1
|
Zhang Y, Chen Y, Xin Y, Peng B, Liu S. Norepinephrine system at the interface of attention and reward. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110751. [PMID: 36933778 DOI: 10.1016/j.pnpbp.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Reward learning is key to survival for individuals. Attention plays an important role in the rapid recognition of reward cues and establishment of reward memories. Reward history reciprocally guides attention to reward stimuli. However, the neurological processes of the interplay between reward and attention remain largely elusive, due to the diversity of the neural substrates that participate in these two processes. In this review, we delineate the complex and differentiated locus coeruleus norepinephrine (LC-NE) system in relation to different behavioral and cognitive substrates of reward and attention. The LC receives reward related sensory, perceptual, and visceral inputs, releases NE, glutamate, dopamine and various neuropeptides, forms reward memories, drives attentional bias and selects behavioral strategies for reward. Preclinical and clinical studies have found that abnormalities in the LC-NE system are involved in a variety of psychiatric conditions marked by disturbed functions in reward and attention. Therefore, we propose that the LC-NE system is an important hub in the interplay between reward and attention as well as a critical therapeutic target for psychiatric disorders characterized by compromised functions in reward and attention.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Yan Chen
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Yushi Xin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Beibei Peng
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.
| |
Collapse
|
2
|
Starski P, Hong S, Peyton L, Oliveros A, Wininger K, Hutchison C, Kang S, Karpyak V, Choi D. Ethanol induces maladaptive impulse control and decreased seeking behaviors in mice. Addict Biol 2020; 25:e12754. [PMID: 31012186 DOI: 10.1111/adb.12754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
Waiting impulsivity is a risk factor for many psychiatric disorders including alcohol use disorder (AUD). Highly impulsive individuals are vulnerable to alcohol abuse. However, it is not well understood whether chronic alcohol use increases the propensity for impulsive behavior. Here, we establish a novel experimental paradigm demonstrating that continuous binge-like ethanol exposure progressively leads to maladaptive impulsive behavior. To test waiting impulsivity, we employed the 5-choice serial reaction time task (5-CSRTT) in C57BL/6J male mice. We assessed premature responses in the fixed and variable intertrial interval (ITI) 5-CSRTT sessions. We further characterized our ethanol-induced impulsive mice using Open Field, y-maze, two-bottle choice, and an action-outcome task. Our results indicate that continuous binge-like ethanol exposure significantly increased premature responses when mice were tested in variable ITI sessions even during a prolonged abstinent period. Ethanol-induced impulsive mice exhibited anxiety-like behavior during chronic exposures. This behavior was also observed in a separate cohort that was subjected to 20 days of abstinence. Ethanol-treated mice were less motivated for a sucrose reward compared with air-exposed control mice, while also demonstrating reduced responding during action-outcome testing. Overall, ethanol-treated mice demonstrated increased impulsive behavior, but a reduced motivation for a sucrose reward. Although waiting impulsivity has been hypothesized to be a trait or risk factor for AUD, our findings indicate that maladaptive impulse control can also be potentiated or induced by continuous chronic ethanol exposure in mice.
Collapse
Affiliation(s)
- Phillip Starski
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Sa‐Ik Hong
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Alfredo Oliveros
- Department of Neurological SurgeryMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Katheryn Wininger
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Colleen Hutchison
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Victor Karpyak
- Department of Psychiatry and PsychologyMayo Clinic College of Medicine Rochester Rochester Minnesota
| | - Doo‐Sup Choi
- Neuroscience ProgramMayo Clinic College of Medicine Rochester Rochester Minnesota
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic College of Medicine Rochester Rochester Minnesota
- Department of Psychiatry and PsychologyMayo Clinic College of Medicine Rochester Rochester Minnesota
| |
Collapse
|
3
|
Messanvi F, Perkins A, du Hoffmann J, Chudasama Y. Fronto-temporal galanin modulates impulse control. Psychopharmacology (Berl) 2020; 237:291-303. [PMID: 31705163 PMCID: PMC7024046 DOI: 10.1007/s00213-019-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
RATIONALE The neuropeptide galanin has been implicated in a wide range of pathological conditions in which frontal and temporal structures are compromised. It works through three subtypes of G-protein-coupled receptors. One of these, the galanin receptor 1 (Gal-R1) subtype, is densely expressed in the ventral hippocampus (vHC) and ventral prefrontal cortex (vPFC); two brain structures that have similar actions on behavioral control. We hypothesize that Gal-R1 contributes to cognitive-control mechanisms that require hippocampal-prefrontal cortical circuitry. OBJECTIVE To examine the effect of local vHC and vPFC infusions of M617, a Gal-R1 agonist, on inhibitory mechanisms of response control. METHODS Different cohorts of rats were implanted with bilateral guide cannulae targeting the vPFC or the vHC. Following infusion of the Gal-R1 agonist, we examined the animals' behavior using a touchscreen version of the 5-choice reaction time task (5-choice task). RESULTS The Gal-R1 agonist produced opposing behaviors in the vPFC and vHC, leading to disruption of impulse control when infused in the vPFC but high impulse control when infused into the vHC. This contrast between areas was accentuated when we added variability to the timing of the stimulus, which led to long decision times and reduced accuracy in the vPFC group but a general improvement in performance accuracy in the vHC group. CONCLUSIONS These results provide the first evidence of a selective mechanism of Gal-R1-mediated modulation of impulse control in prefrontal-hippocampal circuitry.
Collapse
Affiliation(s)
- F Messanvi
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA.
| | - A Perkins
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - J du Hoffmann
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Y Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. Eur J Pharmacol 2018; 835:162-168. [PMID: 30092180 PMCID: PMC6140347 DOI: 10.1016/j.ejphar.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022]
Abstract
Early philosophers and psychologists defined and began to describe attention. Beginning in the 1950's, numerous models of attention were developed. This corresponded with an increased understanding of pharmacological approaches to manipulate neurotransmitter systems. The present review focuses on the knowledge that has been gained about these neurotransmitter systems with respect to attentional processing, with emphasis on the functions mediated within the medial prefrontal cortex. Additionally, the use of pharmacotherapies to treat psychiatric conditions characterized by attentional dysfunction are discussed. Future directions include developing a more comprehensive understanding of the neural mechanisms underlying attentional processing and novel pharmacotherapeutic targets for conditions characterized by aberrant attentional processing.
Collapse
Affiliation(s)
- Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA.
| | - Sarah A Blumenthal
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - Eden B Maness
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
5
|
Mony TJ, Hong M, Lee HJ. Empathy Study in Rodent Model of Autism Spectrum Disorders. Psychiatry Investig 2018; 15:104-110. [PMID: 29475229 PMCID: PMC5900397 DOI: 10.30773/pi.2017.06.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/14/2017] [Accepted: 06/20/2017] [Indexed: 11/27/2022] Open
Abstract
There is a highly cognitive and social context to empathy behavior in human. In various social contexts, rodents also display remarkable affective sensitivity and exhibit primitive forms of empathy similar to human. Therefore, we aimed to elaborate the concept of empathy about various components of empathetic behavior in rodents with the similar contexts of a human. In this review, we highlighted the behavioral paradigm that already examined different aspects of rodent empathetic behavior in response to conspecific distress. Additionally, we summarized homologous brain parts of human and rodents to express the empathetic behavior. Integrating the findings with corresponding experiments in the human will provide a novel insight into therapeutic intervention or expanded experimental approaches for neuropsychiatric disorders like autism spectrum disorders associated with empathetic behavior.
Collapse
Affiliation(s)
- Tamanna Jahan Mony
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Minha Hong
- Department of Psychiatry, School of Medicine, Seonam University, Goyang, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Huang H, Guadagna S, Mereu M, Ciampoli M, Pruzzo G, Ballard T, Papaleo F. A schizophrenia relevant 5-Choice Serial Reaction Time Task for mice assessing broad monitoring, distractibility and impulsivity. Psychopharmacology (Berl) 2017; 234:2047-2062. [PMID: 28378204 DOI: 10.1007/s00213-017-4611-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
The 5-Choice Serial Reaction Time Task (5-CSRTT) is an automated test for rodents allowing the assessment of multiple cognitive measures. Originally designed to assess cognitive deficits relevant to attention deficit hyperactivity disorder, it has been widely used in the investigation of neural systems of attention. In the current study, we have set up a modified version, which reduced the training phase to only 8-9 days with minimal food deprivation and without single-housing. Furthermore, based on evidence that patients with schizophrenia are more impaired in broad monitoring abilities than in sustained attention, we successfully developed a protocol replicating the Spatial Attentional Resource Allocation Task (SARAT), used in humans to assess broad monitoring. During this task, when the target appeared at a single pre-cued location, mice selectively responded faster. Instead, increasing the number of validly cued locations proportionately decreased accuracy. We then validated a protocol which is relevant for neuropsychiatric disorders in which additional irrelevant pre-cue lights selectively disrupted attention (distractibility). Finally, we improved previously used protocols changing inter-trial intervals from 5 to 7 s by randomly presenting this shift only in 20% of the trials. This resulted in a selective effect on premature responses (impulsivity), with important implications for schizophrenia as well as for other mental disorders. Therefore, this revised 5-CSRTT reduced training and stress on the animals while selectively measuring different cognitive functions with translational validity to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Huiping Huang
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Simone Guadagna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Maddalena Mereu
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo Meneghetti, 2, 35131, Padova, Italy
| | - Mariasole Ciampoli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Giacomo Pruzzo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Theresa Ballard
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
7
|
Fitzpatrick CM, Caballero-Puntiverio M, Gether U, Habekost T, Bundesen C, Vangkilde S, Woldbye DPD, Andreasen JT, Petersen A. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task. Psychopharmacology (Berl) 2017; 234:845-855. [PMID: 28070619 DOI: 10.1007/s00213-016-4520-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds and other parameters of attentional capacity. OBJECTIVES We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. METHODS C57BL/6 mice were tested in two 1-h sessions on consecutive days with a version of the 5-CSRTT where stimulus duration (SD) probe length was varied based on information from previous TVA studies. Thereafter, a scopolamine hydrobromide (HBr; 0.125 or 0.25 mg/kg) pharmacological challenge was undertaken, using a Latin square design. Mean score values were modelled using a new three-parameter version of TVA to obtain estimates of visual processing speeds, visual thresholds and motor response baselines in each mouse. RESULTS The parameter estimates for each animal were reliable across sessions, showing that the data were stable enough to support analysis on an individual level. Scopolamine HBr dose-dependently reduced 5-CSRTT attentional performance while also increasing reward collection latency at the highest dose. Upon TVA modelling, scopolamine HBr significantly reduced visual processing speed at both doses, while having less pronounced effects on visual thresholds and motor response baselines. CONCLUSIONS This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies.
Collapse
Affiliation(s)
- C M Fitzpatrick
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - M Caballero-Puntiverio
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - U Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - T Habekost
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| | - C Bundesen
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| | - S Vangkilde
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| | - D P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, 3 Blegdamsvej, 2200, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - A Petersen
- Center for Visual Cognition, Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark
| |
Collapse
|
8
|
Caballero-Puntiverio M, Fitzpatrick CM, Woldbye DP, Andreasen JT. Effects of amphetamine and methylphenidate on attentional performance and impulsivity in the mouse 5-Choice Serial Reaction Time Task. J Psychopharmacol 2017; 31:272-283. [PMID: 28093027 DOI: 10.1177/0269881116684339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Few studies have investigated the effects of conventional attention deficit-hyperactivity disorder (ADHD) medication in the mouse 5-choice serial reaction time task (5-CSRTT), and rat studies have yielded inconsistent results. OBJECTIVE We aimed to examine the effects of acute methylphenidate (MPH) and amphetamine (AMPH) treatment in the mouse 5-CSRTT. METHODS Trained male C57Bl/6J mice were tested in a variable stimulus duration schedule. Effects of AMPH (0.25, 0.5, and 1 mg/kg) and MPH (0.5, 1.0, and 2.0 mg/kg) on discriminative accuracy, omissions, and premature responses were assessed. Saline treatment data determined high- and low-attentive (LA), and high- and low-impulsive (LI) subgroups according to the upper and lower 30th percentiles, respectively. RESULTS In the LA subgroup accuracy was improved by 0.5 mg/kg AMPH and 2 mg/kg MPH, while no effect was found in the high-attentive (HA) subgroup. Premature responses were increased by 1 mg/kg AMPH and 0.5 mg/kg MPH for all animals, and by 1 mg/kg AMPH for the LI subgroup. CONCLUSIONS The use of variable stimulus duration, along with the division into high- and LA, and high-and LI subgroups, may improve the sensitivity of the 5-CSRTT when investigating drug effects on attention and impulsivity.
Collapse
Affiliation(s)
| | | | - David Pd Woldbye
- 2 Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
10
|
Abstract
The ability to attend to relevant stimuli and to adapt dynamically as demands change is a core aspect of cognition, and one that is impaired in several neuropsychiatric diseases, including attention deficit/hyperactivity disorder. However, the cellular and molecular mechanisms underlying such cognitive adaptability are poorly understood. We found that deletion of the caspase-3 gene, encoding an apoptosis protease with newly discovered roles in neural plasticity, disrupts attention in mice while preserving multiple learning and memory capabilities. Attention-related deficits include distractibility, impulsivity, behavioral rigidity, and reduced habituation to novel stimuli. Excess exploratory activity in Casp3(-/-) mice was correlated with enhanced novelty-induced activity in the dentate gyrus, which may be related to our findings that caspase-3 is required for homeostatic synaptic plasticity in vitro and homeostatic expression of AMPA receptors in vivo in response to chronic or repeated stimuli. These results suggest an important role for caspase-3 in synaptic suppression of irrelevant stimuli.
Collapse
|
11
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
D'Amore DE, Tracy BA, Parikh V. Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology 2013; 75:312-23. [DOI: 10.1016/j.neuropharm.2013.07.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023]
|
13
|
Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behav Brain Res 2012; 238:134-45. [PMID: 23103711 DOI: 10.1016/j.bbr.2012.10.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The addictive nature of nicotine remains a global health problem. Despite the availability of treatments for smoking cessation, relapse to smoking after quit attempts still remains very high. Here, we evaluated the effects of chronic nicotine in male C57BL/6J mice in an operant cognitive flexibility task that required the animals to progress sequentially through multiple phases including visual discrimination, strategy shifting and response reversal. As frontostriatal circuits involving discrete regions of dorsal striatum contribute directly to decision-making processes, and BDNF modulates synaptic plasticity and learning, we also assessed the effects of nicotine on striatal BDNF expression. Osmotic minipumps containing either of the two doses of nicotine (low: 6.3 mg/kg/day; high: 18 mg/kg/day) or saline (control) were implanted for chronic delivery that lasted 4 weeks. Nicotine-treated mice exhibited greater response accuracy during visual discrimination. Neither dose of nicotine affected learning of new egocentric response strategy during set-shifting. However, higher but not lower dose of nicotine impaired reversal learning by increasing perseverative responding to the previously non-reinforced stimulus. Furthermore, this effect was associated with reduced BDNF levels in the dorsal striatum. Collectively, these findings suggest that higher relapse rates often observed in high nicotine-dependent smokers may be attributed to impairments in inhibitory control processes. Moreover, striatal BDNF may play a critical role in nicotine-induced alterations in cognitive flexibility.
Collapse
|
14
|
Sanchez-Roige S, Peña-Oliver Y, Stephens DN. Measuring impulsivity in mice: the five-choice serial reaction time task. Psychopharmacology (Berl) 2012; 219:253-70. [PMID: 22089700 DOI: 10.1007/s00213-011-2560-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/24/2011] [Indexed: 02/05/2023]
Abstract
RATIONALE Mice are useful tools for dissecting genetic and environmental factors in relation to the study of attention and impulsivity. The five-choice serial reaction time task (5CSRTT) paradigm has been well established in rats, but its transferability to mice is less well documented. OBJECTIVES This study aims to summarise the main results of the 5CSRTT in mice, with special focus on impulsivity. METHODS The 5CSRTT can be used to explore aspects of both attentional and inhibitory control mechanisms. RESULTS Different manipulations of the task parameters can lead to different results; adjusting the protocol as a function of the main variable of interest or the standardisation of the protocol to be applied to a large set of strains will be desirable. CONCLUSIONS The 5CSRTT has proven to be a useful tool to investigate impulsivity in mice.
Collapse
|
15
|
Sargin D, El-Kordi A, Agarwal A, Müller M, Wojcik SM, Hassouna I, Sperling S, Nave KA, Ehrenreich H. Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice. BMC Biol 2011; 9:27. [PMID: 21527022 PMCID: PMC3120735 DOI: 10.1186/1741-7007-9-27] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/28/2011] [Indexed: 12/14/2022] Open
Abstract
Background Erythropoietin (EPO) and its receptor (EPOR) are expressed in the developing brain and their transcription is upregulated in adult neurons and glia upon injury or neurodegeneration. We have shown neuroprotective effects and improved cognition in patients with neuropsychiatric diseases treated with EPO. However, the critical EPO targets in brain are unknown, and separation of direct and indirect effects has remained difficult, given the role of EPO in hematopoiesis and brain oxygen supply. Results Here we demonstrate that mice with transgenic expression of a constitutively active EPOR isoform (cEPOR) in pyramidal neurons of cortex and hippocampus exhibit enhancement of spatial learning, cognitive flexibility, social memory, and attentional capacities, accompanied by increased impulsivity. Superior cognitive performance is associated with augmented long-term potentiation of cEPOR expressing neurons in hippocampal slices. Conclusions Active EPOR stimulates neuronal plasticity independent of any hematopoietic effects and in addition to its neuroprotective actions. This property of EPOR signaling should be exploited for defining novel strategies to therapeutically enhance cognitive performance in disease conditions.
Collapse
Affiliation(s)
- Derya Sargin
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010; 11:490-502. [PMID: 20559336 PMCID: PMC3087436 DOI: 10.1038/nrn2851] [Citation(s) in RCA: 1119] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100-150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of autism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders.
Collapse
Affiliation(s)
- Jill L Silverman
- National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD 20892-3730, USA
| | | | | | | |
Collapse
|
17
|
Galanin impairs cognitive abilities in rodents: relevance to Alzheimer's disease. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:133-41. [PMID: 21299066 DOI: 10.1007/978-3-0346-0228-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The neuropeptide galanin and its receptors are localized in brain pathways that mediate learning and memory. Central microinjection of galanin impairs performance of a variety of cognitive tasks in rats. Transgenic mice overexpressing galanin display deficits in some learning and memory tests. The inhibitory role of galanin in cognitive processes, taken together with the fact that overexpression of galanin occurs in Alzheimer's disease, suggests that galanin antagonists may offer a novel therapeutic approach to treat memory loss in patients suffering from Alzheimer's.
Collapse
|
18
|
El-Kordi A, Radyushkin K, Ehrenreich H. Erythropoietin improves operant conditioning and stability of cognitive performance in mice. BMC Biol 2009; 7:37. [PMID: 19586522 PMCID: PMC2715378 DOI: 10.1186/1741-7007-7-37] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 07/08/2009] [Indexed: 01/25/2023] Open
Abstract
Background Executive functions, learning and attention are imperative facets of cognitive performance, affected in many neuropsychiatric disorders. Recently, we have shown that recombinant human erythropoietin improves cognitive functions in patients with chronic schizophrenia, and that it leads in healthy mice to enhanced hippocampal long-term potentiation, an electrophysiological correlate of learning and memory. To create an experimental basis for further mechanistic insight into erythropoietin-modulated cognitive processes, we employed the Five Choice Serial Reaction Time Task. This procedure allows the study of the effects of erythropoietin on discrete processes of learning and attention in a sequential fashion. Results Male mice were treated for 3 weeks with erythropoietin (5,000 IU/kg) versus placebo intraperitoneally every other day, beginning at postnatal day 28. After termination of treatment, mice were started on the Five Choice Serial Reaction Time Task, with daily training and testing extending to about 3 months. Overall, a significantly higher proportion of erythropoietin-treated mice finished the task, that is, reached the criteria of adequately reacting to a 1.0 sec flash light out of five arbitrarily appearing choices. During acquisition of this capability, that is, over almost all sequential training phases, learning readouts (magazine training, operant and discriminant learning, stability of performance) were superior in erythropoietin-treated versus control mice. Conclusion Early erythropoietin treatment leads to lasting improvement of cognitive performance in healthy mice. This finding should be exploited in novel treatment strategies for brain diseases.
Collapse
Affiliation(s)
- Ahmed El-Kordi
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | | |
Collapse
|
19
|
Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 2009; 10:519-29. [DOI: 10.1038/nrn2652] [Citation(s) in RCA: 430] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Dillon GM, Shelton D, McKinney AP, Caniga M, Marcus JN, Ferguson MT, Kornecook TJ, Dodart JC. Prefrontal cortex lesions and scopolamine impair attention performance of C57BL/6 mice in a novel 2-choice visual discrimination task. Behav Brain Res 2009; 204:67-76. [PMID: 19416740 DOI: 10.1016/j.bbr.2009.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/22/2009] [Accepted: 04/27/2009] [Indexed: 11/18/2022]
Abstract
Sustained attention is defined as the ability or capacity to remain focused on the occurrence of rare events over long periods of time. We describe here the development of a novel, operant-based attention task that can be learned by mice in 8-10 days. Mice were trained on a 2-choice visual discrimination task in an operant chamber, wherein the correct response on any given trial was a lever-press cued by a stimulus light. Upon reaching a criterion of greater than 80% correct responses, all subjects were tested in a mixed-trial attention paradigm combining four different stimulus durations within a single session (0.5, 1, 2, or 10 s). During attention testing, the percentage of correct responses decreased as a function of stimulus duration, indicating a performance decrement which parallels increasing attentional demand within the task. Pretreatment with the muscarinic-receptor antagonist scopolamine yielded a reliable, dose-dependent performance deficit whereas nicotine treatment improved the percentage of correct responses during trials with the greatest attentional demand. Moreover, medial prefrontal cortex lesions impaired attention performance without affecting acquisition or retention of the discrimination rule. These results underscore the utility of this task as a novel means of assessing attentional processes in mice in a relatively high-throughput manner.
Collapse
Affiliation(s)
- Gregory M Dillon
- Merck Research Laboratories, CNS Pharmacology, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The neuropeptide galanin and its receptors are localized in brain pathways mediating learning and memory. Central microinjection of galanin impairs performance of a variety of cognitive tasks in rats. Transgenic mice overexpressing galanin display deficits in some learning and memory tests. The inhibitory role of galanin in cognitive processes, taken together with the overexpression of galanin in Alzheimer's disease, suggests that galanin antagonists may offer a novel therapeutic approach to treat memory loss in Alzheimer's patients.
Collapse
Affiliation(s)
- J N Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Porter Neuroscience Research, Center Building 35, Room 1C-903, Mail Code 3730, Bethesda, Maryland 20892-3730, USA.
| |
Collapse
|
22
|
Abstract
Comprehensive behavioral analyses of transgenic and knockout mice have successfully identified the functional roles of many genes in the brain. Over the past 10 years, strategies for mouse behavioral phenotyping have evolved to maximize the scope and replicability of findings from a cohort of mutant mice, minimize the interpretation of procedural artifacts, and provide robust translational tools to test hypotheses and develop treatments. This Primer addresses experimental design issues and offers examples of high-throughput batteries, learning and memory tasks, and anxiety-related tests.
Collapse
Affiliation(s)
- Jacqueline N Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| |
Collapse
|
23
|
Adams AC, Clapham JC, Wynick D, Speakman JR. Feeding behaviour in galanin knockout mice supports a role of galanin in fat intake and preference. J Neuroendocrinol 2008; 20:199-206. [PMID: 18088361 DOI: 10.1111/j.1365-2826.2007.01638.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been widely suggested that saturated fat consumption has fuelled the current obesity epidemic. Macronutrient choices appear to be important not only as potential factors influencing obesity, but also independently as risk factors for diabetes, cardiovascular disease and cancer. The neuropeptide galanin has previously been implicated in the regulation of fat intake, although its precise role has been contested. The present study investigated mice with targeted knockout of the galanin gene (GKO). We demonstrate that, when only a high fat diet (HFD) was available, wild-type (WT) animals consumed significantly more energy than the GKO mice (89.85 +/- 4.57 kJ/day versus 76.84 +/- 3.55 kJ/day, P < 0.001, n = 17 versus 15). Consistent with this, WT animals gained more body weight when fed the HFD than GKO animals (3.48 +/- 0.44 g versus 2.02 +/- 0.62 g, P < 0.001, n = 17 versus 15). In a macronutrient choice scenario, WT mice ate almost three-fold more fat than GKO animals (0.63 +/- 0.02 g versus 0.23 +/- 0.01 g, P < 0.001, n = 18 versus 24). Chronic administration of galanin by mini-osmotic pumps into the lateral ventricle of GKO animals partially reversed the fat avoidance phenotype. Fat intake was significantly lower in the phosphate-buffered saline-treated GKO group compared to galanin-treated GKO animals (0.32 +/- 0.01 g versus 0.38 +/- 0.01 g, P < 0.005, n = 17 versus 17). These data are compatible with the hypothesis that galanin specifically regulates fat intake, and implies that an antagonist to one or more of the galanin receptor subtype(s) may be of use in the treatment of some forms of obesity.
Collapse
Affiliation(s)
- A C Adams
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
24
|
de Bruin NMWJ, Fransen F, Duytschaever H, Grantham C, Megens AAHP. Attentional performance of (C57BL/6Jx129Sv)F2 mice in the five-choice serial reaction time task. Physiol Behav 2006; 89:692-703. [PMID: 16987534 DOI: 10.1016/j.physbeh.2006.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022]
Abstract
Impaired attention is evident in several neurological and psychiatric disorders. In the present study, attentional capabilities were measured in the operant five-choice serial reaction time task (5-CSRTT) in male (C57BL/6Jx129Sv)F2 hybrid (B6129F2) mice. Main aims were to validate and standardize the test in these mice: to setup procedures, measure potential beneficial effects of sub-chronic nicotine in degraded versions of the 5-CSRTT (by decreasing stimulus duration, inducing white noise and making the stimuli unpredictable) and study disruptive effects of additional administration of the muscarinic antagonist scopolamine. During the baseline pre-nicotine sessions, the B6129F2 mice attained a very good performance in the test (95% accuracy). As stimulus duration was reduced from 2 s to 1 s, response accuracy of the mice decreased. Mice treated with nicotine (0.16 mg/kg) attained significantly higher response accuracy and had a lower percentage of incorrect responses in comparison with the solvent-treated animals. No further beneficial effects of nicotine were found. Reduced response accuracy was also obtained when stimulus duration was reduced from 1 s to 0.5 s and when a variable intertrial interval was introduced. Noise interpolation between trials did not impair performance. Finally, scopolamine (0.16 mg/kg) disrupted attentional functioning. Although most studies have been performed in rats, these results add to the existing evidence that the 5-CSRTT can also be used to assess attentional performance in mice. This offers the opportunity to test transgenic and knockout mice with similar background as the B6129F2 as animal models of psychiatric and neurological diseases.
Collapse
Affiliation(s)
- N M W J de Bruin
- Johnson & Johnson Pharmaceutical Research and Development (J&J PRD), CNS Discovery Research, Belgium.
| | | | | | | | | |
Collapse
|