of a significant dose of testosterone (300 mg/kg, i.p.), 1h before the infusion of different doses of naloxone (1, 2.5, 5 and 7.5mg/kg, i.p.), 10 days after castration, decreased OAT and OAE. CONCLUSION The results show the involvement of testosterone and opioidergic system in anxiogenic-like behaviors induced by gonadectomy.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Biology, Faculty of Biological Sciences, Tarbiat Moallem (Kharazmi) University, Tehran, Iran.
| |
Collapse
|
25
|
Panizzon MS, Hauger R, Xian H, Vuoksimaa E, Spoon KM, Mendoza SP, Jacobson KC, Vasilopoulos T, Rana BK, McKenzie R, McCaffery JM, Lyons MJ, Kremen WS, Franz CE. Interaction of APOE genotype and testosterone on episodic memory in middle-aged men. Neurobiol Aging 2013; 35:1778.e1-8. [PMID: 24444806 DOI: 10.1016/j.neurobiolaging.2013.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 01/12/2023]
Abstract
Age-related changes in testosterone are believed to be a key component of the processes that contribute to cognitive aging in men. The APOE-ε4 allele may interact with testosterone and moderate the hormone's association with cognition. The goals of the present study were to examine the degree to which free testosterone is associated with episodic memory in a community-based sample of middle-aged men, and examine the potential interaction between free testosterone and the APOE-ε4 allele. Data were used from 717 participants in the Vietnam Era Twin Study of Aging. Average age was 55.4 years (standard deviation = 2.5). Significant positive associations were observed between free testosterone level and verbal episodic memory, as well as a significant interaction between free testosterone and APOE-ε4 status. In ε4 carriers free testosterone was positively associated with verbal episodic memory performance (story recall), whereas no association was observed in ε4 noncarriers. Results support the hypothesis that APOE-ε4 status increases susceptibility to other risk factors, such as low testosterone, which may ultimately contribute to cognitive decline or dementia.
Collapse
Affiliation(s)
- Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, CA, USA; Twin Research Laboratory, Center for Behavioral Genomics, University of California, San Diego, CA, USA.
| | - Richard Hauger
- Department of Psychiatry, University of California, San Diego, CA, USA; VA San Diego Healthcare System, CA, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Hong Xian
- Department of Biostatistics, St. Louis University, College for Public Health & Social Justice, St. Louis, MO, USA; Research Service, St. Louis Veterans Affairs Medical Center, St. Louis, MO
| | - Eero Vuoksimaa
- Department of Psychiatry, University of California, San Diego, CA, USA; Twin Research Laboratory, Center for Behavioral Genomics, University of California, San Diego, CA, USA; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Kelly M Spoon
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| | - Sally P Mendoza
- Department of Psychology, University of California, Davis, CA, USA
| | | | | | - Brinda K Rana
- Department of Psychiatry, University of California, San Diego, CA, USA; Twin Research Laboratory, Center for Behavioral Genomics, University of California, San Diego, CA, USA
| | - Ruth McKenzie
- Department of Psychology, Boston University, Boston, MA, USA
| | - Jeanne M McCaffery
- Department of Psychiatry and Human Behavior, The Miriam Hospital and Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Michael J Lyons
- Department of Psychology, Boston University, Boston, MA, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, CA, USA; Twin Research Laboratory, Center for Behavioral Genomics, University of California, San Diego, CA, USA; VA San Diego Healthcare System, CA, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, CA, USA; Twin Research Laboratory, Center for Behavioral Genomics, University of California, San Diego, CA, USA
| |
Collapse
|
26
|
Diamantopoulou A, Raftogianni A, Stamatakis A, Tzanoulinou S, Oitzl MS, Stylianopoulou F. Denial or receipt of expected reward through maternal contact during the neonatal period differentially affect the development of the rat amygdala and program its function in adulthood in a sex-dimorphic way. Psychoneuroendocrinology 2013; 38:1757-71. [PMID: 23490071 DOI: 10.1016/j.psyneuen.2013.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 11/18/2022]
Abstract
Early experiences affect brain development and thus adult brain function and behavior. We employed a novel early experience model involving denial (DER) or receipt of expected reward (RER) through maternal contact in a T-maze. Exposure to the DER experience for the first time, on postnatal day 10 (PND10), was stressful for the pups, as assessed by increased corticosterone levels, and was accompanied by enhanced activation of the amygdala, as assessed by c-Fos immunohistochemistry. Re-exposure to the same experience on days 11-13 led to adaptation. Corticosterone levels of the RER pups did not differ on the first and last days of training (PND10 and 13 respectively), while on PND11 and 12 they were lower than those of the CTR. The RER experience did not lead to activation of the amygdala. Males and females exposed as neonates to the DER or RER experience, and controls were tested as adults in the open field task (OF), the elevated plus maze (EPM), and cued and contextual fear conditioning (FC). No group differences were found in the EPM, while in the OF, both male and female DER animals, showed increased rearings, compared to the controls. In the FC, the RER males had increased memory for both context and cued conditioned fear, than either the DER or CTR. On the other hand, the DER males, but not females showed an increased activation, as assessed by c-Fos expression, of the amygdala following fear conditioning. Our results show that the DER early experience programmed the function of the adult amygdala as to render it more sensitive to fearful stimuli. This programming by the DER early experience could be mediated through epigenetic modifications of histones leading to chromatin opening, as indicated by our results showing increased levels of phospho-acetyl-histone-3 in the amygdala of the DER males.
Collapse
|
27
|
Ramos-Pratts K, Rosa-González D, Pérez-Acevedo NL, Cintrón-López D, Barreto-Estrada JL. Sex-specific effect of the anabolic steroid, 17α-methyltestosterone, on inhibitory avoidance learning in periadolescent rats. Behav Processes 2013; 99:73-80. [PMID: 23792034 DOI: 10.1016/j.beproc.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 05/28/2013] [Accepted: 06/09/2013] [Indexed: 12/11/2022]
Abstract
The illicit use of anabolic androgenic steroids (AAS) has gained popularity among adolescents in the last decade. However, although it is known that exposure to AAS impairs cognition in adult animal models, the cognitive effects during adolescence remain undetermined. An inhibitory avoidance task (IAT) was used to assess the effect of AAS (17α-methyltestosterone; 17α-meT--7.5 mg/kg) in male and female periadolescent rats. A single injection of 17α-meT immediately before the footshock produced significant impairment of inhibitory avoidance learning in males but not females. Generalized anxiety, locomotion, and risk assessment behaviors (RAB) were not affected. Our results show that exposure to a single pharmacological dose of 17α-meT during periadolescence exerts sex-specific cognitive effects without affecting anxiety. Thus, disruption of the hormonal milieu during this early developmental period might have negative impact on learning and memory.
Collapse
Affiliation(s)
- Keyla Ramos-Pratts
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | | | | | | | | |
Collapse
|
28
|
Gillespie CF, Almli LM, Smith AK, Bradley B, Kerley K, Crain DF, Mercer KB, Weiss T, Phifer J, Tang Y, Cubells JF, Binder EB, Conneely KN, Ressler KJ. Sex dependent influence of a functional polymorphism in steroid 5-α-reductase type 2 (SRD5A2) on post-traumatic stress symptoms. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:283-292. [PMID: 23505265 PMCID: PMC3770127 DOI: 10.1002/ajmg.b.32147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
A non-synonymous, single nucleotide polymorphism (SNP) in the gene coding for steroid 5-α-reductase type 2 (SRD5A2) is associated with reduced conversion of testosterone to dihydrotestosterone (DHT). Because SRD5A2 participates in the regulation of testosterone and cortisol metabolism, hormones shown to be dysregulated in patients with PTSD, we examined whether the V89L variant (rs523349) influences risk for post-traumatic stress disorder (PTSD). Study participants (N = 1,443) were traumatized African-American patients of low socioeconomic status with high rates of lifetime trauma exposure recruited from the primary care clinics of a large, urban hospital. PTSD symptoms were measured with the post-traumatic stress symptom scale (PSS). Subjects were genotyped for the V89L variant (rs523349) of SRD5A2. We initially found a significant sex-dependent effect of genotype in male but not female subjects on symptoms. Associations with PTSD symptoms were confirmed using a separate internal replication sample with identical methods of data analysis, followed by pooled analysis of the combined samples (N = 1,443, sex × genotype interaction P < 0.002; males: n = 536, P < 0.001). These data support the hypothesis that functional variation within SRD5A2 influences, in a sex-specific way, the severity of post-traumatic stress symptoms and risk for diagnosis of PTSD.
Collapse
Affiliation(s)
- Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Lynn M. Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Atlanta, Georgia
| | | | - Daniel F. Crain
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | - Tamara Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Justine Phifer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Yilang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph F. Cubells
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Elisabeth B. Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Max Planck Institute of Psychiatry, Atlanta, Georgia
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Howard Hughes Medical Institute, Atlanta, Georgia,Yerkes National Primate Research Center, Atlanta, Georgia,Correspondence to: Kerry J. Ressler, M.D., Ph.D., Investigator, Howard Hughes Medical Institute; Professor, Department of Psychiatry and Behavioral Sciences, Yerkes Research Center, Emory University, 954 Gatewood Dr, Atlanta, GA 30329.
| |
Collapse
|
29
|
Testosterone depletion in adult male rats increases mossy fiber transmission, LTP, and sprouting in area CA3 of hippocampus. J Neurosci 2013; 33:2338-55. [PMID: 23392664 DOI: 10.1523/jneurosci.3857-12.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Androgens have dramatic effects on neuronal structure and function in hippocampus. However, androgen depletion does not always lead to hippocampal impairment. To address this apparent paradox, we evaluated the hippocampus of adult male rats after gonadectomy (Gdx) or sham surgery. Surprisingly, Gdx rats showed increased synaptic transmission and long-term potentiation of the mossy fiber (MF) pathway. Gdx rats also exhibited increased excitability and MF sprouting. We then addressed the possible underlying mechanisms and found that Gdx induced a long-lasting upregulation of MF BDNF immunoreactivity. Antagonism of Trk receptors, which bind neurotrophins, such as BDNF, reversed the increase in MF transmission, excitability, and long-term potentiation in Gdx rats, but there were no effects of Trk antagonism in sham controls. To determine which androgens were responsible, the effects of testosterone metabolites DHT and 5α-androstane-3α,17β-diol were examined. Exposure of slices to 50 nm DHT decreased the effects of Gdx on MF transmission, but 50 nm 5α-androstane-3α,17β-diol had no effect. Remarkably, there was no effect of DHT in control males. The data suggest that a Trk- and androgen receptor-sensitive form of MF transmission and synaptic plasticity emerges after Gdx. We suggest that androgens may normally be important in area CA3 to prevent hyperexcitability and aberrant axon outgrowth but limit MF synaptic transmission and some forms of plasticity. The results also suggest a potential explanation for the maintenance of hippocampal-dependent cognitive function after androgen depletion: a reduction in androgens may lead to compensatory upregulation of MF transmission and plasticity.
Collapse
|
30
|
Camp BW, Gerson JE, Tsang CWS, Villa SR, Acosta JI, Blair Braden B, Hoffman AN, Conrad CD, Bimonte-Nelson HA. High serum androstenedione levels correlate with impaired memory in the surgically menopausal rat: a replication and new findings. Eur J Neurosci 2012; 36:3086-95. [PMID: 22758646 DOI: 10.1111/j.1460-9568.2012.08194.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle-depleted ovaries. In two independent studies, in rodents that had undergone ovarian follicular depletion, we found that higher endogenous serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that higher androstenedione levels impair memory. The current study directly tested this hypothesis, examining the cognitive effects of exogenous androstenedione administration in rodents. Middle-aged ovariectomised rats received vehicle or one of two doses of androstenedione. Rats were tested on a spatial working and reference memory maze battery including the water-radial arm maze, Morris water maze (MM) and delay match-to-sample task. Androstenedione at the highest dose impaired reference memory as well as the ability to maintain performance as memory demand was elevated. This was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. We measured glutamic acid decarboxylase (GAD) protein in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system relates to androstenedione-induced memory impairments. Results showed that higher entorhinal cortex GAD levels were correlated with worse MM performance, irrespective of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle-depleted ovary, is detrimental to working memory, reference memory and memory retention. Furthermore, while spatial reference memory performance might be related to the GABAergic system, it does not appear to be altered with androstenedione administration, at least at the doses used in the current study.
Collapse
Affiliation(s)
- Bryan W Camp
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Justel N, Ruetti E, Bentosela M, Mustaca AE, Papini MR. Effects of testosterone administration and gonadectomy on incentive downshift and open field activity in rats. Physiol Behav 2012; 106:657-63. [DOI: 10.1016/j.physbeh.2012.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
32
|
Kohtz AS, Frye CA. Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models. Methods Mol Biol 2012; 829:397-431. [PMID: 22231829 DOI: 10.1007/978-1-61779-458-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developments in behavioral assessment, autonomic and/or baseline reactivity, psychopharmacology, and genetics, have contributed significantly to the assessment of performance-enhancing drugs in animal models. Particular classes of steroid hormones: androgenic steroids are of interest. Anecdotally, the performance enhancing effects of androgens are attributed to anabolic events. However, there is a discrepancy between anecdotal evidence and investigative data. While some androgen steroids may promote muscle growth (myogenesis), effects of androgens on performance enhancement are not always seen. Indeed, some effects of androgens on performance may be attributable to their psychological and cardiovascular effects. As such, we consider androgen effects in terms of their behavioral, autonomic, and neuroendocrine components. Techniques are discussed in this chapter, some of which are well established, while others have been more recently developed to study androgen action. Androgens may be considered for their positive impact, negative consequence, or psychotropic properties. Thus, this review aims to elucidate some of the effects and/or mechanisms of androgens on behavioral, autonomic, and/or neuroendocrine assessment that may underlie their controversial performance enhancing effects.
Collapse
Affiliation(s)
- Amy S Kohtz
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | | |
Collapse
|
33
|
Photoperiod alters fear responses and basolateral amygdala neuronal spine density in white-footed mice (Peromyscus leucopus). Behav Brain Res 2012; 233:345-50. [PMID: 22652395 DOI: 10.1016/j.bbr.2012.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/23/2012] [Accepted: 05/18/2012] [Indexed: 11/20/2022]
Abstract
Photoperiodism is a biological phenomenon in which environmental day length is monitored to ascertain time of year to engage in seasonally appropriate adaptations. This trait is common among organisms living outside of the tropics. White-footed mice (Peromyscus leucopus) are small photoperiodic rodents which display a suite of adaptive responses to short day lengths, including reduced hippocampal volume, impairments in hippocampal-mediated memory, and enhanced hypothalamic-pituitary-adrenal axis reactivity. Because these photoperiodic changes in brain and behavior mirror some of the etiology of post-traumatic stress disorder (PTSD), we hypothesized that photoperiod may also alter fear memory and neuronal morphology within the hippocampus-basolateral amygdala-prefrontal cortex fear circuit. Ten weeks of exposure to short days increased fear memory in an auditory-cued fear conditioning test. Short days also increased dendritic spine density of the neurons of the basolateral amygdala, without affecting morphology of pyramidal neurons within the infralimbic region of the medial prefrontal cortex. Taken together, photoperiodic phenotypic changes in brain morphology and physiology induced by a single environmental factor, exposure to short day lengths, affect responses to fearful stimuli in white-footed mice. These results have potential implications for understanding seasonal changes in fear responsiveness, as well as for expanding translational animal models for studying gene-environment interactions underlying psychiatric diseases, such as PTSD.
Collapse
|
34
|
Khorshidahmad T, Tabrizian K, Vakilzadeh G, Nikbin P, Moradi S, Hosseini-Sharifabad A, Roghani A, Naghdi N, Sharifzadeh M. Interactive effects of a protein kinase AII inhibitor and testosterone on spatial learning in the Morris water maze. Behav Brain Res 2012; 228:432-9. [DOI: 10.1016/j.bbr.2011.12.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 01/15/2023]
|
35
|
Hawley WR, Grissom EM, Barratt HE, Conrad TS, Dohanich GP. The effects of biological sex and gonadal hormones on learning strategy in adult rats. Physiol Behav 2012; 105:1014-20. [DOI: 10.1016/j.physbeh.2011.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022]
|
36
|
McDermott CM, Liu D, Schrader LA. Role of gonadal hormones in anxiety and fear memory formation and inhibition in male mice. Physiol Behav 2011; 105:1168-74. [PMID: 22226989 DOI: 10.1016/j.physbeh.2011.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 12/20/2022]
Abstract
Recent research investigating Pavlovian fear conditioning and fear extinction has elucidated the neurocircuitry involved in acquisition and inhibition of fear responses. Modulatory factors that may underlie individual differences in fear acquisition and inhibition, however, are not well understood. Testosterone is known to affect anxiety-like behavior and cognitive processing. In this study, we hypothesized that castration would increase anxiety and reduce memory for contextual fear conditioning in an age-dependent manner. In addition, castration would reduce the rate of extinction to context, as high levels of testosterone correlate with reduced PTSD-like symptoms. We compared behaviors in male mice that were castrated at one of two different time points, either before puberty (at 4 weeks) or after puberty (at 10 weeks) to sham-operated control mice. The behaviors investigated included: anxiety, cued and contextual fear conditioning, and extinction of the fear memory. An interaction of hormone status and age and a significant effect of age were measured in the elevated plus maze, a measure of anxiety. Castration caused a significant reduction of contextual fear memory, but no effect on cued fear memory. There was no significant effect of castration on extinction. Interestingly, a significant effect of age of the mouse at the time of testing was observed on extinction. These results suggest that endogenous androgens during puberty are important for anxiety and fear memory formation. In addition, these results define a late post-adolescent developmental time point for changes in anxiety and fear extinction.
Collapse
Affiliation(s)
- Carmel M McDermott
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
37
|
Paris JJ, Walf AA, Frye CA. II. Cognitive performance of middle-aged female rats is influenced by capacity to metabolize progesterone in the prefrontal cortex and hippocampus. Brain Res 2010; 1379:149-63. [PMID: 21044614 DOI: 10.1016/j.brainres.2010.10.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/20/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023]
Abstract
Cognitive decline can occur with aging; however, some individuals experience less cognitive decline than do others. Secretion of ovarian hormones is reduced post-menopause and may contribute to cognitive function. The extent to which hormonal effects may be parsed out from other age-related factors to influence cognition is of interest. Middle-aged (12-month-old) female rats that were retired breeders were categorized as maintaining or declining reproductive function based upon their estrous cyclicity (regular 4-5 day cycles), fertility (> 60 % successful pregnancy), and fecundity (>10 pups/litter). Performance in object recognition, Y-maze, water maze, inhibitory avoidance, and contextual-cued fear conditioning was evaluated. Estradiol, progesterone (P(4)), dihydroprogesterone, and 5α-pregnan-3α-ol-20-one (3α,5α-THP) were assessed in medial prefrontal cortex (mPFC) and hippocampus; corticosterone was assessed in plasma. Rats maintaining reproductive function performed significantly better on the object recognition, Y-maze, water maze, inhibitory avoidance, and cued fear conditioning tasks than did rats with declining reproductive function. Steroid concentrations varied greatly within groups. Higher levels of P(4) in mPFC and hippocampus were associated with better Y-maze performance. In mPFC, higher levels of P(4) were associated with poorer inhibitory avoidance performance; greater levels of 3α,5α-THP were associated with better object memory. Neither estradiol nor corticosterone levels significantly contributed to cognitive performance. Thus, the capacity for cortico-limbic P(4) utilization may influence cognitive performance in aging.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Psychology, The University at Albany-SUNY, Albany, New York 12222, USA
| | | | | |
Collapse
|
38
|
Grassi S, Frondaroli A, Di Mauro M, Pettorossi VE. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects. Neuroscience 2010; 171:666-76. [PMID: 20884332 DOI: 10.1016/j.neuroscience.2010.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/08/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022]
Abstract
In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites.
Collapse
Affiliation(s)
- S Grassi
- Department of Internal Medicine, Section of Human Physiology, University of Perugia, Via del Giochetto, I- 06126 Perugia, Italy.
| | | | | | | |
Collapse
|
39
|
Frye CA, Edinger KL, Lephart ED, Walf AA. 3alpha-androstanediol, but not testosterone, attenuates age-related decrements in cognitive, anxiety, and depressive behavior of male rats. Front Aging Neurosci 2010; 2:15. [PMID: 20552051 PMCID: PMC2874398 DOI: 10.3389/fnagi.2010.00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/16/2010] [Indexed: 11/13/2022] Open
Abstract
Some hippocampally-influenced affective and/or cognitive processes decline with aging. The role of androgens in this process is of interest. Testosterone (T) is aromatized to estrogen, and reduced to dihydrotestosterone (DHT), which is converted to 5α-androstane, 3α, 17α-diol (3α-diol). To determine the extent to which some age-related decline in hippocampally-influenced behaviors may be due to androgens, we examined the effects of variation in androgen levels due to age, gonadectomy, and androgen replacement on cognitive (inhibitory avoidance, Morris water maze) and affective (defensive freezing, forced swim) behavior among young (4 months), middle-aged (13 months), and aged (24 months) male rats. Plasma and hippocampal levels of androgens were determined. In experiment 1, comparisons were made between 4-, 13-, and 24-month-old rats that were intact or gonadectomized (GDX) and administered a T-filled or empty silastic capsule. There was age-related decline in performance of the inhibitory avoidance, water maze, defensive freezing, and forced swim tasks, and hippocampal 3α-diol levels. Chronic, long-term (1–4 weeks) T-replacement reversed the effects of GDX in 4- and 13-month-old, but not 24-month-old, rats in the inhibitory avoidance task. Experiments 2 and 3 assessed whether acute subcutaneous T or 3α-diol, respectively, could reverse age-associated decline in performance. 3α-diol, but not T, compared to vehicle, improved performance in the inhibitory avoidance, water maze, forced swim, and defensive freezing tasks, irrespective of age. Thus, age is associated with a decrease in 3α-diol production and 3α-diol administration reinstates cognitive and affective performance of aged male rats.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-SUNY Albany, NY, USA
| | | | | | | |
Collapse
|
40
|
Learning impairment caused by intra-CA1 microinjection of testosterone increases the number of astrocytes. Behav Brain Res 2010; 208:30-7. [DOI: 10.1016/j.bbr.2009.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 10/26/2009] [Accepted: 11/01/2009] [Indexed: 11/18/2022]
|
41
|
Barker JM, Galea LAM. Males show stronger contextual fear conditioning than females after context pre-exposure. Physiol Behav 2010; 99:82-90. [PMID: 19879284 DOI: 10.1016/j.physbeh.2009.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/17/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Estradiol affects the structure and function of the hippocampus. We have found that repeated estradiol affects neurogenesis and cell death in the hippocampus of adult female, but not male rats. In the present study we sought to determine whether using the same regimen of estradiol would influence hippocampus-dependent behaviour. Adult male and female rats were given estradiol or sesame oil for 15 days, and then tested using a contextual pre-exposure paradigm in which performance depends on the hippocampus. The time spent freezing displayed by rats was scored on subsequent days in (1) the training context, (2) a novel context in which rats had never been shocked, and (3) the training context a second time. Irrespective of treatment, males showed stronger memory for the context by exhibiting greater freezing in both the training context exposures and the novel context. Previous estradiol treatment, in either sex, did not affect the ability to learn and retain information about the training context. However, female rats treated with estradiol and exposed to a novel context after fear conditioning exhibited less freezing behaviour than controls. Taken together, our results demonstrate that gonadectomized male rats outperform females, regardless of previous treatment with estradiol, on a hippocampus-contextual fear conditioning test, and that previous estradiol treatment has a subtle effect on performance in female but not male rats.
Collapse
Affiliation(s)
- Jennifer M Barker
- Graduate Program in Neuroscience, Brain Research Centre, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
42
|
Frye CA, Ryan A, Rhodes M. Antiseizure effects of 3alpha-androstanediol and/or 17beta-estradiol may involve actions at estrogen receptor beta. Epilepsy Behav 2009; 16:418-22. [PMID: 19854112 DOI: 10.1016/j.yebeh.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/03/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
Testosterone (T), the principal androgen secreted by the testes, can have antiseizure effects. Some of these effects may be mediated by T's metabolites. T is metabolized to 3alpha-androstanediol (3alpha-diol). T, but not 3alpha-diol, binds androgen receptor. We investigated effects of 3alpha-diol (1 mg/kg, SC) and/or an androgen receptor blocker (flutamide 10 mg, SC), 1 hour prior to administration of pentylenetetrazol (85 mg/kg, IP). Juvenile male rats administered 3alpha-diol had less seizure activity than those administered vehicle. Flutamide had no effects. T is aromatized to 17beta-estradiol (E(2)), which, like 3alpha-diol, acts at estrogen receptors (ERs). Selective estrogen receptor modulators that favor ERalpha (propyl pyrazole triol, 17alpha-E(2)) or ERbeta (diarylpropionitrile, coumestrol, 3alpha-diol), or both (17beta-E(2)), were administered (0.1 mg/kg, SC) to juvenile male rats 1 hour before pentylenetetrazol. Estrogens with activity at ERbeta, but not those selective for ERalpha, produced antiseizure effects. Actions at ERbeta may underlie some antiseizure effects of T's metabolites.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
43
|
Osborne DM, Edinger K, Frye CA. Chronic administration of androgens with actions at estrogen receptor beta have anti-anxiety and cognitive-enhancing effects in male rats. AGE (DORDRECHT, NETHERLANDS) 2009; 31:191-198. [PMID: 19685169 PMCID: PMC2734246 DOI: 10.1007/s11357-009-9114-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/09/2009] [Indexed: 05/28/2023]
Abstract
Androgen levels decline with aging. Some androgens may exert anti-anxiety and cognitive-enhancing effects; however, determining which androgens have anxiolytic-like and/or mnemonic effects is of interest given the different mechanisms that may underlie some of their effects. For example, the 5 alpha-reduced metabolite of testosterone (T), dihydrotesterone, can be further converted to 5 alpha-androstane,17beta-diol-3 alpha-diol (3 alpha-diol) and 5 alpha-androstane,17beta-diol-3beta-diol (3beta-diol), both of which bind with high affinity to the beta isomer of the intracellular estrogen receptor beta (ER beta). However, androsterone, another metabolite of T, does not bind well to ER beta. To investigate the effects of T metabolites, male rats were subjected to gonadectomy then implanted with silastic capsules of 3 alpha-diol, 3beta-diol, androsterone, or oil control. After recovery, the rats were tested in elevated plus maze (EPM), light/dark transition (LD), and Morris water maze (MWM). 3 alpha-diol both decreased anxiety-like behavior in the EPM and LD, and increased cognition in MWM, while 3beta-diol improved cognition in MWM, but had no effects on anxiety behavior, compared to vehicle or androsterone. These data suggest that the actions of 3 alpha-diol and 3beta-diol at ER beta may be responsible for some of testosterone's anti-anxiety and cognitive-enhancing effects.
Collapse
Affiliation(s)
| | - Kassandra Edinger
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY USA
| | - Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY USA
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY USA
- Center for Life Sciences, The University at Albany-SUNY, Life Sciences Room 1058, Albany, NY 12222 USA
- Center for Neuroscience Research, The University at Albany-SUNY, Albany, NY USA
| |
Collapse
|
44
|
Osborne DM, Edinger K, Frye CA. Chronic administration of androgens with actions at estrogen receptor beta have anti-anxiety and cognitive-enhancing effects in male rats. AGE (DORDRECHT, NETHERLANDS) 2009; 31:119-26. [PMID: 19263246 PMCID: PMC2693730 DOI: 10.1007/s11357-009-9088-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/09/2009] [Indexed: 05/04/2023]
Abstract
Androgen levels decline with aging. Some androgens may exert anti-anxiety and cognitive-enhancing effects; however, determining which androgens have anxiolytic-like and/or mnemonic effects is of interest given the different mechanisms that may underlie some of their effects. For example, the 5 alpha-reduced metabolite of testosterone (T), dihydrotesterone, can be further converted to 5 alpha-androstane,17beta-diol-3 alpha-diol (3 alpha-diol) and 5 alpha-androstane,17beta-diol-3beta-diol (3beta-diol), both of which bind with high affinity to the beta isomer of the intracellular estrogen receptor beta (ER beta). However, androsterone, another metabolite of T, does not bind well to ER beta. To investigate the effects of T metabolites, male rats were subjected to gonadectomy then implanted with silastic capsules of 3 alpha-diol, 3beta-diol, androsterone, or oil control. After recovery, the rats were tested in elevated plus maze (EPM), light/dark transition (LD), and Morris water maze (MWM). 3 alpha-diol both decreased anxiety-like behavior in the EPM and LD, and increased cognition in MWM, while 3beta-diol improved cognition in MWM, but had no effects on anxiety behavior, compared to vehicle or androsterone. These data suggest that the actions of 3 alpha-diol and 3beta-diol at ER beta may be responsible for some of testosterone's anti-anxiety and cognitive-enhancing effects.
Collapse
Affiliation(s)
| | - Kassandra Edinger
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY USA
| | - Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY USA
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY USA
- Center for Life Sciences, The University at Albany-SUNY, Life Sciences Room 1058, Albany, NY 12222 USA
- Center for Neuroscience Research, The University at Albany-SUNY, Albany, NY USA
| |
Collapse
|
45
|
Llaneza DC, Frye CA. Progestogens and estrogen influence impulsive burying and avoidant freezing behavior of naturally cycling and ovariectomized rats. Pharmacol Biochem Behav 2009; 93:337-42. [PMID: 19447128 DOI: 10.1016/j.pbb.2009.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 03/31/2009] [Accepted: 05/06/2009] [Indexed: 11/18/2022]
Abstract
Steroid hormones, progesterone and estradiol, may influence approach and/or anxiety behavior. Female rats in behavioral estrous, have elevated levels of these steroid hormones and demonstrate more approach and less anxiety behavior than do diestrous rats. Ovariectomy obviates these cyclic variations and systemic progesterone and/or estrogen replacement can enhance approach and anti-anxiety behavior. However, the role of progesterone and/or estrogen in mediating impulsive, avoidant and/or fear behaviors requires further investigation. We hypothesized that if progesterone and/or estrogen influences impulsivity and/or fear then rats in behavioral estrous would demonstrate less impulsive behavior in a burying task and freezing behavior in a conditioned fear task than will diestrous rats. Ovariectomized rats administered progesterone and/or estrogen would show less impulsive burying and freezing behaviors than will vehicle-administered rats. Experiment 1: Naturally cycling rats were tested in marble burying or conditioned fear when they were in behavioral estrous or diestrous. Experiment 2: Ovariectomized rats were administered progesterone, estrogen or vehicle, then tested in marble burying or conditioned fear. Results of Experiment 1 show rats in behavioral estrous demonstrate less impulsive burying and less freezing behavior than diestrous rats. Results of Experiment 2 show administration of progesterone or both estrogen and progesterone decreases impulsive burying and each decrease freezing behavior compared to vehicle. Thus, progesterone and/or estrogen may mediate impulsive and/or avoidant behavior.
Collapse
Affiliation(s)
- Danielle C Llaneza
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
46
|
Frye CA, Koonce CJ, Edinger KL, Osborne DM, Walf AA. Androgens with activity at estrogen receptor beta have anxiolytic and cognitive-enhancing effects in male rats and mice. Horm Behav 2008; 54:726-34. [PMID: 18775724 PMCID: PMC3623974 DOI: 10.1016/j.yhbeh.2008.07.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/24/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
Abstract
Testosterone (T) and its metabolites may underlie some beneficial effects for anxiety and cognition, but the mechanisms for these effects are unclear. T is reduced to dihydrotestosterone (DHT), which can be converted to 5alpha-androstane,3alpha,17beta-diol (3alpha-diol) and/or 5alpha-androstane-3beta,17beta-diol (3beta-diol). Additionally, T can be converted to androstenedione, and then to androsterone. These metabolites bind with varying affinity to androgen receptors (ARs; T and DHT), estrogen receptors (ERbeta; 3alpha-diol, 3beta-diol), or GABA(A)/benzodiazepine receptors (GBRs; 3alpha-diol, androsterone). Three experiments were performed to investigate the hypothesis that reduced anxiety-like and enhanced cognitive performance may be due in part to actions of T metabolites at ERbeta. Experiment 1: Gonadectomized (GDX) wildtype and ERbeta knockout mice (betaERKO) were subcutaneously (SC) administered 3alpha-diol, 3beta-diol, androsterone, or oil vehicle at weekly intervals, and tested in anxiety tasks (open field, elevated plus maze, light-dark transition) or for cognitive performance in the object recognition task. Experiment 2: GDX rats were administered SC 3alpha-diol, 3beta-diol, androsterone, or oil vehicle, and tested in the same tasks. Experiment 3: GDX rats were androsterone- or vehicle-primed and administered an antagonist of ARs (flutamide), ERs (tamoxifen), or GBRs (flumazenil), or vehicle and then tested in the elevated plus maze. Both rats and wildtype mice, but not betaERKO mice, consistently had reduced anxiety and improved performance in the object recognition task. Androsterone was only effective at reducing anxiety-like behavior in the elevated plus maze and this effect was modestly reduced by flumazenil administration. Thus, actions at ERbeta may be required for T's anxiety-reducing and cognitive-enhancing effects.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, NY 12222, USA.
| | | | | | | | | |
Collapse
|
47
|
Region and sex differences in constituent dopamine neurons and immunoreactivity for intracellular estrogen and androgen receptors in mesocortical projections in rats. J Neurosci 2008; 28:9525-35. [PMID: 18799684 DOI: 10.1523/jneurosci.2637-08.2008] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many cortical and prefrontal functions show sex differences in their development, adult capacity, and dysfunction in disorders like schizophrenia. Correlations between circulating gonadal hormones and certain prefrontal functions have also been identified in humans and experimental animal models. Although multiple mechanisms may be involved, such hormone sensitivities/sex differences could be related to gonadal steroid actions on another regulator of cortical/prefrontal cortical function, the mesocortical dopamine system. Thus, although it is well known that perturbations in prefrontal dopamine signaling induce behavioral deficits, it is also known that several endpoints of these afferents are sensitive to gonadal steroids and/or are sexually dimorphic. This study explored possible substrates for this in two ways: by comparing the distributions of immunoreactivity for intracellular estrogen (alpha and beta) and androgen receptors among retrogradely labeled dopaminergic and nondopaminergic mesocortical neurons projecting to prefrontal, premotor, and primary motor cortices, areas in which male rat dopamine axons are differentially hormone-sensitive; and by comparing anatomical data in males and females. These analyses revealed region-, cell-, and sex-specific specializations in receptor localization that paralleled established patterns of mesocortical hormone sensitivity, including the androgen sensitivity of dopamine axons and dopamine-dependent functions in prefrontal cortex. It was also found that the proportions of dopamine neurons making up mesocortical projections were approximately 30% in males, whereas in females, significantly more constituent cells were dopaminergic. Together, these features may be part of the neurobiology giving mesocortical afferents their hormone sensitivities and/or sex differences in physiology, function, and dysfunction in disease.
Collapse
|
48
|
Gibbs RB, Johnson DA. Sex-specific effects of gonadectomy and hormone treatment on acquisition of a 12-arm radial maze task by Sprague Dawley rats. Endocrinology 2008; 149:3176-83. [PMID: 18292188 PMCID: PMC2408814 DOI: 10.1210/en.2007-1645] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of gonadectomy and hormone treatment on spatial learning were evaluated in adult male and female rats using a modified version of a 12-arm radial maze task. In this version, procedures were used to minimize the effectiveness of strategies less reliant on working and reference memory. Results demonstrate significant sex differences favoring male performance on the working memory component of the task. In contrast, females performed slightly better than males on the reference memory component of the task. In females, ovariectomy produced a decrease in overall accuracy (i.e. an increase in the number of arm entries necessary to obtain all food pellets) as well as declines in working and reference memory performance. Both accuracy and working memory performance, but not reference memory performance, were restored by estradiol treatment. In males, castration impaired working memory performance but did not significantly affect overall accuracy or reference memory performance. Surprisingly, all groups of males performed poorly on the reference memory component of the task, and testosterone treatment appeared to worsen, rather than improve, both accuracy and reference memory performance in males. This may reflect a male preference for certain strategies that were rendered ineffective on this task. Significant sex differences, as well as treatment effects, on arm preference patterns were also detected; however, these differences were not sufficient to account for the effects of sex and treatment on acquisition. Collectively, the data demonstrate robust effects of gonadectomy and hormone treatment on acquisition of this modified radial arm maze task in females, with lesser effects in males.
Collapse
Affiliation(s)
- Robert B Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
49
|
Nyby JG. Reflexive testosterone release: a model system for studying the nongenomic effects of testosterone upon male behavior. Front Neuroendocrinol 2008; 29:199-210. [PMID: 17976710 PMCID: PMC2443938 DOI: 10.1016/j.yfrne.2007.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/27/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
Male mammals of many species exhibit reflexive testosterone release in mating situations. In house mice (Mus musculus), the dramatic robustness of such release, occurring primarily in response to a novel female, suggests some function. The resulting testosterone elevations typically peak during copulatory behavior and may serve to activate transitory motivational and physiological responses that facilitate reproduction. However, such a function requires that testosterone be working through either nongenomic, or very quick genomic, mechanisms. The first part of the review describes reflexive sex hormone release in house mice. The second part summarizes research implicating testosterone's fast actions in affecting anxiety, reward, learning, analgesia, and penile reflexes in rodents, all of which could optimize male mating success. The review concludes with a speculative model of how spontaneous and reflexive hormone release might interact to regulate reproductive behavior and why mice appear to be an ideal species for examining testosterone's quick effects.
Collapse
Affiliation(s)
- John G Nyby
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
50
|
Frye CA, Edinger K, Sumida K. Androgen administration to aged male mice increases anti-anxiety behavior and enhances cognitive performance. Neuropsychopharmacology 2008; 33:1049-61. [PMID: 17625503 PMCID: PMC2572829 DOI: 10.1038/sj.npp.1301498] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although androgen secretion is reduced with aging, and may underlie decrements in cognitive and affective performance, the effects and mechanisms of androgens to mediate these behaviors are not well understood. Testosterone (T), the primary male androgen, is aromatized to estrogen (E(2)), and reduced to dihydrotestosterone (DHT), which is converted to 5alpha-androstane, 3alpha, 17beta-diol (3alpha-diol). To ascertain whether actions of the neuroactive metabolite of T, 3alpha-diol, mediates cognitive and affective behaviors, intact, aged male C57/B6 mice (24 month old) as well as young, intact and gonadectomized (GDX; 12 week old) mice were administered s.c. T, 3alpha-diol, E(2), or sesame oil vehicle (1 mg/kg; n=4-5/group) at weekly intervals and 1 h later mice were tested in the activity box, roto-rod, open field, elevated plus maze, zero maze, mirror maze, dark-light transition, forced swim, or Vogel tasks. Mice were trained in the inhibitory avoidance or conditioned contextual fear and were administered hormones following training and then were tested. After the last test occasion, tissues were collected for evaluation of hormone levels and effects on gamma-aminobutyric acid (GABA)-stimulated chloride flux. T, 3alpha-diol, or E(2) increased anti-anxiety and antidepressant behavior of aged, intact mice in the open field, light-dark transition, mirror maze, and forced swim tasks. T or 3alpha-diol, but not E(2), enhanced anti-anxiety behavior in the elevated plus maze, zero maze, and the Vogel task, and increased motor behavior in the activity monitor, latency to fall in the Roto-rod task, and cognitive performance in the hippocampally-mediated, but not the amygdala-mediated, portion of the conditioned fear task and in the inhibitory avoidance task. Anti-anxiety and enhanced cognitive performance was associated with regimen that increased plasma and hippocampal 3alpha-diol levels and GABA-stimulated chloride flux. Similar patterns were seen among young, adult GDX but not in intact mice. Thus, 3alpha-diol can enhance affective and cognitive behavior of male mice.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|