1
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Ornelas LC, Boero G, Van Voorhies K, O’Buckley TK, Besheer J, Morrow AL. Pharmacological administration of 3α,5α-THP into the nucleus accumbens core increases 3α,5α-THP expression and reduces alcohol self-administration. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:459-469. [PMID: 36587947 PMCID: PMC10234128 DOI: 10.1111/acer.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
3
|
Solntseva EI, Bukanova JV, Skrebitsky VG, Kudova E. Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus 2022; 32:552-563. [PMID: 35703084 DOI: 10.1002/hipo.23449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
The ability of endogenous neurosteroids (NSs) with pregnane skeleton modified at positions C-3 and C-5 to modulate the functional activity of inhibitory glycine receptors (GlyR) and ionotropic ɣ-aminobutyric acid receptors (GABAA R) was estimated. The glycine and GABA-induced chloride current (IGly and IGABA ) were measured in isolated pyramidal neurons of the rat hippocampus and in isolated rat cerebellar Purkinje cells, respectively. Our experiments demonstrated that pregnane NSs affected IGABA and IGly in a different manner. At low concentrations (up to 5 μM), tested pregnane NSs increased or did not change the peak amplitude of the IGABA , but reduced the IGly by decreasing the peak amplitude and/or accelerating desensitization. Namely, allopregnanolone (ALLO), epipregnanolone (EPI), pregnanolone (PA), pregnanolone sulfate (PAS) and 5β-dihydroprogesterone (5β-DHP) enhanced the IGABA in Purkinje cells. Dose-response curves plotted in the concentration range from 1 nM to 100 μM were smooth for EPI and 5β-DHP, but bell-shaped for ALLO, PA and PAS. The peak amplitude of the IGly was reduced by PA, PAS, and 5α- and 5β-DHP. In contrast, ALLO, ISO and EPI did not modulate it. Dose-response curves for the inhibition of the IGly peak amplitude were smooth for all active compounds. All NSs accelerated desensitization of the IGly . The dose-response relationship for this effect was smooth for ALLO, PA, PAS and 5β-DHP, but it was U-shaped for EPI, 5α-DHP and ISO. These results, together with our previous results on NSs with androstane skeleton, offer comprehensive overview for understanding the mechanisms of effects of NSs on IGly and IGABA .
Collapse
Affiliation(s)
- Elena I Solntseva
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Julia V Bukanova
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Vladimir G Skrebitsky
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Epipregnanolone as a Positive Modulator of GABA A Receptor in Rat Cerebellar and Hippocampus Neurons. Biomolecules 2021; 11:biom11060791. [PMID: 34074021 PMCID: PMC8225200 DOI: 10.3390/biom11060791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Epipregnanolone (3β-hydroxy-5β-pregnan-20-one, Epi) is an endogenous steroid with important physiological effects and high affinity for GABAA receptors. The effect of Epi on GABA-induced chloride current (IGABA) in native neurons has hardly been studied. In this work, we studied the influence of Epi on the IGABA in the Purkinje cells of rat cerebellum and pyramidal neurons of rat hippocampus with the patch clamp technique. We showed that Epi is a positive modulator of the IGABA with EC50 of 5.7 µM in Purkinje cells and 9.3 µM in hippocampal neurons. Epi-induced potentiation of the IGABA was more potent at low vs. high GABA concentrations. Isopregnanolone (3β-hydroxy-5α-pregnan-20-one, Iso) counteracted Epi, reducing its potentiating effect by 2–2.3 times. Flumazenil, a nonsteroidal GABAA receptor antagonist, does not affect the Epi-induced potentiation. Comparison of the potentiating effects of Epi and allopregnanolone (3α-hydroxy-5α-pregnan-20-one, ALLO) showed that ALLO is, at least, a four times more potent positive modulator than Epi. The combined application of ALLO and Epi showed that the effects of these two steroids are not additive. We conclude that Epi has a dual effect on the IGABA increasing the current in the control solution and decreasing the stimulatory effect of ALLO.
Collapse
|
5
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
6
|
Bukanova JV, Solntseva EI, Kolbaev SN, Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3α5β-pregnanolone derivatives. Neurochem Int 2018; 118:145-151. [PMID: 29886074 DOI: 10.1016/j.neuint.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
The ability of pregnanolone glutamate (PA-Glu), pregnanolone hemisuccinate (PA-hSuc) and pregnanolone hemipimelate (PA-hPim), neuroactive steroids with a negative modulatory effect on excitatory N-methyl-d-aspartate receptors, to influence the functional activity of inhibitory γ-aminobutyric acid and glycine receptors was estimated. The GABA- and glycine-induced chloride currents (IGABA and IGly) were measured in isolated pyramidal neurons of the rat hippocampus using the patch-clamp technique. Compound PA-Glu was found to potentiate IGABA and to inhibit IGly, while PA-hSuc and PA-hPim inhibited both IGABA and IGly. Moreover, PA-Glu, PA-hSuc, and PA-hPim had a greater effect on desensitization than on the peak amplitude of IGly. At a high concentration of glycine (500 μM), the effect of neurosteroids on the peak amplitude of IGly disappeared, and the acceleration of desensitization remained. The conversion of PA-Glu into androstane glutamate (AND-Glu), an analogue that lacks the C-17 acetyl moiety, completely eliminated the effects on these receptors. Our results indicate that the C-17 acetyl moiety is crucial for the action on IGABA and IGly. Our results indicate that the pregnanolone derivatives, in contrast to the androstane analogues, modulate IGABA and IGly at low micromolar concentrations and this family of neurosteroids can be useful for future structure-activity relationship studies of the steroid modulation of other receptor types.
Collapse
Affiliation(s)
| | | | | | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Beattie MC, Maldonado-Devincci AM, Porcu P, O'Buckley TK, Daunais JB, Grant KA, Morrow AL. Voluntary ethanol consumption reduces GABAergic neuroactive steroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) in the amygdala of the cynomolgus monkey. Addict Biol 2017; 22:318-330. [PMID: 26625954 DOI: 10.1111/adb.12326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/31/2015] [Accepted: 10/04/2015] [Indexed: 01/27/2023]
Abstract
Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the gamma-aminobutyric acid (GABA)-ergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to hypothalamic-pituitary-adrenal (HPA) axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 h/day over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 to 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13 ± 2 percent (P < 0.05) in the lateral amygdala and 17 ± 2 percent (P < 0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg ≥ 20 percent of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = -0.87 and -0.72, respectively, P < 0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity were observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in non-human primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function.
Collapse
Affiliation(s)
- Matthew C. Beattie
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Antoniette M. Maldonado-Devincci
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Patrizia Porcu
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
- Neuroscience Institute; National Research Council of Italy (CNR); Italy
| | - Todd K. O'Buckley
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - James B. Daunais
- Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston Salem NC USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center; Oregon Health and Science University; Beaverton OR USA
| | - A. Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
8
|
Porcu P, O'Buckley TK, Lopez MF, Becker HC, Miles MF, Williams RW, Morrow AL. Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains. Alcohol 2017; 58:107-125. [PMID: 27884493 DOI: 10.1016/j.alcohol.2016.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 10/20/2022]
Abstract
Neuroactive steroids modulate alcohol's impact on brain function and behavior. Ethanol exposure alters neuroactive steroid levels in rats, humans, and some mouse strains. We conducted an exploratory analysis of the neuroactive steroids (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP), (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC), and pregnenolone across 126-158 individuals and 19 fully inbred strains belonging to the BXD family, which were subjected to air exposure, or chronic intermittent ethanol (CIE) exposure. Neuroactive steroids were measured by gas chromatography-mass spectrometry in serum following five cycles of CIE or air exposure (CTL). Pregnenolone levels in CTLs range from 272 to 578 pg/mL (strain variation of 2.1 fold with p = 0.049 for strain main effect), with heritability of 0.20 ± 0.006 (SEM), whereas in CIE cases values range from 304 to 919 pg/mL (3.0-fold variation, p = 0.007), with heritability of 0.23 ± 0.005. 3α,5α-THP levels in CTLs range from 375 to 1055 pg/mL (2.8-fold variation, p = 0.0007), with heritability of 0.28 ± 0.01; in CIE cases they range from 460 to 1022 pg/mL (2.2-fold variation, p = 0.004), with heritability of 0.23 ± 0.005. 3α,5α-THDOC levels in CTLs range from 94 to 448 pg/mL (4.8-fold variation, p = 0.002), with heritability of 0.30 ± 0.01, whereas levels in CIE cases do not differ significantly. However, global averages across all BXD strains do not differ between CTL and CIE for any of the steroids. 3α,5α-THDOC levels were lower in females than males in both groups (CTL -53%, CIE -55%, p < 0.001). Suggestive quantitative trait loci are identified for pregnenolone and 3α,5α-THP levels. Genetic variation in 3α,5α-THP was not correlated with two-bottle choice ethanol consumption in CTL or CIE-exposed animals. However, individual variation in 3α,5α-THP correlated negatively with ethanol consumption in both groups. Moreover, strain variation in neuroactive steroid levels correlated with numerous behavioral phenotypes of anxiety sensitivity accessed in GeneNetwork, consistent with evidence that neuroactive steroids modulate anxiety-like behavior.
Collapse
|
9
|
Dury AY, Ke Y, Labrie F. Precise and accurate assay of pregnenolone and five other neurosteroids in monkey brain tissue by LC-MS/MS. Steroids 2016; 113:64-70. [PMID: 27378657 DOI: 10.1016/j.steroids.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
Abstract
A series of steroids present in the brain have been named "neurosteroids" following the possibility of their role in the central nervous system impairments such as anxiety disorders, depression, premenstrual dysphoric disorder (PMDD), addiction, or even neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Study of their potential role requires a sensitive and accurate assay of their concentration in the monkey brain, the closest model to the human. We have thus developed a robust, precise and accurate liquid chromatography-tandem mass spectrometry method for the assay of pregnenolone, pregnanolone, epipregnanolone, allopregnanolone, epiallopregnanolone, and androsterone in the cynomolgus monkey brain. The extraction method includes a thorough sample cleanup using protein precipitation and phospholipid removal, followed by hexane liquid-liquid extraction and a Girard T ketone-specific derivatization. This method opens the possibility of investigating the potential implication of these six steroids in the most suitable animal model for neurosteroid-related research.
Collapse
Affiliation(s)
- Alain Y Dury
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City (QC) G1V 4M7, Canada
| | - Yuyong Ke
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City (QC) G1V 4M7, Canada
| | - Fernand Labrie
- Endoceutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City (QC) G1V 4M7, Canada.
| |
Collapse
|
10
|
Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, Morrow AL, Panzica GC, Melcangi RC. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J Neuroendocrinol 2016; 28:12351. [PMID: 26681259 PMCID: PMC4769676 DOI: 10.1111/jne.12351] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Abstract
Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the GABAA receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in several animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiological functions, such as the stress response, puberty, the ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurological diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharmacokinetics, low bioavailability, addiction potential, safety and tolerability, which limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarises recent approaches that target the neuroactive steroid biosynthetic pathway at different levels aiming to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa and the pregnane xenobiotic receptor, as well as targeting of specific neurosteroidogenic enzymes such as 17β-hydroxysteroid dehydrogenase type 10 or P450 side chain cleavage. Enhanced neurosteroidogenesis through these targets may be beneficial not only for neurodegenerative diseases, such as Alzheimer's disease and age-related dementia, but also for neuropsychiatric diseases, including alcohol use disorders.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna M. Barron
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Cheryl Anne Frye
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
| | - Alicia A. Walf
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Song-Yu Yang
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xue-Ying He
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - A. Leslie Morrow
- Departments of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gian Carlo Panzica
- Department of Neuroscience, University of Turin, and NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Roberto C. Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Vallée M. Structure-activity relationship studies on neuroactive steroids in memory, alcohol and stress-related functions: a crucial benefit from endogenous level analysis. Psychopharmacology (Berl) 2014; 231:3243-55. [PMID: 24781520 DOI: 10.1007/s00213-014-3593-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
RATIONALE New research findings in the field of neuroactive steroids strongly suggest that to understand their role in physiopathology, it is essential to accurately measure their tissue levels. Through his broad chemical expertise and extensive knowledge of steroids, Dr. Robert H. Purdy pioneered structure-activity relationship studies on these compounds and developed innovative detection assays that are essential to assess their function in biological tissues. OBJECTIVE The goal of the present paper is to point out the specific contributions of Dr. Purdy and his collaborators to the current knowledge on the role of neuroactive steroids in the modulation of memory and alcohol- and stress-related effects with particular emphasis on the detection assays he developed to assess their endogenous levels. Reviewed here are the major results as well as the original and valuable methodological strategies issued by the long-term collaboration between Dr Purdy and many scientists worldwide on the investigation of the structure-activity relationship of neuroactive steroids. RESULTS Altogether, the data presented herein put forward the original notion that knowledge of the chemical structure of steroids is essential for their detection and the understanding of their role in physiological and pathological conditions, including the stress response. CONCLUSIONS The current challenge is to identify and quantify using appropriate methods neuroactive steroids in the context of both animal and clinical studies in order to reveal how their levels change under physiological and disease states. Dr. Purdy passed away in September 2012, but scientists all over the world will always be grateful for his pioneering work on steroid chemistry and for his great enthusiasm in research.
Collapse
Affiliation(s)
- Monique Vallée
- INSERM U862, Neurocentre Magendie, Pathophysiology of Addiction, Bordeaux, 33077, France,
| |
Collapse
|
12
|
Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration. J Neurosci 2014; 34:5824-34. [PMID: 24760842 DOI: 10.1523/jneurosci.4733-13.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.
Collapse
|
13
|
Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 2012; 37:109-22. [PMID: 23085210 DOI: 10.1016/j.neubiorev.2012.10.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Neurosteroids are potent and effective neuromodulators that are synthesized from cholesterol in the brain. These agents and their synthetic derivatives influence the function of multiple signaling pathways including receptors for γ-aminobutyric acid (GABA) and glutamate, the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS). Increasing evidence indicates that dysregulation of neurosteroid production plays a role in the pathophysiology of stress and stress-related psychiatric disorders, including mood and anxiety disorders. In this paper, we review the mechanisms of neurosteroid action in brain with an emphasis on those neurosteroids that potently modulate the function of GABA(A) receptors. We then discuss evidence indicating a role for GABA and neurosteroids in stress and depression, and focus on potential strategies that can be used to manipulate CNS neurosteroid synthesis and function for therapeutic purposes.
Collapse
|
14
|
A comparison of dehydroepiandrosterone and 7-keto dehydroepiandrosterone with other drugs that modulate ethanol intake in rats responding under a multiple schedule. Behav Pharmacol 2012; 23:250-61. [PMID: 22473025 DOI: 10.1097/fbp.0b013e32835342d2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dehydroepiandrosterone (DHEA), 7-keto DHEA, and several comparison drugs (ethanol, chlordiazepoxide, rauwolscine, and RO15-4513) were administered to male rats responding under a multiple schedule of food and ethanol presentation to determine their selectivity for decreasing ethanol-maintained responding. DHEA and 7-keto DHEA significantly decreased both ethanol-maintained and food-maintained responding, compared with the control, while also decreasing the blood ethanol concentration (BEC). Acute ethanol administration also decreased responding for both food and ethanol; however, ethanol-maintained responding was more potently decreased than food-maintained responding. BEC remained relatively stable after increasing ethanol doses. Among the other drugs tested, RO15-4513 was the most selective for decreasing ethanol-maintained responding compared with food-maintained responding, and it decreased BECs as ethanol-maintained responding decreased. The largest dose of rauwolscine significantly decreased responding for food, whereas it did not affect ethanol-maintained responding compared with the control. Low to intermediate doses of rauwolscine produced small, nonsignificant increases in ethanol-maintained responding and BECs. Chlordiazepoxide produced significant decreases in food-maintained responding and the dose of ethanol presented, but only at the highest dose tested. Although DHEA and 7-keto DHEA did not decrease ethanol-maintained responding as selectively as ethanol or RO15-4513 under the multiple schedule, these neurosteroids may be valuable pharmacological tools in the development of new treatments for alcohol abuse and dependence.
Collapse
|
15
|
Helms CM, Rossi DJ, Grant KA. Neurosteroid influences on sensitivity to ethanol. Front Endocrinol (Lausanne) 2012; 3:10. [PMID: 22654852 PMCID: PMC3356014 DOI: 10.3389/fendo.2012.00010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/11/2012] [Indexed: 12/23/2022] Open
Abstract
This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including physiological states associated with activity of the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, and the effects of chronic exposure to ethanol, in addition to behavioral implications. To date, γ-aminobutyric acid (GABA(A)) receptor mechanisms are a major focus of the modulation of ethanol effects by neuroactive steroids. While NMDA receptor mechanisms are gaining prominence in the literature, these complex data would be best discussed separately. Accordingly, GABA(A) receptor mechanisms are emphasized in this review with brief mention of some NMDA receptor mechanisms to point out contrasting neuroactive steroid pharmacology. Overall, the data suggest that neurosteroids are virtually ubiquitous modulators of inhibitory neurotransmission. Neurosteroids appear to affect sensitivity to ethanol in specific brain regions and, consequently, specific behavioral tests, possibly related to the efficacy and potency of ethanol to potentiate the release of GABA and increase neurosteroid concentrations. Although direct interaction of ethanol and neuroactive steroids at common receptor binding sites has been suggested in some studies, this proposition is still controversial. It is currently difficult to assign a specific mechanism by which neuroactive steroids could modulate the effects of ethanol in particular behavioral tasks.
Collapse
Affiliation(s)
- Christa M. Helms
- Division of Neuroscience, Oregon National Primate Research CenterBeaverton, OR, USA
- *Correspondence: Christa M. Helms, Division of Neuroscience, Oregon National Primate Research Center, L-584, 505 North-West 185th Avenue, Beaverton, OR 97006, USA. e-mail:
| | - David J. Rossi
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research CenterBeaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
16
|
Besheer J, Lindsay TG, O'Buckley TK, Hodge CW, Morrow AL. Pregnenolone and ganaxolone reduce operant ethanol self-administration in alcohol-preferring p rats. Alcohol Clin Exp Res 2010; 34:2044-52. [PMID: 20946297 DOI: 10.1111/j.1530-0277.2010.01300.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neuroactive steroids modulate ethanol intake in several self-administration models with variable effects. The purpose of this work was to examine the effects of the long-acting synthetic GABAergic neurosteroid ganaxolone and the endogenous neurosteroid pregnenolone, a precursor of all GABAergic neuroactive steroids, on the maintenance of ethanol self-administration in an animal model of elevated drinking-the alcohol-preferring (P) rats. METHODS P rats were trained to self-administer ethanol (15% v/v) versus water on a concurrent schedule of reinforcement, and the effects of ganaxolone (0 to 30 mg/kg, subcutaneous [SC]) and pregnenolone (0 to 75 mg/kg, intraperitoneal [IP]) were evaluated on the maintenance of ethanol self-administration. After completion of self-administration testing, doses of the neuroactive steroids that altered ethanol self-administration were assessed on spontaneous locomotor activity. Finally, the effect of pregnenolone administration on cerebral cortical levels of the GABAergic neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone, 3α,5α-THP) was determined in both ethanol-experienced and ethanol-inexperienced P rats because pregnenolone is a precursor of these steroids. RESULTS Ganaxolone produced a dose-dependent biphasic effect on ethanol reinforcement, as the lowest dose (1 mg/kg) increased and the highest dose (30 mg/kg) decreased ethanol-reinforced responding. However, the highest ganaxolone dose also produced a nonspecific reduction in locomotor activity. Pregnenolone treatment significantly reduced ethanol self-administration (50 and 75 mg/kg), without altering locomotor activity. Pregnenolone (50 mg/kg) produced a significant increase in cerebral cortical allopregnanolone levels. This increase was observed in the self-administration trained animals, but not in ethanol-naïve P rats. CONCLUSIONS These results indicate that pregnenolone dose-dependently reduces operant ethanol self-administration in P rats without locomotor impairment, suggesting that it may have potential as a novel therapeutic for reducing chronic alcohol drinking in individuals that abuse alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | |
Collapse
|
17
|
Morrow AL, Biggio G, Serra M, Becker HC, Lopez MF, Porcu P, Alward SE, O'Buckley TK. The role of neuroactive steroids in ethanol/stress interactions: proceedings of symposium VII at the Volterra conference on alcohol and stress, May 2008. Alcohol 2009; 43:521-30. [PMID: 19913195 PMCID: PMC2778608 DOI: 10.1016/j.alcohol.2009.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 03/17/2009] [Accepted: 04/09/2009] [Indexed: 11/19/2022]
Abstract
This report summarizes the proceedings of the symposium VII on the role of neuroactive steroids in stress/alcohol interactions. The production of GABAergic neuroactive steroids, including (3alpha,5alpha)-3-hydroxypregnan-20-one and (3alpha,5alpha)-3,21-dihydroxypregnan-20-one is a consequence of both acute stress and acute ethanol exposure. Acute, but not chronic ethanol administration elevates brain levels of these steroids and enhances GABA(A) receptor activity. Neuroactive steroids modulate acute anticonvulsant effects, sedation, spatial memory impairment, anxiolytic-like, antidepressant-like, and reinforcing properties of ethanol in rodents. Furthermore, these steroids participate in the homeostatic regulation of the hypothalamic-pituitary-adrenal axis. Therefore, it is not surprising that neuroactive steroids are involved in ethanol/stress interactions. Nevertheless, the interactions are complex and not well understood. This symposium addressed the role of neuroactive steroids in both stress and alcohol responses and their interactions. Professor Giovanni Biggio of the University of Cagliari, Italy presented the effects of juvenile isolation stress on neuroactive steroids, GABA(A) receptor expression, and ethanol sensitivity. Professor Howard Becker of the Medical University of South Carolina, USA presented evidence for neuroactive steroid involvement in ethanol dependence and drinking behavior. Professor Patrizia Porcu of the University of North Carolina, USA described a potential neuroactive steroid biomarker that may predict heavy drinking in monkeys and mice. These presentations provide a framework for new theories on the nature of ethanol/stress interactions that may be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gurkovskaya OV, Winsauer PJ. Discriminative stimulus effects of ethanol, pregnanolone, and dehydroepiandrosterone (DHEA) in rats administered ethanol or saline as adolescents. Pharmacol Biochem Behav 2009; 93:82-90. [PMID: 19393687 DOI: 10.1016/j.pbb.2009.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/17/2009] [Accepted: 04/18/2009] [Indexed: 10/20/2022]
Abstract
Adolescent alcohol use may produce long-term changes in the receptors and neurosteroids that putatively mediate alcohol's effects and consequently contribute to alcohol abuse and dependence as an adult. To test this possibility, ethanol (0.18-1.8 g/kg) and two neurosteroids, pregnanolone (1-10 mg/kg) and dehydroepiandrosterone (DHEA, 1-100 mg/kg), were administered alone and in combination to adult, male Long-Evans rats discriminating 1 g/kg ethanol (15% v/v) under a fixed ratio (FR) 20 schedule of food presentation after adolescent treatment with 15 injections of ethanol (n = 9, 2 g/kg, 20% v/v) or saline (n = 7). When compared as adults, ethanol-treated adolescents (as opposed to saline-treated adolescents) had higher percentages of ethanol-lever responding at doses smaller than the training dose, and higher response rates after both control and ethanol injections. Neither pregnanolone nor DHEA substituted for ethanol in either adolescent-treated group up to doses that substantially decreased response rates. When administered with ethanol, 1 and 3.2 mg/kg of pregnanolone enhanced the discriminative stimulus effects of small ethanol doses more in saline-treated adolescents than in ethanol-treated adolescents. Unlike pregnanolone, 32 and 100 mg/kg of DHEA attenuated the discriminative stimulus effects of ethanol modestly in both adolescent-treated groups. These results in adult rats suggest that adolescent ethanol administration can enhance the discriminative stimulus effects of small ethanol doses and affect the capacity of pregnanolone, but not DHEA, to interact with ethanol's discriminative stimulus effects.
Collapse
Affiliation(s)
- Olga V Gurkovskaya
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
19
|
Gurkovskaya OV, Leonard ST, Lewis PB, Winsauer PJ. Effects of pregnanolone and dehydroepiandrosterone on ethanol intake in rats administered ethanol or saline during adolescence. Alcohol Clin Exp Res 2009; 33:1252-64. [PMID: 19389187 DOI: 10.1111/j.1530-0277.2009.00951.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Adolescent alcohol use may contribute to long-term changes in the receptors and neuroactive steroids that may mediate its effects and to subsequent alcohol abuse and dependence as an adult. Therefore, in this study, ethanol preference and intake as an adult were examined after adolescent ethanol or saline administration. In addition, ethanol intake in the same groups was examined after administration of 2 neuroactive steroids with modulatory effects at GABA(A) receptors. METHODS Two groups of male Long-Evans rats were administered 15 intraperitoneal (i.p.) injections of either ethanol (2 g/kg, 20% v/v) or saline between postnatal days 35 and 63. Starting on postnatal day 75, both groups were trained to consume 10% ethanol using a saccharin-fading procedure, and ethanol intake and preference were measured after a series of manipulations involving food deprivation, changes in the duration of access to ethanol, and changes in the concentrations of ethanol presented. Following these manipulations, pregnanolone (1 to 10 mg/kg) and dehydroepiandrosterone (DHEA, 1 to 100 mg/kg) were administered prior to preference sessions with an 18% ethanol solution. RESULTS Adult ethanol preference and intake did not differ significantly in subjects treated with either saline or ethanol as adolescents during training, the substitution of other ethanol concentrations (3.2 to 32%), ad-lib feeding, or moderate food deprivation. Pregnanolone administration altered the intake of both adolescent-treated groups after the first injection of 3.2 mg/kg and after repeated injections with 10 mg/kg, a dose that produced sedation. In contrast, multiple doses of DHEA consistently decreased intake of an 18% ethanol concentration in both groups after repeated injections and 3 doses of DHEA (10, 32, and 56 mg/kg) administered with various ethanol concentrations dose-dependently shifted the ethanol-concentration curves for the volume and dosage of ethanol consumed downward. CONCLUSIONS These results indicate that chronic intermittent ethanol (CIE) administration of 2 g/kg during adolescence did not alter preference or overall consumption of ethanol in outbred rats trained to drink ethanol as an adult under the conditions tested, and that DHEA may be more effective than pregnanolone at significantly decreasing ethanol consumption.
Collapse
Affiliation(s)
- Olga V Gurkovskaya
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
20
|
Ford MM, Beckley EH, Nickel JD, Eddy S, Finn DA. Ethanol intake patterns in female mice: influence of allopregnanolone and the inhibition of its synthesis. Drug Alcohol Depend 2008; 97:73-85. [PMID: 18486362 PMCID: PMC2577122 DOI: 10.1016/j.drugalcdep.2008.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 03/11/2008] [Accepted: 03/16/2008] [Indexed: 11/16/2022]
Abstract
The neurosteroid allopregnanolone (ALLO) is a positive modulator of GABA(A) receptors that exhibits a psychopharmacological profile similar to ethanol (i.e., anxiolytic, sedative-hypnotic). Based on research suggesting that manipulation of ALLO levels altered ethanol self-administration in male rodents, the current studies determined whether exogenous ALLO administration or the inhibition of its synthesis in vivo modulated ethanol intake patterns in female C57BL/6J mice. Lickometer circuits collected temporal lick records of ethanol (10%, v/v) and water consumption during daily 2h limited access sessions. Following the establishment of stable ethanol intake, studies examined the effect of an acute ALLO challenge (3.2-24.0 mg/kg) or a 7-day blockade of ALLO production with finasteride (FIN; 50 or 100 mg/kg) on ethanol intake in a within-subjects design. In contrast to results in male mice, ethanol dose (g/kg), ethanol preference and most of the bout parameters were unaltered by ALLO pretreatment in female mice. Ethanol intake in females also was recalcitrant to 7-day treatment with 50 mg/kg FIN, whereas 100 mg/kg FIN significantly reduced the ethanol dose consumed by 35%. The FIN-attenuated ethanol intake was attributable to a significant decrease in bout frequency (up to 45%), with lick patterns indicating reduced maintenance of consumption throughout the 2-h session. FIN also produced a dose-dependent decrease in brain ALLO levels. In conjunction with data in male mice, the present findings indicate that there are sex differences in the physiological regulation of ethanol intake patterns by GABAergic neurosteroids.
Collapse
Affiliation(s)
- Matthew M. Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Ethan H. Beckley
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Jeffrey D. Nickel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Sarah Eddy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Deborah A. Finn
- Veterans Affairs Medical Research, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA,Corresponding author: Deborah A. Finn, Ph.D., VAMC Research (R&D-49), 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, phone: (503) 721-7984, FAX: (503) 273-5351,
| |
Collapse
|
21
|
Grant KA, Helms CM, Rogers LSM, Purdy RH. Neuroactive steroid stereospecificity of ethanol-like discriminative stimulus effects in monkeys. J Pharmacol Exp Ther 2008; 326:354-61. [PMID: 18436788 DOI: 10.1124/jpet.108.137315] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positive modulation of GABA(A) and antagonism of N-methyl-D-aspartate receptors mediate the discriminative stimulus effects of ethanol. Endogenous neuroactive steroids produce effects similar to ethanol, suggesting that these steroids may modulate ethanol addiction. The four isomers of the functional esters at C-3 of the 3-hydroxy metabolites of 4-pregnene-3,20-dione (progesterone) [allopregnanolone (3alpha,5alpha-P), pregnanolone (3alpha,5beta-P), epiallopregnanolone (3beta,5alpha-P), and epipregnanolone (3beta,5beta-P)], a synthetic analog of steroids modified by endogenous sulfation [pregnanolone hemisuccinate (3alpha,5beta-P HS)], and a structurally similar, adrenally derived steroid [3alpha-hydroxy-5-androstan-17-one (3alpha,5alpha-A, androsterone)] were assessed for ethanol-like discriminative stimulus effects at 30 or 60 min after administration in male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 or 2.0 g/kg ethanol (i.g.) with a 30-min pretreatment interval. The 3alpha-hydroxysteroids completely substituted for ethanol (80% of cases), whereas the 3beta-hydroxysteroids and 3alpha,5beta-P HS rarely substituted for ethanol (6% of cases). There were no sex differences. Compared with monkeys trained to discriminate 2.0 g/kg ethanol, 3alpha,5beta-P and 3alpha,5alpha-A substituted more potently in monkeys trained to discriminate 1.0 g/kg ethanol. Compared with the 5beta-reduced isomer (3alpha,5beta-P), the 5alpha isomer of pregnanolone (3alpha,5alpha-P) substituted for ethanol with 3 to 40-fold greater potency but was least efficacious in female monkeys trained to discriminate 2.0 g/kg ethanol. The data suggest that the discriminative stimulus effects of lower doses (1.0 g/kg) of ethanol are mediated to a greater extent by 3alpha,5beta-P- and 3alpha,5alpha-A-sensitive receptors compared with higher doses (2.0 g/kg). Furthermore, the discriminative stimulus effects of ethanol appear to be mediated by activity at binding sites that are particularly sensitive to 3alpha,5alpha-P.
Collapse
Affiliation(s)
- Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Beaverton, OR 97006-6448, USA.
| | | | | | | |
Collapse
|
22
|
Finn DA, Snelling C, Fretwell AM, Tanchuck MA, Underwood L, Cole M, Crabbe JC, Roberts AJ. Increased Drinking During Withdrawal From Intermittent Ethanol Exposure Is Blocked by the CRF Receptor Antagonist d-Phe-CRF(12?41). Alcohol Clin Exp Res 2007; 31:939-49. [PMID: 17403068 DOI: 10.1111/j.1530-0277.2007.00379.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Studies in rodents have determined that intermittent exposure to alcohol vapor can increase subsequent ethanol self-administration, measured with operant and 2-bottle choice procedures. Two key procedural factors in demonstrating increased alcohol intake are the establishment of stable alcohol self-administration before alcohol vapor exposure and the number of bouts of intermittent vapor exposure. The present studies provide additional behavioral validation and initial pharmacological validation of this withdrawal-associated drinking procedure. METHODS Studies at 2 different sites (Portland and Scripps) examined the effect of intermittent ethanol vapor exposure (3 cycles of 16 hours of ethanol vapor+8 hours air) on 2-hour limited access ethanol preference drinking in male C57BL/6 mice. Separate studies tested 10 or 15% (v/v) ethanol concentrations, and measured intake during the circadian dark. In one study, before measuring ethanol intake after the second bout of intermittent vapor exposure, mice were tested for handling-induced convulsions (HICs) indicative of physical dependence on ethanol. In a second study, the effect of bilateral infusions of the corticotropin-releasing factor (CRF) receptor antagonist D-Phe-CRF(12-41) (0.25 microg/0.5 microL) into the central nucleus of the amygdala (CeA) on ethanol intake was compared in vapor-exposed animals and air controls. RESULTS Intermittent ethanol vapor exposure significantly increased ethanol intake by 30 to 40%, and the mice had higher blood ethanol concentrations than controls. Intra-amygdala infusions of D-Phe-CRF(12-41) significantly decreased the withdrawal-associated increase in ethanol intake without altering ethanol consumption in controls. Following the second bout of intermittent vapor exposure, mice exhibited an increase in HICs, when compared with their own baseline scores or the air controls. CONCLUSIONS Intermittent alcohol vapor exposure significantly increased alcohol intake and produced signs of physical dependence. Initial pharmacological studies suggest that manipulation of the CRF system in the CeA can block this increased alcohol intake.
Collapse
Affiliation(s)
- Deborah A Finn
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Medical Center, Oregon, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S. Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmacol Ther 2007; 116:35-57. [PMID: 17524487 PMCID: PMC2047817 DOI: 10.1016/j.pharmthera.2007.03.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 11/20/2022]
Abstract
Neuroactive steroids have some of their most potent actions by augmenting the function of GABA(A) receptors. Endogenous steroid actions on GABA(A) receptors may underlie important effects on mood and behavior. Exogenous neuroactive steroids have potential as anesthetics, anticonvulsants, and neuroprotectants. We have taken multiple approaches to understand more completely the interaction of neuroactive steroids with GABA(A) receptors. We have developed many novel steroid analogues in this effort. Recent work has resulted in synthesis of new enantiomer analogue pairs, novel ligands that probe various properties of the steroid pharmacophore, fluorescent neuroactive steroid analogues, and photoaffinity labels. Using these tools, combined with receptor binding and electrophysiological assays, we have begun to untangle the complexity of steroid actions at this important class of ligand-gated ion channel.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Molecular Biology & Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Charles F. Zorumski
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Steven Mennerick
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
24
|
Martinetti MP, Lowery EG, Vona SR, Wichnick AM, Adler RA, Finch DG. Limited-access consumption of ascending ethanol concentrations in alcohol-preferring, nonpreferring, and Sprague-Dawley rats. Alcohol Clin Exp Res 2006; 30:836-43. [PMID: 16634852 DOI: 10.1111/j.1530-0277.2006.00098.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ethanol intake and preference differences between the selectively bred alcohol-preferring (P) and nonpreferring (NP) rats have generally been studied in a continuous-access paradigm using 10% ethanol. Little is known about the consumption of lower concentrations of ethanol in these lines or consumption of a wide range of ethanol concentrations in limited-access paradigms. Recently, limited-access paradigms have been used to study the biological and pharmacological mechanisms of ethanol consumption in animal models. Such research would be informed by studies investigating ethanol oral self-administration within a limited-access context. Therefore, the current study addressed P, NP, and Sprague-Dawley (SD) rats' consumption of a wide range of ethanol concentrations in a 2-bottle-choice, limited-access procedure. METHODS Male P, NP, and SD rats were given concurrent access to water and ethanol solutions for 1 h/d, 7 d/wk. Ethanol solutions were presented in an ascending series ranging from 0.01 to 20% (v/v) over 55 days. Ethanol intakes (g/kg), volumes of solutions consumed (mL/kg), and preference ratios were assessed for each rat line at each concentration. RESULTS Clear differences among the 3 types of rats emerged at an ethanol concentration of 4%, although differences between P and NP rats emerged at concentrations as low as 1.8%. Alcohol-preferring rats almost exclusively preferred ethanol solutions over water at ethanol concentrations of 4% and above, whereas SD and NP rats' preference ratios were more variable. CONCLUSIONS The results suggest that differences between P and NP rats exist at ethanol concentrations lower than those previously studied in continuous-access paradigms. They also provide a current description of the ranges of ethanol concentrations preferred by P, NP, and SD rats.
Collapse
Affiliation(s)
- Margaret P Martinetti
- Department of Psychology, The College of New Jersey, Ewing, New Jersey 08628-0718, USA.
| | | | | | | | | | | |
Collapse
|