1
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
2
|
Langer E, Einat H, Stukalin Y. Similarities and dissimilarities in the effects of benzodiazepines and specific serotonin reuptake inhibitors (SSRIs) in the defensive marble burying test: A systematic review and meta-analysis. Eur Neuropsychopharmacol 2020; 36:38-49. [PMID: 32456852 DOI: 10.1016/j.euroneuro.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
One problem areas of animal models and tests for neuropsychiatric disorders is unclear reproducibility, including both internal and external validity. One way to examine external validity is with systematic reviews and meta-analyses, a standard practice in clinical research that is relatively neglected in preclinical research. Considering the need to evaluate the validity and reproducibility of frequently used animal models, this study presents a meta-analysis of the effects of prototypic benzodiazepines and specific serotonin reuptake inhibitors (SSRIs) in the mouse defensive marble burying test (MBT). These drug groups were selected because although they differ in their biological targets as well as in their clinical use, they are both commonly used for the treatment of anxiety disorders. A PubMed literature search was performed to identify studies that examined the effects of benzodiazepines (diazepam, alprazolam, chlordiazepoxide, clonazepam) or SSRIs (fluoxetine, citalopram, escitalopram, fluvoxamine, paroxetine) in the MBT in mice. For benzodiazepines, 73 experiments were included. Benzodiazepines effect size was 2.04 and Q statistics was 1959 with a significant correlation between dose and effect size (r = 0.31, p = 0.007). For SSRIs we identified 47 experiments. Effect size of SSRIs was 2.24 and Q statistics was 493.38. No correlation was found between dose and effect size (r = 0.23, p = 0.12). The current results support the external validity of the defensive marble burying test as a screening test for anxiolytic effects. However, these results indicate that significant attention should be given to the administration schedules of benzodiazepines and SSRIs.
Collapse
Affiliation(s)
- Erez Langer
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel.
| | - Yelena Stukalin
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| |
Collapse
|
3
|
Lustberg D, Iannitelli AF, Tillage RP, Pruitt M, Liles LC, Weinshenker D. Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of obsessive-compulsive disorder. Psychopharmacology (Berl) 2020; 237:1973-1987. [PMID: 32313981 PMCID: PMC7961804 DOI: 10.1007/s00213-020-05512-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Obsessive-compulsive disorder (OCD) is characterized by repetitive behaviors exacerbated by stress. Many OCD patients do not respond to available pharmacotherapies, but neurosurgical ablation of the anterior cingulate cortex (ACC) can provide symptomatic relief. Although the ACC receives noradrenergic innervation and expresses adrenergic receptors (ARs), the involvement of norepinephrine (NE) in OCD has not been investigated. OBJECTIVE To determine the effects of genetic or pharmacological disruption of NE neurotransmission on marble burying (MB) and nestlet shredding (NS), two animal models of OCD. METHODS We assessed NE-deficient (Dbh -/-) mice and NE-competent (Dbh +/-) controls in MB and NS tasks. We also measured the effects of anti-adrenergic drugs on NS and MB in control mice and the effects of pharmacological restoration of central NE in Dbh -/- mice. Finally, we compared c-fos induction in the locus coeruleus (LC) and ACC of Dbh -/- and control mice following both tasks. RESULTS Dbh -/- mice virtually lacked MB and NS behaviors seen in control mice but did not differ in the elevated zero maze (EZM) model of general anxiety-like behavior. Pharmacological restoration of central NE synthesis in Dbh -/- mice completely rescued NS behavior, while NS and MB were suppressed in control mice by anti-adrenergic drugs. Expression of c-fos in the ACC was attenuated in Dbh -/- mice after MB and NS. CONCLUSION These findings support a role for NE transmission to the ACC in the expression of stress-induced compulsive behaviors and suggest further evaluation of anti-adrenergic drugs for OCD is warranted.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
de Brouwer G, Fick A, Lombaard A, Stein DJ, Harvey BH, Wolmarans DW. Large nest building and high marble-burying: Two compulsive-like phenotypes expressed by deer mice (Peromyscus maniculatus bairdii) and their unique response to serotoninergic and dopamine modulating intervention. Behav Brain Res 2020; 393:112794. [PMID: 32619566 DOI: 10.1016/j.bbr.2020.112794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to further dissect the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavior with respect to two persistent-like behavioral phenotypes viz. large nest building (LNB) and high marble-burying (HMB), which may be relevant to understanding the neurobiology of different symptom dimensions in obsessive-compulsive and related disorders. Since LNB is sensitive to chronic, high dose escitalopram intervention but HMB is not, we assessed whether the two behaviors could be further distinguished based on their response to 4 weeks of uninterrupted serotoninergic intervention (i.e. escitalopram; ESC; 50 mg/kg/day), dopaminergic antagonism, i.e. flupentixol; FLU; 0.9 mg/kg/day), dopaminergic potentiation (i.e. rasagiline; RAS; 5 mg/kg/day), and their respective combinations with escitalopram (ESC/FLU and ESC/RAS). Here we show LNB to be equally responsive to chronic ESC and ESC/FLU. HMB was insensitive to either of these interventions but was responsive to ESC/RAS. Additionally, we report that scoring preoccupied interaction with marbles over several trials is an appropriate measure of compulsive-like behavioral persistence in addition to the standard marble burying test. Taken together, these data provide further evidence that LNB and HMB in deer mice have distinctive neurobiological underpinnings. Thus, the naturally occurring compulsive-like behaviors expressed by deer mice may be useful in providing a platform to test unique treatment targets for different symptom dimensions of OCD and related disorders.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Arina Fick
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Ané Lombaard
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.
| |
Collapse
|
5
|
Jimenez Chavez CL, Coelho MA, Brewin LW, Swauncy I, Tran T, Albanese T, Laguna A, Gabriela I, Szumlinski KK. Incubation of Negative Affect during Protracted Alcohol Withdrawal Is Age-, but Not Sex-Selective. Brain Sci 2020; 10:brainsci10060405. [PMID: 32604806 PMCID: PMC7348966 DOI: 10.3390/brainsci10060405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
A prior history of excessive drinking induces a negative affective state in both humans and laboratory rodents, the manifestation of which varies with the age of drinking-onset. In adolescent male mice, negative affect incubates over the course of a 30-day alcohol withdrawal period. In contrast, the negative affect exhibited by adult male mice is robust at 1 day withdrawal, but dissipates with the passage of time. As females tend to consume more alcohol than males, we aimed to explore the affective disturbances exhibited by adolescent and adult C57BL/6J mice of both sexes during more protracted alcohol withdrawal and to relate any behavioral changes observed to plasma corticosterone levels as a biochemical index of stress. Male and female, adolescent and adult, mice were subjected to 14 consecutive days of binge alcohol-drinking using a multi-bottle-choice Drinking-in-the-Dark (DID) procedure (5, 10, 20 and 40% v/v). Age- and sex-matched control mice consumed water only. On either withdrawal day 1 or 70, subgroups of animals were subjected a to 1-day behavioral test battery that included the light–dark box shuttle test, marble-burying test, and Porsolt forced swim test. As expected, adolescent mice consumed more alcohol than adults and females consumed more alcohol than males. However, despite binge-like levels of alcohol consumption, we detected relatively few signs of alcohol withdrawal-induced negative affect and there was no correlation between affective behavior and circulating corticosterone levels. We discuss these findings within the context of our published work, highlighting procedural differences that might account for the relatively weak effect of binge-drinking history upon anxiety and depressive-like behavior observed herein.
Collapse
Affiliation(s)
- C. Leonardo Jimenez Chavez
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Lindsey W. Brewin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Isaiah Swauncy
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Tori Tran
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Taylor Albanese
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Angie Laguna
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
| | - Ivette Gabriela
- Department of Psychology, California State University Dominguez Hills, Carson, CA 90747-0001, USA;
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93196-9660, USA; (C.L.J.C.); (M.A.C.); (L.W.B.); (I.S.); (T.T.); (T.A.); (A.L.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-6050, USA
- Correspondence: ; Tel.: +1-805-893-2984
| |
Collapse
|
6
|
A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1-39. [PMID: 30361863 DOI: 10.3758/s13415-018-00653-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive-compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.
Collapse
|
7
|
Lee KM, Coehlo MA, Solton NR, Szumlinski KK. Negative Affect and Excessive Alcohol Intake Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, But Not Adult, Mice. Front Psychol 2017; 8:1128. [PMID: 28729845 PMCID: PMC5499357 DOI: 10.3389/fpsyg.2017.01128] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Binge-drinking is common in underage alcohol users, yet we know little regarding the biopsychological impact of binge-drinking during early periods of development. Prior work indicated that adolescent male C57BL6/J mice with a 2-week history of binge-drinking (PND28-41) are resilient to the anxiogenic effects of early alcohol withdrawal. Herein, we employed a comparable Drinking-in-the-Dark model to determine how a prior history of binge-drinking during adolescence (EtOHadolescents) influences emotionality (assayed with the light-dark box, marble burying test, and the forced swim test) and the propensity to consume alcohol in later life, compared to animals without prior drinking experience. For additional comparison, adult mice (EtOHadults) with comparable drinking history (PND56-69) were subdivided into groups tested for anxiety/drinking either on PND70 (24 h withdrawal) or PND98 (28 days withdrawal). Tissue from the nucleus accumbens shell (AcbSh) and central nucleus of the amygdala (CeA) was examined by immunoblotting for changes in the expression of glutamate-related proteins. EtOHadults exhibited some signs of hyperanxiety during early withdrawal (PND70), but not during protracted withdrawal (PND98). In contrast, EtOHadolescents exhibited robust signs of anxiety-l and depressive-like behaviors when tested as adults on PND70. While all alcohol-experienced animals subsequently consumed more alcohol than mice drinking for the first time, alcohol intake was greatest in EtOHadolescents. Independent of drinking age, the manifestation of withdrawal-induced hyperanxiety was accompanied by reduced Homer2b expression within the CeA and increased Group1 mGlu receptor expression within the AcbSh. The present data provide novel evidence that binge-drinking during adolescence produces a state characterized by profound negative affect and excessive alcohol consumption that incubates with the passage of time in withdrawal. These data extend our prior studies on the effects of subchronic binge-drinking during adulthood by demonstrating that the increase in alcoholism-related behaviors and glutamate-related proteins observed in early withdrawal dissipate with the passage of time. Our results to date highlight a critical interaction between the age of binge-drinking onset and the duration of alcohol withdrawal in glutamate-related neuroplasticity within the extended amygdala of relevance to the etiology of psychopathology, including pathological drinking, in later life.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michal A Coehlo
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Noah R Solton
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States.,Department of Molecular, Cellular and Developmental Biology and The Neuroscience Research Institute, University of California, Santa Barbara, Santa BarbaraCA, United States
| |
Collapse
|
8
|
Glennon RA. The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse. J Med Chem 2017; 60:2605-2628. [PMID: 28244748 DOI: 10.1021/acs.jmedchem.7b00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phenylalkylamine, particularly the phenylethylamine, moiety is a common structural feature found embedded in many clinically approved agents. Greater still is its occurrence in drugs of abuse. The simplest phenylethylamine, 2-phenylethylamine itself, is without significant central action when administered at moderate doses, but fairly simple structural modifications profoundly impact its pharmacology and result in large numbers of useful pharmacological tools, agents with therapeutic potential, and in drugs of abuse (e.g., hallucinogens, central stimulants, empathogens), the latter of which are the primary focus here. In vivo drug discrimination techniques and in vitro receptor/transporter methods have been applied to understand the actions of these phenylalkylamines and their mechanisms of action. Thus far, depending upon pendent substituents, certain receptors (e.g., serotonin receptors) and monoamine transporters (i.e., serotonin, dopamine, and norepinephrine transporters) have been implicated as playing major roles in the actions of these abused agents in a complex and, at times, interwoven manner.
Collapse
Affiliation(s)
- Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University , Richmond, Virginia 23298, United States
| |
Collapse
|
9
|
Dixit MP, Thakre PP, Pannase AS, Aglawe MM, Taksande BG, Kotagale NR. Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. Eur J Pharmacol 2014; 732:26-31. [PMID: 24657463 DOI: 10.1016/j.ejphar.2014.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/04/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
Agmatine is a cationic amine formed by decarboxylation of l-arginine by the mitochondrial enzyme arginine decarboxylase and widely distributed in mammalian brain. Although the precise function of endogenous agmatine has been largely remained unclear, its exogenous administration demonstrated beneficial effects in several neurological and psychiatric disorders. This study was planned to examine the role of imidazoline binding sites in the anticompulsive-like effect of agmatine on marble-burying behavior. Agmatine (20 and 40mg/kg, ip), mixed imidazoline I1/α2 agonists clonidine (60µg/kg, ip) and moxonidine (0.25mg/kg, ip), and imidazoline I2 agonist 2- BFI (10mg/kg, ip) showed significant inhibition of marble burying behavior in mice. In combination studies, the anticompulsive-like effect of agmatine (10mg/kg, ip) was significantly potentiated by prior administration of moxonidine (0.25mg/kg, ip) or clonidine (30µg/kg,) or 2-BFI (5mg/kg, ip). Conversely, efaroxan (1mg/kg, ip), an I1 antagonist and idazoxan (0.25mg/kg, ip), an I2 antagonist completely blocked the anticompulsive-like effect of agmatine (10mg/kg, ip). These drugs at doses used here did not influence the basal locomotor activity in experimental animals. These results clearly indicated the involvement of imidazoline binding sites in anti-compulsive-like effect of agmatine. Thus, imidazoline binding sites can be explored further as novel therapeutic target for treatment of anxiety and obsessive compulsive disorders.
Collapse
Affiliation(s)
- Madhura P Dixit
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Prajwal P Thakre
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Akshay S Pannase
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Manish M Aglawe
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India.
| |
Collapse
|
10
|
Miño JH, Moscatelli V, Acevedo C, Ferraro G. Psychopharmacological effects of Artemisia copa aqueous extract in mice. PHARMACEUTICAL BIOLOGY 2010; 48:1392-1396. [PMID: 20738220 DOI: 10.3109/13880209.2010.486407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To evaluate the aqueous extract from aerial parts of Artemisia copa Phil. (Asteraceae) administered orallyfor its psychopharmacological activities in several experimental models. METHODS The extract was administered p.o. in Swiss albino mice and tested on pentobarbital-induced hypnosis, locomotor activity, exploration in the hole-board, anxiolytic like profile evaluated in the marble-burying test and anticonvulsant activity on convulsions induced by pentylenetetrazol. RESULTS Artemisia copa at doses up to 1.5 g/kg produced a dose-dependent sleep induction and potentiation of sub-hypnotic and hypnotic doses of pentobarbital. The extract also produced a dose-dependent increase and decrease in the spontaneous motor activity (0.5-1.5 g/kg, respectively), no disruption or a decrease on exploratory (hole-board) behavioral profiles (0.5-1.5 g/kg respectively) and a dose-related anxiolytic-like activity as indicated by increases in the percentage of marbles they left uncovered in the marble-burying test at doses (0.5 g/kg) that do not disrupt the motor activity. In addition, the extract (1.5 g/kg) produced a significant increase in the latency time and a decrease in the duration of seizures and mortality induced by PTZ 75 mg/kg in mice. CONCLUSION These results suggest that the aqueous extract of Artemisia copa may contain sedative principles with potential anxiolytic and anticonvulsant activities.
Collapse
Affiliation(s)
- Jorge Horacio Miño
- Cátedra de Farmacología; Departamento de Farmacología, Facultad de Farmacia y Bioquímica, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
11
|
Honda S, Kawaura K, Soeda F, Shirasaki T, Takahama K. The potent inhibitory effect of tipepidine on marble-burying behavior in mice. Behav Brain Res 2010; 216:308-12. [PMID: 20713091 DOI: 10.1016/j.bbr.2010.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/03/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
Abstract
Our previous study revealed that centrally acting non-narcotic antitussives inhibited G-protein-coupled inwardly rectifying K(+) (GIRK) channel currents in brain neurons, and that the tipepidine antitussives had a novel antidepressive-like effect on rats. Furthermore, the antitussives revealed multiplexed ameliorating actions on intractable brain disease models. This study evaluated the therapeutic potential of tipepidine in obsessive-compulsive disorder (OCD) subjects using marble-burying behavior (MBB) tests in mice. In fact, OCD is classified as an anxiety disorder characterized by obsession or compulsion. Although selective 5-HT reuptake inhibitors (SSRIs) are considered first choice agents for the pharmacological treatment of OCD, 50% of patients with OCD failed to respond to SSRIs. The burying of harmless objects such as marbles by mice might reflect the formation of compulsive behavior. The results show that tipepidine reduced MBB in a dose-dependent manner. The effect of tipepidine was significant even at a dosage as small as 5 mg/kg. The tipepidine at 10 mg/kg s.c. nearly abolished MBB without reducing the locomotor activity in mice. It is particularly interesting that the dopamine D₂ antagonist or 5-HT(1A) antagonist partly inhibited the effect of tipepidine on MBB. The results suggest that tipepidine has more of a potent inhibitory effect on MBB, compared with known drugs used for the treatment of OCD, and that the tipepidine action mechanism might differ from that of known drugs.
Collapse
Affiliation(s)
- Sokichi Honda
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | |
Collapse
|
12
|
Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010; 19:2144-53. [PMID: 20190273 PMCID: PMC2865373 DOI: 10.1093/hmg/ddq093] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/03/2010] [Accepted: 02/25/2010] [Indexed: 11/30/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in huntingtin. There are no treatments that are known to slow the neurodegeneration caused by this mutation. Mutant huntingtin causes disease via a toxic gain-of-function mechanism and has the propensity to aggregate and form intraneuronal inclusions. One therapeutic approach for HD is to enhance the degradation of the mutant protein. We have shown that this can be achieved by upregulating autophagy, using the drug rapamycin. In order to find safer ways of inducing autophagy for clinical purposes, we previously screened United States Food and Drug Administration-approved drugs for their autophagy-stimulating potential. This screen suggested that rilmenidine, a well tolerated, safe, centrally acting anti-hypertensive drug, could induce autophagy in cell culture via a pathway that was independent of the mammalian target of rapamycin. Here we have shown that rilmenidine induces autophagy in mice and in primary neuronal culture. Rilmenidine administration attenuated the signs of disease in a HD mouse model and reduced levels of the mutant huntingtin fragment. As rilmenidine has a long safety record and is designed for chronic use, our data suggests that it should be considered for the treatment of HD and related conditions.
Collapse
Affiliation(s)
- Claudia Rose
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK and
| | - Fiona M. Menzies
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK and
| | - Maurizio Renna
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK and
| | | | - Silvia Corrochano
- Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, UK
| | - Oana Sadiq
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK and
| | - Steve D. Brown
- Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK and
| |
Collapse
|
13
|
Magnani P, Conforti A, Zanolin E, Marzotto M, Bellavite P. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology (Berl) 2010; 210:533-45. [PMID: 20401745 PMCID: PMC2877813 DOI: 10.1007/s00213-010-1855-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
Abstract
INTRODUCTION This study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia. METHODS Five different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light-dark (LD) tests in blind and randomized fashion. RESULTS Most G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions. CONCLUSION The overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions.
Collapse
Affiliation(s)
- Paolo Magnani
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | - Anita Conforti
- Department of Medicine and Public Health, University of Verona, Verona, Italy
| | - Elisabetta Zanolin
- Department of Medicine and Public Health, University of Verona, Verona, Italy
| | - Marta Marzotto
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| | - Paolo Bellavite
- Dipartimento di Patologia, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
| |
Collapse
|
14
|
Delotterie D, Ruiz G, Brocard J, Schweitzer A, Roucard C, Roche Y, Suaud-Chagny MF, Bressand K, Andrieux A. Chronic administration of atypical antipsychotics improves behavioral and synaptic defects of STOP null mice. Psychopharmacology (Berl) 2010; 208:131-41. [PMID: 19936716 PMCID: PMC2874572 DOI: 10.1007/s00213-009-1712-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/25/2009] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Recent studies have suggested that schizophrenia is associated with alterations in the synaptic connectivity involving cytoskeletal proteins. The microtubule-associated protein stable tubule only polypeptide (STOP) plays a key role in neuronal architecture and synaptic plasticity, and it has been demonstrated that STOP gene deletion in mice leads to a phenotype mimicking aspects of positive and negative symptoms and cognitive deficits classically observed in schizophrenic patients. In STOP null mice, behavioral defects are associated with synaptic plasticity abnormalities including defects in long-term potentiation. In these mice, long-term administration of typical antipsychotics has been shown to partially alleviate behavioral defects but, as in humans, such a treatment was poorly active on deficits related to negative symptoms and cognitive impairments. Here, we assessed the effects of risperidone and clozapine, two atypical antipsychotics, on STOP null mice behavior and synaptic plasticity. RESULTS Long-term administration of either drug results in alleviation of behavioral alterations mimicking some negative symptoms and partial amelioration of some cognitive defects in STOP null mice. Interestingly, clozapine treatment also improves synaptic plasticity of the STOP null animals by restoring long-term potentiation in the hippocampus. DISCUSSION All together, the pharmacological reactivity of STOP null mice to antipsychotics evokes the pharmacological response of humans to such drugs. Totally, our study suggests that STOP null mice may provide a useful preclinical model to evaluate pharmacological properties of antipsychotic drugs.
Collapse
Affiliation(s)
- David Delotterie
- SynapCell SAS SynapCell SASBâtiment Biopolis, 5 avenue du Grand Sablon, 38700 La
Tronche,FR
| | - Geoffrey Ruiz
- SynapCell SAS SynapCell SASBâtiment Biopolis, 5 avenue du Grand Sablon, 38700 La
Tronche,FR
- GIN, Grenoble Institut des Neurosciences INSERM :
U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
- GPC-GIN, Groupe Physiopathologie du Cytosquelette
INSERM : U836CEA : DSV/IRTSV/GPCUniversité Joseph Fourier - Grenoble IUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
| | - Jacques Brocard
- GIN, Grenoble Institut des Neurosciences INSERM :
U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
- GPC-GIN, Groupe Physiopathologie du Cytosquelette
INSERM : U836CEA : DSV/IRTSV/GPCUniversité Joseph Fourier - Grenoble IUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
| | - Annie Schweitzer
- GIN, Grenoble Institut des Neurosciences INSERM :
U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
- GPC-GIN, Groupe Physiopathologie du Cytosquelette
INSERM : U836CEA : DSV/IRTSV/GPCUniversité Joseph Fourier - Grenoble IUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
| | - Corinne Roucard
- SynapCell SAS SynapCell SASBâtiment Biopolis, 5 avenue du Grand Sablon, 38700 La
Tronche,FR
| | - Yann Roche
- SynapCell SAS SynapCell SASBâtiment Biopolis, 5 avenue du Grand Sablon, 38700 La
Tronche,FR
| | - Marie-Françoise Suaud-Chagny
- Vulnérabilité à la schizophrénie
: des bases neurobiologiques à la thérapeutique
Université Claude Bernard - Lyon I : EA4166Hôpital le VinatierIFR19FR
| | - Karine Bressand
- SynapCell SAS SynapCell SASBâtiment Biopolis, 5 avenue du Grand Sablon, 38700 La
Tronche,FR
| | - Annie Andrieux
- GIN, Grenoble Institut des Neurosciences INSERM :
U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
- GPC-GIN, Groupe Physiopathologie du Cytosquelette
INSERM : U836CEA : DSV/IRTSV/GPCUniversité Joseph Fourier - Grenoble IUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex
9,FR
- * Correspondence should be adressed to: Annie Andrieux
| |
Collapse
|
15
|
Treit D, Engin E, McEown K. Animal models of anxiety and anxiolytic drug action. Curr Top Behav Neurosci 2009; 2:121-60. [PMID: 21309109 DOI: 10.1007/7854_2009_17] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Animal models of anxiety attempt to represent some aspect of the etiology, symptomatology, or treatment of human anxiety disorders, in order to facilitate their scientific study. Within this context, animal models of anxiolytic drug action can be viewed as treatment models relevant to the pharmacological control of human anxiety. A major purpose of these models is to identify novel anxiolytic compounds and to study the mechanisms whereby these compounds produce their anxiolytic effects. After a critical analysis of "face," "construct," and "predictive" validity, the biological context in which animal models of anxiety are to be evaluated is specified. We then review the models in terms of their general pharmacological profiles, with particular attention to their sensitivity to 5-HTIA agonists and antidepressant compounds. Although there are important exceptions, most of these models are sensitive to one or perhaps two classes of anxiolytic compounds, limiting their pharmacological generality somewhat, but allowing in depth analysis of individual mechanisms of anxiolytic drug action (e.g., GABAA agonism). We end with a discussion of possible sources of variability between models in response to 5-HTIA agonists and antidepressant drugs.
Collapse
Affiliation(s)
- Dallas Treit
- Department of Psychology, Division of Neuroscience, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9.
| | | | | |
Collapse
|
16
|
Young R. TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo [4,5-g]isoquinoline): discovery, pharmacological effects, and therapeutic potential. CNS DRUG REVIEWS 2007; 13:405-22. [PMID: 18078426 PMCID: PMC6494129 DOI: 10.1111/j.1527-3458.2007.00022.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemically, TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline) can be viewed as a conformationally restricted phenylalkylamine that is related in structure to amphetamine but does not stimulate (or depress) locomotor activity in rodents. In radioligand binding studies TDIQ displays selective affinity for alpha(2)-adrenergic receptor subsites (i.e., alpha(2A)-, alpha(2B)-, and alpha(2C)-adrenergic receptors), and behavioral data suggest that it might exert an agonist (or partial agonist) effect at alpha(2)-adrenergic receptors or interact at alpha(2)-adrenergic heteroreceptors. Drug discrimination studies in rats indicate that TDIQ: (1) serves as a discriminative stimulus, (2) may be useful in the treatment of symptoms associated with the abuse of cocaine, and (3) exhibits a low potential for abuse. In addition, TDIQ exhibits a dose-dependent and wide dissociation between doses that produce an anxiolytic-like effect or an inhibition of "snack" consumption in mice and doses that produce minimal, if any, effects in tests that measure a potential for disruption of coordinated movement or motor activity. Also, TDIQ displays negligible effects on the heart rate (HR) and blood pressure (BP) of mice. Taken together, the preclinical data suggest that TDIQ exhibits a favorable ratio of therapeutic-like effects (anxiolytic, therapeutic adjunct in the treatment of cocaine abuse, and appetite suppression) to side effect-like activities (behavioral impairment, drug abuse, or adverse cardiovascular effect). As such, TDIQ could: (1) be a forerunner for a new type of chemical entity in the treatment of certain forms of anxiety and/or obesity and (2) serve as a structural template in the discovery and development of additional agents that might be selective for alpha(2)-adrenergic receptors.
Collapse
Affiliation(s)
- Richard Young
- Department of Medicinal Chemistry, Box 540, School of Pharmacy, 410 North 12th Street, Virginia Commonwealth University, Richmond, Virginia 23298-6540, USA.
| |
Collapse
|
17
|
Young R, Rothman RB, Rangisetty JB, Partilla JS, Dukat M, Glennon RA. TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline) inhibits the consumption of “snacks” in mice. Pharmacol Biochem Behav 2006; 84:74-83. [PMID: 16750261 DOI: 10.1016/j.pbb.2006.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/24/2006] [Accepted: 04/08/2006] [Indexed: 11/26/2022]
Abstract
There is considerable evidence that alpha2-adrenergic receptor activity exerts a pivotal role in initiation of feeding behavior. The appetite suppressant and monoamine release effects of TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline), a putative selective alpha2-adrenergic compound, were compared to those of fenfluramine, a reference drug that produces an anorectic effect via presynaptic release and reuptake inhibition of serotonin. The drugs were administered to two groups of mice that had learned to consume either sweet milk or chocolate pellets (i.e. "snacks") during the low-activity/reduced-feeding "light" portion of their light/dark cycle. The selectivity of the drugs to suppress the consumption of snacks was determined by comparing doses of each drug that inhibited the animals' consumption of snacks to doses of each drug that have been shown, or were shown, to impact the motor (i.e. locomotor, rotarod, and inclined-screen side effect-like tests) or conditioned taste aversion (CTA) behavior of mice. An evaluation of TDIQ as a releaser of monoamines was determined in rodent brain synaptosomes. The administration of TDIQ or fenfluramine inhibited the consumption of the snacks, and a comparison of their ED50 doses indicated that TDIQ is about 3 times more potent than fenfluramine (1.3 mg/kg vs. 4.2 mg/kg, respectively) in the sweet milk test and almost equipotent to fenfluramine (19.4 mg/kg vs. 18.4 mg/kg, respectively) in the chocolate pellet assay. The selectivity of the appetite suppressant effect of TDIQ was differentiated from that of fenfluramine on the basis that TDIQ exhibited a wide separation between its dose-response effects that suppressed snack consumption and its minimal effects in tests that measured behavioral impairment. Moreover, TDIQ was distinguished from fenfluramine in that it displayed very low potencies as a presynaptic releaser of monoamines. Finally, TDIQ (0.3 mg/kg-30.0 mg/kg) did not induce a conditioned taste aversion. TDIQ may represent a novel chemical entity that exhibits a significantly favorable therapeutic-like (i.e. appetite suppressant) effect to side effect-like ratio.
Collapse
Affiliation(s)
- Richard Young
- Department of Medicinal Chemistry, School of Pharmacy, Box 980540, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | |
Collapse
|