1
|
Dutra-Tavares AC, Couto LA, Souza TP, Bandeira-Martins A, Silva JO, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine's Effects on Schizophrenia-like Symptoms in a Mice Model: Time Matters. Brain Sci 2024; 14:855. [PMID: 39335351 PMCID: PMC11430416 DOI: 10.3390/brainsci14090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tobacco consumption in schizophrenia (SCHZ) patients is highly prevalent. Data support the occurrence of sequential events during comorbidity establishment, and both smoking first, SCHZ second and SCHZ first, smoking second sequences have been proposed. To investigate whether these two possibilities lead to distinct outcomes of comorbidity, we used a phencyclidine-induced SCHZ model and nicotine exposure as a surrogate of smoking. C57Bl/6 mice were submitted to a protocol that either began with 4 days of phencyclidine exposure or 4 days of nicotine exposure. This period was followed by 5 days of combined phencyclidine + nicotine exposure. Locomotor sensitization and pre-pulse inhibition (PPI) were assessed due to their well-known associations with SCHZ as opposed to rearing, an unrelated behavior. Nicotine priming potentiated phencyclidine-evoked sensitization. However, nicotine exposure after SCHZ modeling did not interfere with phencyclidine's effects. In the PPI test, nicotine after SCHZ modeling worsened the phencyclidine-evoked deficiency in males. In contrast, nicotine priming had no effects. Regarding rearing, nicotine priming failed to interfere with phencyclidine-mediated inhibition. Similarly, phencyclidine priming did not modify nicotine-mediated inhibition. The present results indicate that the sequence, either SCHZ-first or nicotine-first, differentially impacts comorbidity outcomes, a finding that is relevant for the identification of mechanisms of nicotine interference in the neurobiology of SCHZ.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Cabo Frio 28905-320, RJ, Brazil;
| | - Luciana Araújo Couto
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Anais Bandeira-Martins
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Juliana Oliveira Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores, UERJ, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| |
Collapse
|
2
|
Tsai HA, Shih TM, Tsai T, Hu JW, Lai YA, Hsiao JF, Tsai GE. Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:465-474. [PMID: 38711579 PMCID: PMC11070952 DOI: 10.3762/bjnano.15.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024]
Abstract
ᴅ-cycloserine (DCS), an FDA-approved medicine for the treatment of tuberculosis, is also a partial agonist at the glycine recognition site of N-methyl-ᴅ-aspartate (NMDA) receptor and has shown significant treatment efficacy for central nervous system (CNS) disorders including depression, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder. The physicochemical properties of DCS, however, limit the options of formulation and medicinal applications of DCS, and warrants further investigation for the development of CNS therapeutics. Nanocrystals play an important role in pharmaceutic design and development. The properties of nanocrystals are remarkably different from their bulk material counterpart, attributed to the large surface-area-to-volume ratio which can improve the bioavailability. In this study, for the first time, DCS, a highly water-soluble compound, has formed nanocrystals and this was confirmed by scanning electronic microscopy and X-ray powder diffraction. Furthermore, DCS nanocrystals were applied to several formulations to test their stability and then to the in vitro Franz diffusion test with reservoir patch formulation as well as in vivo pharmacokinetics study with enteric capsules. We tested these formulations regarding their nanocrystal physical properties, size effect, and dissolution rate, respectively. We found that DCS nanocrystals showed good performance in the Franz diffusion test and rodent pharmacokinetic studies due to the nanoparticle size and faster dissolution as compared with the commercial DCS powder. These DCS nanocrystal formulations could offer a new approach for the development of an advanced drug delivery system for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hsuan-Ang Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Theodore Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Jhe-Wei Hu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Yi-An Lai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Jui-Fu Hsiao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Ren F, Si Q, Sui Y. Diagnostic significance and potential function of miR-320d in schizophrenia. Psychiatr Genet 2024; 34:61-67. [PMID: 38441082 DOI: 10.1097/ypg.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVES Schizophrenia is a chronic brain disorder and needs objective diagnostic biomarkers. MicroRNAs are highly expressed in the nervous system. The study investigated the expression and clinical values of serum miR-320d in schizophrenia patients. In addition, the underlying mechanism was preliminarily examined via bioinformatic analysis. MATERIALS AND METHODS Serum samples were collected from 57 patients with first-episode schizophrenia and 62 healthy controls. The cognitive function of patients was assessed via Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB) consisting of seven domains. Serum miR-320d levels were tested via qRT-PCR. The miRNA target predictions were obtained from Target Scan, and annotated through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS Based on the GSE167630 dataset, downregulated serum miR-320d in schizophrenia was identified, which was determined in the serum of schizophrenia patients. Serum miR-320d presented a conspicuous relationship with MCCB score in both the control group and the schizophrenia group. After adjusting for age, sex, BMI, and education, serum miR-320d was still independently related to the occurrence of schizophrenia. It can identify schizophrenia cases from healthy ones with an AUC of 0.931. The Go enrichment analysis indicated that the target genes were mainly enriched in homophilic cell adhesion and cell-cell adhesion via plasma-membrane adhesion molecules, and GTPase activity and guanosine diphosphate (GDP) binding. Rap1 signaling pathway was enriched via KEGG analysis. CONCLUSION Serum miR-320d can be taken as a candidate marker for the diagnosis of schizophrenia. Its regulatory role in neuronal cell adhesion and Rap1 signaling pathway might be the potential underlying mechanism of miR-320d in schizophrenia.
Collapse
Affiliation(s)
- Fangfang Ren
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing, China
| | | | | |
Collapse
|
4
|
Husain MO, Chaudhry IB, Khoso AB, Husain MI, Ansari MA, Mehmood N, Naqvi HA, Nizami AT, Talib U, Rajput AH, Bassett P, Foussias G, Deakin B, Husain N. Add-on Sodium Benzoate and N-Acetylcysteine in Patients With Early Schizophrenia Spectrum Disorder: A Multicenter, Double-Blind, Randomized Placebo-Controlled Feasibility Trial. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae004. [PMID: 39144112 PMCID: PMC11207662 DOI: 10.1093/schizbullopen/sgae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Oxidative stress pathways may play a role in schizophrenia through direct neuropathic actions, microglial activation, inflammation, and by interfering with NMDA neurotransmission. N-acetylcysteine (NAC) has been shown to improve negative symptoms of schizophrenia, however, results from trials of other compounds targeting NMDA neurotransmission have been mixed. This may reflect poor target engagement but also that risk mechanisms act in parallel. Sodium Benzoate (NaB) could have an additive with NAC to act on several pathophysiological mechanisms implicated in schizophrenia. Study Design A multicenter, 12 weeks, 2 × 2 factorial design, randomized double-blind placebo-controlled feasibility trial of NaB and NAC added to standard treatment in 68 adults with early schizophrenia. Primary feasibility outcomes included recruitment, retention, and completion of assessments as well as acceptability of the study interventions. Psychosis symptoms, functioning, and cognitive assessments were also assessed. Study Results We recruited our desired sample (n = 68) and retained 78% (n = 53) at 12 weeks, supporting the feasibility of recruitment and retention. There were no difficulties in completing clinical outcome schedules. Medications were well tolerated with no dropouts due to side effects. This study was not powered to detect clinical effect and as expected no main effects were found on the majority of clinical outcomes. Conclusions We demonstrated feasibility of conducting a clinical trial of NaB and NAC. Given the preliminary nature of this study, we cannot draw firm conclusions about the clinical efficacy of either agent, and a large-scale trial is needed to examine if significant differences between treatment groups emerge. Trial Registration ClinicalTrials.gov: NCT03510741.
Collapse
Affiliation(s)
- Muhammad Omair Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Imran Bashir Chaudhry
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Department of Psychiatry, Ziauddin University, Karachi, Pakistan
- Pakistan Institute of Living and Learning, Karachi, Pakistan
| | - Ameer B Khoso
- Pakistan Institute of Living and Learning, Karachi, Pakistan
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Moin Ahmed Ansari
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan
| | - Nasir Mehmood
- Karwan e Hayat, Institute for Mental Health Care, Karachi, Pakistan
| | - Haider A Naqvi
- Department of Psychiatry, Dow University Health Sciences, Karachi, Pakistan
| | - Asad Tamizuddin Nizami
- Institute of Psychiatry, WHO Collaborating Centre for Mental Health Research and Training, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Uroosa Talib
- Karwan e Hayat, Institute for Mental Health Care, Karachi, Pakistan
| | - Aatir H Rajput
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan
| | | | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bill Deakin
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Nusrat Husain
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Mersey Care NHS Foundation Trust, Prescott, UK
- Institute of Population and Mental Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Metkar SK, Yan Y, Lu Y, Lu J, Zhu X, Du F, Xu Y. Phosphodiesterase 2 and Its Isoform A as Therapeutic Targets in the Central Nervous System Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:941-955. [PMID: 37855295 DOI: 10.2174/1871527323666230811093126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 10/20/2023]
Abstract
Cyclic adenosine monophosphates (cAMP) and cyclic guanosine monophosphate (cGMP) are two essential second messengers, which are hydrolyzed by phosphodiesterase's (PDEs), such as PDE-2. Pharmacological inhibition of PDE-2 (PDE2A) in the central nervous system improves cAMP and cGMP signaling, which controls downstream proteins related to neuropsychiatric, neurodegenerative, and neurodevelopmental disorders. Considering that there are no specific treatments for these disorders, PDE-2 inhibitors' development has gained more attention in the recent decade. There is high demand for developing new-generation drugs targeting PDE2 for treating diseases in the central nervous and peripheral systems. This review summarizes the relationship between PDE-2 with neuropsychiatric, neurodegenerative, and neurodevelopmental disorders as well as its possible treatment, mainly involving inhibitors of PDE2.
Collapse
Affiliation(s)
- Sanjay K Metkar
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuqing Yan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yue Lu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jianming Lu
- Codex BioSolutions Inc. 12358 Parklawn Drive, Suite 250A, Rockville, MD 20852, Maryland
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106; USA
| | - Fu Du
- FD NeuroTechnologies Consulting & Services, Inc., Columbia, MD 21046, Maryland
| | - Ying Xu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Pentz AB, Timpe CMF, Normann EM, Slapø NB, Melle I, Lagerberg TV, Steen NE, Westlye LT, Jönsson EG, Haukvik UK, Moberget T, Andreassen OA, Elvsåshagen T. Mismatch negativity in schizophrenia spectrum and bipolar disorders: Group and sex differences and associations with symptom severity. Schizophr Res 2023; 261:80-93. [PMID: 37716205 DOI: 10.1016/j.schres.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Research increasingly implicates glutamatergic dysfunction in the pathophysiologies of psychotic disorders. Auditory mismatch negativity (MMN) is an electroencephalography (EEG) waveform linked to glutamatergic neurotransmission and is consistently attenuated in schizophrenia (SCZ). MMN consists of two subcomponents, the repetition positivity (RP) and deviant negativity (DN) possibly reflecting different neural mechanisms. However, whether MMN reduction is present across different psychotic disorders, linked to distinct symptom clusters, or related to sex remain to be clarified. METHODS Four hundred participants including healthy controls (HCs; n = 296) and individuals with SCZ (n = 39), bipolar disorder (BD) BD typeI (n = 35), or BD type II (n = 30) underwent a roving MMN paradigm and clinical evaluation. MMN, RP and DN as well their memory traces were recorded at the FCZ electrode. Analyses of variance and linear regression models were used both transdiagnostically and within clinical groups. RESULTS MMN was reduced in SCZ compared to BD (p = 0.006, d = 0.55) and to HCs (p < 0.001, d = 0.63). There was a significant group × sex interaction (p < 0.003) and the MMN impairment was only detected in males with SCZ. MMN amplitude correlated positively with Positive and Negative Syndrome Scale total score and negatively with Global Assessment of Functioning Scale score. The deviant negativity was impaired in males with SCZ. No group differences in memory trace indices of the MMN, DN, or RP. CONCLUSION MMN was attenuated in SCZ and correlated with greater severity of psychotic symptoms and lower level of functioning. Our results may indicate sex-dependent differences of glutamatergic function in SCZ.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Clara Maria Fides Timpe
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Nora Berz Slapø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
7
|
Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, Yu X, Chan RCK. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal 1H-MRS and fMRI study. Psychol Med 2023; 53:4904-4914. [PMID: 35791929 DOI: 10.1017/s0033291722001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown. METHODS Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group. RESULTS We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a 'cortico-subcortical-cortical' network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls. CONCLUSIONS Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Kristoffer H Madsen
- Sino-Danish Centre for Education and Research, Beijing, China
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rong Xue
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Diagnostic Radiology, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Adolescent nicotine potentiates the inhibitory effect of raclopride, a D2R antagonist, on phencyclidine-sensitized psychotic-like behavior in mice. Toxicol Appl Pharmacol 2022; 456:116282. [DOI: 10.1016/j.taap.2022.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 01/01/2023]
|
9
|
Kuo CY, Lin CH, Lane HY. Targeting D-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022; 36:1143-1153. [PMID: 36194364 DOI: 10.1007/s40263-022-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
In the brain, D-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, D-serine, the main coagonist of synaptic N-methyl-D-aspartate receptors (NMDARs), is degraded into α-keto acids and ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is implicated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia had lower D-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. Inhibiting DAAO activity and slowing D-serine degradation by using DAAO inhibitors to enhance NMDAR function may be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research in DAAO inhibitors.
Collapse
Affiliation(s)
- Chien-Yi Kuo
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC. .,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City, 83301, Taiwan, ROC. .,School of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan, ROC.
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC. .,Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC. .,Department of Psychology, College of Medical and Health Sciences, Asia University, No. 500, Lioufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan, ROC.
| |
Collapse
|
10
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
11
|
Lin YS, Mao WC, Yao NT, Tsai GE. Pharmacokinetics and Safety of Sodium Benzoate, a d-Amino Acid Oxidase (DAAO) Inhibitor, in Healthy Subjects: A Phase I, Open-Label Study. Clin Ther 2022; 44:1326-1335. [PMID: 36104267 DOI: 10.1016/j.clinthera.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE N-methyl-d-aspartate receptor (NMDAR)-mediated neurotransmission plays a critical role in cognition and memory, and d-serine is a co-agonist of the receptor. d-serine is metabolized by d-amino acid oxidase (DAAO). Sodium benzoate is a DAAO inhibitor that leads to the elevation of d-serine levels and enhances NMDAR functions as a therapeutic for wide-spectrum central nervous system (CNS) disorders, including schizophrenia and dementia. For therapeutic application of sodium benzoate in CNS disorders, we conducted a Phase I study to evaluate its safety, tolerability, and pharmacokinetic profile after single-dose oral administration in healthy volunteers. In contrast to the accumulation in the CNS, sodium benzoate has a rapid pharmacokinetic profile when measured peripherally. METHODS In this Phase I study, subjects were randomized into 4 different dose groups after a single oral administration. The pharmacokinetic parameters of sodium benzoate were assessed after exposure to 250, 500, 1000, and 2000 mg of sodium benzoate. All adverse events were investigated and recorded. FINDINGS The Cmax and AUC of sodium benzoate exhibited a higher than dose-proportional increase within the dose range from 250 to 2000 mg under fasting conditions. The slopes were 1.78 and 2.61 and the 90% CIs were 1.41 to 2.15 and 2.20 to 3.03 for Cmax and AUC, respectively. Sodium benzoate was absorbed and converted to benzoic acid rapidly, reaching Cmax after ∼0.5 hour and elimination t1/2 after ∼0.3 hour. No subjects reported adverse events that were sodium benzoate related. IMPLICATIONS The nonlinear pharmacokinetic response was observed within the dose range up to 2000 mg. Sodium benzoate treatment exhibited a favorable safety profile and was well tolerated at all dose levels. The study results serve as a foundation that should be useful for investigating efficacy and safety in the drug's subsequent clinical development. TRIAL REGISTRATION TFDA-103607047.
Collapse
Affiliation(s)
- Yen-Shan Lin
- Department of Research and Development, SyneuRx International (Taiwan) Corporation, Taipei, Taiwan
| | - Wei-Chung Mao
- Tri-Service General Hospital, Taipei, Taiwan; Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Nai-Tzu Yao
- Department of Research and Development, SyneuRx International (Taiwan) Corporation, Taipei, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corporation, Taipei, Taiwan; UCLA School of Medicine, Los Angeles, California, USA.
| |
Collapse
|
12
|
Chen-Engerer HJ, Jaeger S, Bondarenko R, Sprengel R, Hengerer B, Rosenbrock H, Mack V, Schuelert N. Increasing the Excitatory Drive Rescues Excitatory/Inhibitory Imbalance and Mismatch Negativity Deficit Caused by Parvalbumin Specific GluA1 Deletion. Neuroscience 2022; 496:190-204. [PMID: 35750109 DOI: 10.1016/j.neuroscience.2022.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Disturbance in synaptic excitatory and inhibitory (E/I) transmission in the prefrontal cortex is considered a critical factor for cognitive dysfunction, a core symptom in schizophrenia. However, the cortical network pathophysiology induced by E/I imbalance is not well characterized, and an effective therapeutic strategy is lacking. In this study, we simulated imbalanced cortical network by using mice with parvalbumin neuron (PV) specific knockout of GluA1 (AMPA receptor subunit 1) (Gria1-PV KO) as an experimental model. Applying high-content confocal imaging and electrophysiological recordings in the medial prefrontal cortex (mPFC), we found structural and functional alterations in the local network of Gria1-PV KO mice. Additionally, we applied electroencephalography (EEG) to assess potential deficits in mismatch negativity (MMN), the standard readout in the clinic for measuring deviance detection and sensory information processing. Gria1-PV KO animals exhibited abnormal theta oscillation and MMN, which is consistent with clinical findings in cognitively impaired patients. Remarkably, we demonstrated that the glycine transporter 1 (GlyT1) inhibitor, Bitopertin, ameliorates E/I imbalance, hyperexcitability, and sensory processing malfunction in Gria1-PV KO mice. Our results suggest that PV-specific deletion of GluA1 might be an experimental approach for back translating the E/I imbalance observed in schizophrenic patients. Our work offers a systematic workflow to understand the effect of GlyT1 inhibition in restoring cortical network activity from single cells to local brain circuitry. This study highlights that selectively boosting NMDA receptor-mediated excitatory drive to enhance the network inhibitory transmission from interneurons to pyramidal neurons (PYs) is a potential therapeutic strategy for restoring E/I imbalance-associated cognitive-related abnormality.
Collapse
Affiliation(s)
- Hsing-Jung Chen-Engerer
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany.
| | - Stefan Jaeger
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Rimma Bondarenko
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology at Heidelberg University, Germany
| | - Bastian Hengerer
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Holger Rosenbrock
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Volker Mack
- CardioMetabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| | - Niklas Schuelert
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach Riß, Germany
| |
Collapse
|
13
|
Lee GS, Zhang J, Wu Y, Zhou Y. 14-3-3 proteins promote synaptic localization of N-methyl d-aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS One 2021; 16:e0261791. [PMID: 34962957 PMCID: PMC8714094 DOI: 10.1371/journal.pone.0261791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
One of the core pathogenic mechanisms for schizophrenia is believed to be dysfunction in glutamatergic synaptic transmissions, particularly hypofunction of N-methyl d-aspartate receptors (NMDARs). Previously we showed that 14-3-3 functional knockout mice exhibit schizophrenia-associated behaviors accompanied by reduced synaptic NMDARs in forebrain excitatory neurons. To investigate how 14-3-3 proteins regulate synaptic localization of NMDARs, here we examined changes in levels of synaptic NMDARs upon 14-3-3 inhibition in primary neurons. Expression of 14-3-3 protein inhibitor (difopein) in primary glutamatergic cortical and hippocampal neurons resulted in lower number of synaptic puncta containing NMDARs, including the GluN1, GluN2A, or GluN2B subunits. In heterologous cells, 14-3-3 proteins enhanced surface expression of these NMDAR subunits. Furthermore, we identified that 14-3-3ζ and ε isoforms interact with NMDARs via binding to GluN2A and GluN2B subunits. Taken together, our results demonstrate that 14-3-3 proteins play a critical role in NMDAR synaptic trafficking by promoting surface delivery of NMDAR subunits GluN1, GluN2A, and GluN2B. As NMDAR hypofunctionality is known to act as a convergence point for progression of symptoms of schizophrenia, further studies on these signaling pathways may help understand how dysfunction of 14-3-3 proteins can cause NMDAR hypofunctionality and lead to schizophrenia-associated behaviors.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jiajing Zhang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
14
|
The Absolute Bioavailability, Absorption, Distribution, Metabolism, and Excretion of BI 425809 Administered as an Oral Dose or an Oral Dose with an Intravenous Microtracer Dose of [ 14C]-BI 425809 in Healthy Males. Clin Drug Investig 2021; 42:87-99. [PMID: 34936055 PMCID: PMC8901509 DOI: 10.1007/s40261-021-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVES: BI 425809, a novel glycine transporter-1 inhibitor, may ameliorate cognitive deficits in schizophrenia. The objectives of the studies were: to assess absolute bioavailability of oral BI 425809 compared with intravenous (IV) microtracer infusion (study 1), and to determine the mass balance, distribution, metabolism, and excretion of BI 425809 (study 2). METHODS These were Phase I, open-label, non-randomized, single-period, single-arm studies in healthy males. Study 1 administered a single oral dose of unlabeled BI 425809 25 mg, then an IV microtracer infusion of [14C]-BI 425809 30 µg. In study 2, participants received an oral dose of [14C]-BI 425809 25 mg containing [14C]-labeled (dose: 3.7 megabecquerel (0.41 mSv)) and unlabeled drug. Safety was assessed. RESULTS In study 1 (n = 6), the absolute bioavailability of a 25 mg tablet of BI 425809 in a fasted state was 71.64%. The geometric mean dose-normalized maximum plasma concentration was approximately 80% lower after oral administration versus IV dose. In study 2 (n = 6), the total recovery of [14C]-BI 425809 was 96.7%, with ~ 48% of [14C]-radioactivity excreted in urine and ~ 48% excreted in feces. Among the labeled drug in urine, ~ 45% of the amount excreted was composed of BI 425809 (17.4%) and two metabolites (BI 758790, 21.0%; BI 761036, 5.9%). In feces, < 1% of BI 425809 was excreted as unchanged drug. In both studies, BI 425809 was generally well tolerated. CONCLUSIONS After normalization, the absolute bioavailability of tablet-form BI 425809 was 71.64%. The total recovery of [14C]-BI 425809 25 mg was high (96.7%), with low intraindividual variability and similar amounts excreted in urine and feces. CLINICALTRIALS. GOV IDENTIFIERS NCT03783000 and NCT03654170.
Collapse
|
15
|
Baker A, Clarke L, Donovan P, P J Ungerer J, Hartel G, Bruxner G, Cocchi L, Gordon A, Moudgil V, Robinson G, Roy D, Sohal R, Whittle E, Scott JG. Cadence discovery: study protocol for a dose-finding and mechanism of action clinical trial of sodium benzoate in people with treatment-refractory schizophrenia. Trials 2021; 22:918. [PMID: 34903265 PMCID: PMC8670031 DOI: 10.1186/s13063-021-05890-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background Schizophrenia is a persistent psychotic disorder often accompanied by severe disability and premature mortality. New pharmacological treatments are urgently needed. Sodium benzoate, a common food preservative holds potential to be an effective, accessible treatment for schizophrenia, though the optimal dosing and mechanism of action of the compound requires further investigation. Methods Individuals with persistent treatment-refractory schizophrenia (n=52) will be recruited. Patients will be randomised in a 1:1:1:1 ratio to receive treatment of one of three active doses (1000, 2000 or 4000 mg daily) of sodium benzoate or placebo for 6 weeks duration. The primary outcome measurement is change in the Positive and Negative Syndrome Scale (PANSS) total score. Secondary outcome measurements are PANSS subscales, Global Assessment of Function (GAF), Clinical Global Impression (CGI) and Patient Global Impression (PGI-I). Change in concentrations of peripheral amino acids (D-alanine, L-alanine, D-serine, L-serine, glycine and glutamate), plasma sodium benzoate, plasma catalase, 3-nitrotyrosine, malondialdehyde and high-sensitivity C-reactive protein (hs-CRP) will be determined as tertiary measures. Discussion This trial seeks to build upon previous research indicating potential efficacy of sodium benzoate for reduction of symptoms in individuals with treatment-refractory schizophrenia. The trial aims to improve the understanding of the mechanism of action of the compound. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12621000327886. Registered on 23 March 2021.
Collapse
Affiliation(s)
- Andrea Baker
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Lachlan Clarke
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Peter Donovan
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia.,Clinical Pharmacology, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Jacobus P J Ungerer
- School of Biomedical Sciences, The University of Queensland, Herston, QLD, Australia.,Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - George Bruxner
- Metro North Mental Health Service, Caboolture Hospital, Caboolture, QLD, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Anne Gordon
- Metro North Mental Health Service, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Vikas Moudgil
- Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Gail Robinson
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia.,Metro North Mental Health Service, Caboolture Hospital, Caboolture, QLD, Australia
| | - Digant Roy
- Metro North Mental Health Service, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Ravinder Sohal
- Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Emma Whittle
- Clinical Pharmacology, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - James G Scott
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia. .,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia. .,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia. .,Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| |
Collapse
|
16
|
Chang CH, Liu CY, Chen SJ, Tsai HC. Effect of N-methyl-D-aspartate receptor enhancing agents on cognition in dementia: an exploratory systematic review and meta-analysis of randomized controlled trials. Sci Rep 2021; 11:22996. [PMID: 34836972 PMCID: PMC8626464 DOI: 10.1038/s41598-021-02040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Multiple N-methyl-D-aspartate (NMDA) receptor enhancing agents have had promising effects on cognition among patients with dementia. However, the results remain inconsistent. This exploratory meta-analysis investigated the effectiveness of NMDA receptor enhancing agents for cognitive function. PubMed, the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews were searched for randomized controlled trials (RCTs). Controlled trials assessing add-on NMDA receptor enhancing agent treatment in patients with dementia and using cognition rating scales were eligible and pooled using a random-effect model for comparisons. The standardized mean difference (SMD) was calculated in each study from the effect size; positive values indicated that NMDA receptor enhancing agent treatment improved cognitive function. Funnel plots and the I2 statistic were evaluated for statistical heterogeneity. Moderators were evaluated using meta-regression. We identified 14 RCTs with 2224 participants meeting the inclusion criteria. Add-on NMDA receptor enhancing agents had small positive significant effects on overall cognitive function among patients with dementia (SMD = 0.1002, 95% CI 0.0105-0.1900, P = 0.02860). Subgroup meta-analysis showed patients with Alzheimer's Disease and trials using the Alzheimer Disease Assessment Scale-cognitive subscale as the primary outcome had small positive significant effects (SMD = 0.1042, 95% CI 0.0076-0.2007, P = 0.03451; SMD = 0.1267, 95% CI 0.0145-0.2388, P = 0.2686). This exploratory meta-analysis showed a very small, positive, and significant effect on overall cognition function in patients with dementia. Studies with larger samples are needed to evaluate different cognitive domains and phases of dementia.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan, ROC.,An Nan Hospital, China Medical University, Tainan, Taiwan, ROC
| | - Chieh-Yu Liu
- Biostatistics Consultant Lab, Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, ROC
| | - Shaw-Ji Chen
- Department of Psychiatry, Taitung MacKay Memorial Hospital, Taitung, Taiwan, ROC.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Hsin-Chi Tsai
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien City, Taiwan, ROC. .,Institute of Medical Science, Tzu-Chi University, No. 707, Sec. 3, Chung Yang Rd., Hualien 970, Taiwan, ROC.
| |
Collapse
|
17
|
Desch M, Wunderlich G, Goettel M, Goetz S, Liesenfeld KH, Chan TS, Rosenbrock H, Sennewald R, Link J, Keller S, Wind S. Effects of Cytochrome P450 3A4 Induction and Inhibition on the Pharmacokinetics of BI 425809, a Novel Glycine Transporter 1 Inhibitor. Eur J Drug Metab Pharmacokinet 2021; 47:91-103. [PMID: 34716565 PMCID: PMC8752533 DOI: 10.1007/s13318-021-00723-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 12/02/2022]
Abstract
Background and Objective Increased glycine availability at the synaptic cleft may enhance N-methyl-D-aspartate receptor signalling and provide a promising therapeutic strategy for cognitive impairment associated with schizophrenia. These studies aimed to assess the pharmacokinetics of BI 425809, a potent glycine-transporter-1 inhibitor, when co-administered with a strong cytochrome P450 3A4 (CYP3A4) inhibitor (itraconazole) and inducer (rifampicin). Methods In vitro studies using recombinant CYPs, human liver microsomes, and human hepatocytes were conducted to determine the CYP isoforms responsible for BI 425809 metabolism. In addition, two open-label, fixed-treatment period, phase I studies in healthy male volunteers are described. Period 1: participants received oral BI 425809 25 mg (single dose) on day 1; period 2: participants received multiple doses, across 10 days, of oral itraconazole or rifampicin combined with a single dose of oral BI 425809 25 mg on day 4/7 of the itraconazole/rifampicin treatment, respectively. Pharmacokinetic and safety endpoints were assessed in the absence/presence of itraconazole/rifampicin and included area under the concentration-time curve (AUC) over the time interval 0–167 h (AUC0‒167; itraconazole), 0–168 h (AUC0‒168; rifampicin), or 0–infinity (AUC0-∞; rifampicin and itraconazole), maximum measured concentration (Cmax) of BI 425809, and adverse events. Results In vitro results suggested that CYP3A4 accounted for ≥ 90% of the metabolism of BI 425809. BI 425809 exposure (adjusted geometric mean ratio [%]) was higher in the presence of itraconazole (AUC0‒167: 265.3; AUC0−∞: 597.0; Cmax: 116.1) and lower in the presence of rifampicin (AUC0‒168: 10.3; AUC0−∞: 9.8; Cmax: 37.4) compared with BI 425809 alone. Investigational treatments were well tolerated. Conclusions Systemic exposure of BI 425809 was altered in the presence of strong CYP3A4 modulators, corroborating in vitro results that CYP3A4 mediates a major metabolic pathway for BI 425809. Trial Registration Number NCT02342717 (registered on 15 January 2015) and NCT03082183 (registered on 10 March 2017) Supplementary Information The online version contains supplementary material available at 10.1007/s13318-021-00723-y.
Collapse
Affiliation(s)
- Michael Desch
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany.
| | | | - Markus Goettel
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Sophia Goetz
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Karl-Heinz Liesenfeld
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Holger Rosenbrock
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Regina Sennewald
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Jasmin Link
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Sascha Keller
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| | - Sven Wind
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Baden Württemberg, Germany
| |
Collapse
|
18
|
Metzner C, Steuber V. The beta component of gamma-band auditory steady-state responses in patients with schizophrenia. Sci Rep 2021; 11:20387. [PMID: 34650135 PMCID: PMC8516862 DOI: 10.1038/s41598-021-99793-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
The mechanisms underlying circuit dysfunctions in schizophrenia (SCZ) remain poorly understood. Auditory steady-state responses (ASSRs), especially in the gamma and beta band, have been suggested as a potential biomarker for SCZ. While the reduction of 40 Hz power for 40 Hz drive has been well established and replicated in SCZ patients, studies are inconclusive when it comes to an increase in 20 Hz power during 40 Hz drive. There might be several factors explaining the inconsistencies, including differences in the sensitivity of the recording modality (EEG vs MEG), differences in stimuli (click-trains vs amplitude-modulated tones) and large differences in the amplitude of the stimuli. Here, we used a computational model of ASSR deficits in SCZ and explored the effect of three SCZ-associated microcircuit alterations: reduced GABA activity, increased GABA decay times and NMDA receptor hypofunction. We investigated the effect of input strength on gamma (40 Hz) and beta (20 Hz) band power during gamma ASSR stimulation and saw that the pronounced increase in beta power during gamma stimulation seen experimentally could only be reproduced in the model when GABA decay times were increased and only for a specific range of input strengths. More specifically, when the input was in this specific range, the rhythmic drive at 40 Hz produced a strong 40 Hz rhythm in the control network; however, in the 'SCZ-like' network, the prolonged inhibition led to a so-called 'beat-skipping', where the network would only strongly respond to every other input. This mechanism was responsible for the emergence of the pronounced 20 Hz beta peak in the power spectrum. The other two microcircuit alterations were not able to produce a substantial 20 Hz component but they further narrowed the input strength range for which the network produced a beta component when combined with increased GABAergic decay times. Our finding that the beta component only existed for a specific range of input strengths might explain the seemingly inconsistent reporting in experimental studies and suggests that future ASSR studies should systematically explore different amplitudes of their stimuli. Furthermore, we provide a mechanistic link between a microcircuit alteration and an electrophysiological marker in schizophrenia and argue that more complex ASSR stimuli are needed to disentangle the nonlinear interactions of microcircuit alterations. The computational modelling approach put forward here is ideally suited to facilitate the development of such stimuli in a theory-based fashion.
Collapse
Affiliation(s)
- Christoph Metzner
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany.
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK.
| | - Volker Steuber
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
19
|
Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment. Int J Mol Sci 2021; 22:ijms22189718. [PMID: 34575878 PMCID: PMC8466274 DOI: 10.3390/ijms22189718] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc− is related to glutamate-release regulation. Patients with schizophrenia were recently discovered to exhibit downregulation of xc− subunits—the solute carrier (SLC) family 3 member 2 and the SLC family 7 member 11. We searched for relevant studies from 1980, when Bannai and Kitamura first identified the protein subunit system xc− in lung fibroblasts, with the aim of compiling the biological, functional, and pharmacological characteristics of antiporter xc−, which consists of several subunits. Some of them can significantly stimulate the human brain through the glutamate pathway. Initially, extracellular cysteine activates neuronal xc−, causing glutamate efflux. Next, excitatory amino acid transporters enhance the unidirectional transportation of glutamate and sodium. These two biochemical pathways are also crucial to the production of glutathione, a protective agent for neural and glial cells and astrocytes. Investigation of the expression of system xc− genes in the peripheral white blood cells of patients with schizophrenia can facilitate better understanding of the mental disorder and future development of novel biomarkers and treatments for schizophrenia. In addition, the findings further support the hypoglutamatergic hypothesis of schizophrenia.
Collapse
|
20
|
Chiang TI, Yu YH, Lin CH, Lane HY. Novel Biomarkers of Alzheimer's Disease: Based Upon N-methyl-D-aspartate Receptor Hypoactivation and Oxidative Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:423-433. [PMID: 34294612 PMCID: PMC8316669 DOI: 10.9758/cpn.2021.19.3.423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Early detection and prevention of Alzheimer’s disease (AD) is important. The current treatment for early AD is acetylcholine esterase inhibitors (AChEIs); however, the efficacy is poor. Besides, AChEI did not show efficacy in mild cognitive impairment (MCI). Beta-amyloid (Aβ) deposits have been regarded to be highly related to the pathogenesis of AD. However, many clinical trials aiming at the clearance of Aβ deposits failed to improve the cognitive decline of AD, even at its early phase. There should be other important mechanisms unproven in the course of AD and MCI. Feasible biomarkers for the diagnosis and treatment response of AD are lacking to date. The N-methyl-D-aspartate receptor (NMDAR) activation plays an important role in learning and memory. On the other hand, oxidative stress has been regarded to contribute to aging with the assumption that free radicals damage cell constituents and connective tissues. Our recent study found that an NMDAR enhancer, sodium benzoate (the pivotal inhibitor of D-amino acid oxidase [DAAO]), improved the cognitive and global function of patients with early-phase AD. Further, we found that peripheral DAAO levels were higher in patients with MCI and AD than healthy controls. We also found that sodium benzoate was able to change the activity of antioxidant. These pieces of evidence suggest that the NMDAR function is associated with anti-oxidation, and have potential to be biomarkers for the diagnosis and treatment response of AD.
Collapse
Affiliation(s)
- Ting-I Chiang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hsiang Yu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
21
|
Scarborough J, Mattei D, Dorner-Ciossek C, Sand M, Arban R, Rosenbrock H, Richetto J, Meyer U. Symptomatic and preventive effects of the novel phosphodiesterase-9 inhibitor BI 409306 in an immune-mediated model of neurodevelopmental disorders. Neuropsychopharmacology 2021; 46:1526-1534. [PMID: 33941860 PMCID: PMC8209175 DOI: 10.1038/s41386-021-01016-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
BI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome (APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and APS. In Study 1, adult offspring received BI 409306 0.2, 0.5, or 1 mg/kg or vehicle to establish an active dose. In Study 2, adult offspring received BI 409306 1 mg/kg and/or risperidone 0.025 mg/kg, risperidone 0.05 mg/kg, or vehicle, to evaluate BI 409306 as add-on to standard therapy for schizophrenia. In Study 3, offspring received BI 409306 1 mg/kg during adolescence only, or continually into adulthood to evaluate preventive effects of BI 409306. We found that BI 409306 significantly mitigated MIA-induced social interaction deficits and amphetamine-induced hyperlocomotion, but not prepulse inhibition impairments, in a dose-dependent manner (Study 1). Furthermore, BI 409306 1 mg/kg alone or in combination with risperidone 0.025 mg/kg significantly reversed social interaction deficits and attenuated amphetamine-induced hyperlocomotion in MIA offspring (Study 2). Finally, we revealed that BI 409306 1 mg/kg treatment restricted to adolescence prevented adult deficits in social interaction, whereas continued treatment into adulthood also significantly reduced amphetamine-induced hyperlocomotion (Study 3). Taken together, our findings suggest that symptomatic treatment with BI 409306 can restore social interaction deficits and dopaminergic dysfunctions in a MIA model of neurodevelopmental disruption, lending preclinical support to current clinical trials of BI 409306 in patients with schizophrenia. Moreover, BI 409306 given during adolescence has preventive effects on adult social interaction deficits in this model, supporting its use in people with APS.
Collapse
Affiliation(s)
- Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Daniele Mattei
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Cornelia Dorner-Ciossek
- Department of CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Michael Sand
- Department of Medicine, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Roberto Arban
- Department of CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Holger Rosenbrock
- Department of CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland.
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
23
|
Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Sci Rep 2021; 11:8205. [PMID: 33859248 PMCID: PMC8050278 DOI: 10.1038/s41598-021-87667-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors are widely expressed in the central nervous system. However, their presence and function at extraneuronal sites is less well characterized. In the present study, we examined the expression of NMDA receptor subunit mRNA and protein in human pulmonary artery (HPA) by quantitative polymerase chain reaction (PCR), immunohistochemistry and immunoblotting. We demonstrate that both GluN1 and GluN2 subunit mRNAs are expressed in HPA. In addition, GluN1 and GluN2 (A–D) subunit proteins are expressed by human pulmonary artery smooth muscle cells (HPASMCs) in vitro and in vivo. These subunits localize on the surface of HPASMCs and form functional ion channels as evidenced by whole-cell patch-clamp electrophysiology and reduced phenylephrine-induced contractile responsiveness of human pulmonary artery by the NMDA receptor antagonist MK801 under hypoxic condition. HPASMCs also express high levels of serine racemase and vesicular glutamate transporter 1, suggesting a potential source of endogenous agonists for NMDA receptor activation. Our findings show HPASMCs express functional NMDA receptors in line with their effect on pulmonary vasoconstriction, and thereby suggest a novel therapeutic target for pharmacological modulations in settings associated with pulmonary vascular dysfunction.
Collapse
|
24
|
Lane HY, Tu CH, Lin WC, Lin CH. Brain Activity of Benzoate, a D-Amino Acid Oxidase Inhibitor, in Patients With Mild Cognitive Impairment in a Randomized, Double-Blind, Placebo Controlled Clinical Trial. Int J Neuropsychopharmacol 2021; 24:392-399. [PMID: 33406269 PMCID: PMC8130199 DOI: 10.1093/ijnp/pyab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current anti-dementia drugs cannot benefit mild cognitive impairment (MCI). Sodium benzoate (a D-amino acid oxidase [DAO] inhibitor) has been found to improve the cognitive function of patients with early-phase Alzheimer's disease (mild Alzheimer's disease or MCI). However, its effect on brain function remains unknown. This study aimed to evaluate the influence of benzoate on functional magnetic resonance imaging in patients with amnestic MCI. METHODS This was a 24-week, randomized, double-blind, placebo-controlled trial that enrolled 21 patients with amnestic MCI and allocated them randomly to either of 2 treatment groups: (1) benzoate group (250-1500 mg/d), or (2) placebo group. We assessed the patients' working memory, verbal learning and memory, and resting-state functional magnetic resonance imaging and regional homogeneity (ReHo) maps at baseline and endpoint. RESULTS Resting-state ReHo decreased in right orbitofrontal cortex after benzoate treatment but did not change after placebo. Moreover, after benzoate treatment, the change in working memory was positively correlated with the change in ReHo in right precentral gyrus and right middle occipital gyrus; and the change in verbal learning and memory was positively correlated with the change in ReHo in left precuneus. In contrast, after placebo treatment, the change in working memory or in verbal learning and memory was not correlated with the change in ReHo in any brain region. CONCLUSION The current study is the first to our knowledge to demonstrate that a DAO inhibitor, sodium benzoate herein, can alter brain activity as well as cognitive functions in individuals with MCI. The preliminary finding lends supports for DAO inhibition as a novel approach for early dementing processes.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan ,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Wei-Che Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan ,Correspondence: Chieh-Hsin Lin, MD, PhD, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong District, Kaohsiung City, 833, Taiwan ()
| |
Collapse
|
25
|
Cerebrospinal fluid glutamate changes in functional movement disorders. NPJ PARKINSONS DISEASE 2020; 6:37. [PMID: 33298941 PMCID: PMC7718900 DOI: 10.1038/s41531-020-00140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022]
Abstract
The aim of this study was to assess cerebrospinal fluid (CSF) concentrations of specific amino acids using a high-performance liquid chromatography system in a sample of patients with functional movement disorders (FMDs) and in a sample of controls. CSF levels of glutamate were significantly lower in patients with FMD than in controls. This finding argues in favor of glutamatergic dysfunction in the pathophysiology of FMD.
Collapse
|
26
|
Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, Wu T, Du H, Yu ZP, Zhao QQ, Ling Y, Zhang ZY, Shen HW. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology 2020; 177:108231. [DOI: 10.1016/j.neuropharm.2020.108231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 07/04/2020] [Indexed: 11/30/2022]
|
27
|
Huang LC, Lin SH, Tseng HH, Chen KC, Yang YK. The integrated model of glutamate and dopamine hypothesis for schizophrenia: Prediction and personalized medicine for prevent potential treatment-resistant patients. Med Hypotheses 2020; 143:110159. [PMID: 32795840 DOI: 10.1016/j.mehy.2020.110159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is one of the subgroups of schizophrenia of which little is known with regard to its optimal mechanism. Treatment response, either as full remission of symptoms or prediction by biomarker, is important in psychiatry. We have proposed a model that integrates dopaminergic and glutamatergic systems with the biological interactions of TRS patients. We hypothesize that the subgroups of schizophrenia may be determined by glutamatergic and dopaminergic concentrations prior to medical treatment. This hypothesis implies that higher glutamatergic concentration in the brain with normalized or decreased dopamine synthesis capacity may explain aspects of TRS as observed in clinical medical practice, neuroimaging measurements, and brain stimulations. According to this hypothesis, the ability to prescribe a proper medication combination, to predict the outcome in first-episode psychosis, and personalized medicine for chronic schizophrenia patients can be applied into practice. This represents an initial step in explaining psychosis due to the valence of two neurotransmitters. Future studies are needed to examine the validity of this mechanism.
Collapse
Affiliation(s)
- Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Chia-Yi Branch, Taichung Veteran General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
28
|
Errico F, Cuomo M, Canu N, Caputo V, Usiello A. New insights on the influence of free d-aspartate metabolism in the mammalian brain during prenatal and postnatal life. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140471. [PMID: 32561430 DOI: 10.1016/j.bbapap.2020.140471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023]
Abstract
Free d-aspartate is abundant in the mammalian embryonic brain. However, following the postnatal onset of the catabolic d-aspartate oxidase (DDO) activity, cerebral d-aspartate levels drastically decrease, remaining constantly low throughout life. d-Aspartate stimulates both glutamatergic NMDA receptors (NMDARs) and metabotropic Glu5 receptors. In rodents, short-term d-aspartate exposure increases spine density and synaptic plasticity, and improves cognition. Conversely, persistently high d-Asp levels produce NMDAR-dependent neurotoxic effects, leading to precocious neuroinflammation and cell death. These pieces of evidence highlight the dichotomous impact of d-aspartate signaling on NMDAR-dependent processes and, in turn, unveil a neuroprotective role for DDO in preventing the detrimental effects of excessive d-aspartate stimulation during aging. Here, we will focus on the in vivo influence of altered d-aspartate metabolism on the modulation of glutamatergic functions and its involvement in translational studies. Finally, preliminary data on the role of embryonic d-aspartate in the mouse brain will also be reviewed.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy
| | - Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Institute of Biochemistry and Cell Biology, National Research Council (CNR), 00015, Monterotondo Scalo, Rome, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
29
|
d-glutamate and Gut Microbiota in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21082676. [PMID: 32290475 PMCID: PMC7215955 DOI: 10.3390/ijms21082676] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background: An increasing number of studies have shown that the brain–gut–microbiota axis may significantly contribute to Alzheimer’s disease (AD) pathogenesis. Moreover, impaired memory and learning involve the dysfunction neurotransmission of glutamate, the agonist of the N-methyl-d-aspartate receptor and a major excitatory neurotransmitter in the brain. This systematic review aimed to summarize the current cutting-edge research on the gut microbiota and glutamate alterations associated with dementia. Methods: PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials, and Cochrane Systematic Reviews were reviewed for all studies on glutamate and gut microbiota in dementia published up until Feb 2020. Results: Several pilot studies have reported alterations of gut microbiota and metabolites in AD patients and other forms of dementia. Gut microbiota including Bacteroides vulgatus and Campylobacter jejuni affect glutamate metabolism and decrease the glutamate metabolite 2-keto-glutaramic acid. Meanwhile, gut bacteria with glutamate racemase including Corynebacterium glutamicum, Brevibacterium lactofermentum, and Brevibacterium avium can convert l-glutamate to d-glutamate. N-methyl-d-aspartate glutamate receptor (NMDAR)-enhancing agents have been found to potentially improve cognition in AD or Parkinson’s disease patients. These findings suggest that d-glutamate (d-form glutamate) metabolized by the gut bacteria may influence the glutamate NMDAR and cognitive function in dementia patients. Conclusions: Gut microbiota and glutamate are potential novel interventions to be developed for dementia. Exploring comprehensive cognitive functions in animal and human trials with glutamate-related NMDAR enhancers are warranted to examine d-glutamate signaling efficacy in gut microbiota in patients with AD and other neurodegenerative dementias.
Collapse
|
30
|
Rosenbrock H, Giovannini R, Schänzle G, Koros E, Runge F, Fuchs H, Marti A, Reymann KG, Schröder UH, Fedele E, Dorner-Ciossek C. The Novel Phosphodiesterase 9A Inhibitor BI 409306 Increases Cyclic Guanosine Monophosphate Levels in the Brain, Promotes Synaptic Plasticity, and Enhances Memory Function in Rodents. J Pharmacol Exp Ther 2019; 371:633-641. [PMID: 31578258 DOI: 10.1124/jpet.119.260059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) is an established cellular model underlying learning and memory, and involves intracellular signaling mediated by the second messenger cyclic guanosine monophosphate (cGMP). As phosphodiesterase (PDE)9A selectively hydrolyses cGMP in areas of the brain related to cognition, PDE9A inhibitors may improve cognitive function by enhancing NMDA receptor-dependent LTP. This study aimed to pharmacologically characterize BI 409306, a novel PDE9A inhibitor, using in vitro assays and in vivo determination of cGMP levels in the brain. Further, the effects of BI 409306 on synaptic plasticity evaluated by LTP in ex vivo hippocampal slices and on cognitive performance in rodents were also investigated. In vitro assays demonstrated that BI 409306 is a potent and selective inhibitor of human and rat PDE9A with mean concentrations at half-maximal inhibition (IC50) of 65 and 168 nM. BI 409306 increased cGMP levels in rat prefrontal cortex and cerebrospinal fluid and attenuated a reduction in mouse striatum cGMP induced by the NMDA-receptor antagonist MK-801. In ex vivo rat brain slices, BI 409306 enhanced LTP induced by both weak and strong tetanic stimulation. Treatment of mice with BI 409306 reversed MK-801-induced working memory deficits in a T-maze spontaneous-alternation task and improved long-term memory in an object recognition task. These findings suggest that BI 409306 is a potent and selective inhibitor of PDE9A. BI 409306 shows target engagement by increasing cGMP levels in brain, facilitates synaptic plasticity as demonstrated by enhancement of hippocampal LTP, and improves episodic and working memory function in rodents. SIGNIFICANCE STATEMENT: This preclinical study demonstrates that BI 409306 is a potent and selective PDE9A inhibitor in rodents. Treatment with BI 409306 increased brain cGMP levels, promoted long-term potentiation, and improved episodic and working memory performance in rodents. These findings support a role for PDE9A in synaptic plasticity and cognition. The potential benefits of BI 409306 are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Holger Rosenbrock
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Riccardo Giovannini
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Gerhard Schänzle
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Eliza Koros
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Frank Runge
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Holger Fuchs
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Anelise Marti
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Klaus G Reymann
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Ulrich H Schröder
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Ernesto Fedele
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany (H.R., R.G., G.S., E.K., F.R., H.F., A.M., C.D.-C.); Leibniz Institute for Neurobiology, Magdeburg, Germany (K.G.R., U.H.S.); and Department of Pharmacy, Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy (E.F.)
| |
Collapse
|
31
|
Lin CH, Chiu CC, Huang CH, Yang HT, Lane HY. pLG72 levels increase in early phase of Alzheimer's disease but decrease in late phase. Sci Rep 2019; 9:13221. [PMID: 31520071 PMCID: PMC6744481 DOI: 10.1038/s41598-019-49522-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
pLG72, named as D-amino acid oxidase activator (although it is not an activator of D-amino acid oxidase demonstrated by later studies), in mitochondria has been regarded as an important modulator of D-amino acid oxidase that can regulate the N-methyl-D-aspartate receptor (NMDAR). Both oxidative stress in mitochondria and NMDAR neurotransmission play essential roles in the process of neurodegenerative dementia. The aim of the study was to investigate whether pLG72 levels changed with the severity of neurodegenerative dementia. We enrolled 376 individuals as the overall cohort, consisting of five groups: healthy elderly, amnestic mild cognitive impairment [MCI], mild Alzheimer's disease [AD], moderate AD, and severe AD. pLG72 levels in plasma were measured using Western blotting. The severity of cognitive deficit was principally evaluated by Clinical Dementia Rating Scale. A gender- and age- matched cohort was selected to elucidate the effects of gender and age. pLG72 levels increased in the MCI and mild AD groups when compared to the healthy group. However, pLG72 levels in the moderate and severe AD groups were lower than those in the mild AD group. D-serine level and D- to total serine ratio were significantly different among the five groups. L-serine levels were correlated with the pLG72 levels. The results in the gender- and age- matched cohort were similar to those of the overall cohort. The finding supports the hypothesis of NMDAR hypofunction in early-phase dementia and NMDAR hyperfunction in late-phase dementia. Further studies are warranted to test whether pLG72 could reflect the function of NMDAR.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiung-Hsien Huang
- Department of Medicine Research, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ting Yang
- Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
32
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
33
|
Tanaka M, Kunugi A, Suzuki A, Suzuki N, Suzuki M, Kimura H. Preclinical characterization of AMPA receptor potentiator TAK-137 as a therapeutic drug for schizophrenia. Pharmacol Res Perspect 2019; 7:e00479. [PMID: 31086673 PMCID: PMC6507438 DOI: 10.1002/prp2.479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022] Open
Abstract
The downregulation of the glutamate system may be involved in positive, negative, and cognitive symptoms of schizophrenia. Through enhanced glutamate signaling, the activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, an ionotropic glutamate receptor, could be a new therapeutic strategy for schizophrenia. TAK-137 is a novel AMPA receptor potentiator with minimal agonistic activity; in this study, we used rodents and nonhuman primates to assess its potential as a drug for schizophrenia. At 10 mg kg-1 p.o., TAK-137 partially inhibited methamphetamine-induced hyperlocomotion in rats, and at 3, 10, and 30 mg kg-1 p.o., TAK-137 partially inhibited MK-801-induced hyperlocomotion in mice, suggesting weak effects on the positive symptoms of schizophrenia. At 0.1 and 0.3 mg kg-1 p.o., TAK-137 significantly ameliorated MK-801-induced deficits in the social interaction of rats, demonstrating potential improvement of impaired social functioning, which is a negative symptom of schizophrenia. The effects of TAK-137 were evaluated on multiple cognitive domains-attention, working memory, and cognitive flexibility. TAK-137 enhanced attention in the five-choice serial reaction time task in rats at 0.2 mg kg-1 p.o., and improved working memory both in rats and monkeys: 0.2 and 0.6 mg kg-1 p.o. ameliorated MK-801-induced deficits in the radial arm maze test in rats, and 0.1 mg kg-1 p.o. improved the performance of ketamine-treated monkeys in the delayed matching-to-sample task. At 0.1 and 1 mg kg-1 p.o., TAK-137 improved the cognitive flexibility of subchronic phencyclidine-treated rats in the reversal learning test. Thus, TAK-137-type AMPA receptor potentiators with low intrinsic activity may offer new therapies for schizophrenia.
Collapse
Affiliation(s)
- Maiko Tanaka
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Atsushi Suzuki
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Motohisa Suzuki
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, ResearchTakeda Pharmaceutical Company LimitedFujisawaJapan
| |
Collapse
|
34
|
Curic S, Leicht G, Thiebes S, Andreou C, Polomac N, Eichler IC, Eichler L, Zöllner C, Gallinat J, Steinmann S, Mulert C. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2019; 44:1239-1246. [PMID: 30758327 PMCID: PMC6785009 DOI: 10.1038/s41386-019-0328-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
Abnormal gamma-band oscillations (GBO) have been frequently associated with the pathophysiology of schizophrenia. GBO are modulated by glutamate, a neurotransmitter, which is continuously discussed to shape the complex symptom spectrum in schizophrenia. The current study examined the effects of ketamine, a glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist, on the auditory-evoked gamma-band response (aeGBR) and psychopathological outcomes in healthy volunteers to investigate neuronal mechanisms of psychotic behavior. In a placebo-controlled, randomized crossover design, the aeGBR power, phase-locking factor (PLF) during a choice reaction task, the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale were assessed in 25 healthy subjects. Ketamine was applied in a subanaesthetic dose. Low-resolution brain electromagnetic tomography was used for EEG source localization. Significant reductions of the aeGBR power and PLF were identified under ketamine administration compared to placebo (p < 0.01). Source-space analysis of aeGBR generators revealed significantly reduced current source density (CSD) within the anterior cingulate cortex during ketamine administration. Ketamine induced an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01) and increased response times (p < 0.001) and error rates (p < 0.01). Only negative symptoms were significantly associated with an aeGBR power decrease (p = 0.033) as revealed by multiple linear regression. These findings argue for a substantial role of the glutamate system in the mediation of dysfunctional gamma band responses and negative symptomatology of schizophrenia and are compatible with the NMDAR hypofunction hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Stjepan Curic
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute for Sex Research and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Thiebes
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychotic Disorders, University Psychiatric Hospital, University of Basel, Basel, Switzerland
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris-Carola Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Zöllner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus Liebig University, Gießen, Germany
| |
Collapse
|
35
|
Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry 2019; 9:151. [PMID: 31123247 PMCID: PMC6533277 DOI: 10.1038/s41398-019-0492-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022] Open
Abstract
Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) arise from complex interactions between genetic and environmental factors. Common genetic variants associated with multiple psychiatric disorders suggest that shared genetic architecture could contribute to divergent clinical syndromes. To evaluate shared transcriptional alterations across connected brain regions, Affymetrix microarrays were used to profile postmortem dorsolateral prefrontal cortex (DLPFC), hippocampus, and associative striatum from 19 well-matched tetrads of subjects with SCZ, BD, MDD, or unaffected controls. SCZ subjects showed a substantial burden of differentially expressed genes across all examined brain regions with the greatest effects in hippocampus, whereas BD and MDD showed less robust alterations. Pathway analysis of transcriptional profiles compared across diagnoses demonstrated commonly enriched pathways between all three disorders in hippocampus, significant overlap between SCZ and BD in DLPFC, but no significant overlap of enriched pathways between disorders in striatum. SCZ samples showed increased expression of transcripts associated with inflammation across all brain regions examined, which was not evident in BD or MDD, or in rat brain following chronic dosing with antipsychotic drugs. Several markers of inflammation were confirmed by RT-PCR in hippocampus, including S100A8/9, IL-6, MAFF, APOLD1, IFITM3, and BAG3. A cytokine ELISA panel showed significant increases in IL-2 and IL-12p70 protein content in hippocampal tissue collected from same SCZ subjects when compared to matched control subjects. These data suggest an overlapping subset of dysregulated pathways across psychiatric disorders; however, a widespread increase in inflammation appears to be a specific feature of the SCZ brain and is not likely to be attributable to chronic antipsychotic drug treatment.
Collapse
|
36
|
Lin CH, Lane HY. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front Pharmacol 2019; 10:540. [PMID: 31191302 PMCID: PMC6539199 DOI: 10.3389/fphar.2019.00540] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
While the world’s population is aging, the prevalence of dementia and the associated behavioral and psychological symptoms of dementia (BPSD) rises rapidly. BPSD are associated with worsening of cognitive function and poorer prognosis. No pharmacological treatment has been approved to be beneficial for BPSD to date. Dysfunction of the N-methyl-D-aspartate receptor (NMDAR)-related neurotransmission leads to cognitive impairment and behavioral changes, both of which are core symptoms of BPSD. Memantine, an NMDAR partial antagonist, is used to treat moderate to severe Alzheimer’s disease (AD). On the other hand, a D-amino acid oxidase inhibitor improved early-phase AD. Whether to enhance or to attenuate the NMDAR may depend on the phases of dementia. It will be valuable to develop biomarkers indicating the activity of NMDAR, particularly in BPSD. In addition, recent reports suggest that gender difference exists in the treatment of dementia. Selecting subpopulations of patients with BPSD who are prone to improvement with treatment would be important. We reviewed literatures regarding the treatment of BPSD, focusing on the NMDAR-related modulation and precision medicine. Future studies examining the NMDAR modulators with the aid of potential biomarkers to tailor the treatment for individualized patients with BPSD are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Dubovyk V, Manahan-Vaughan D. Distinct Time-Course of Alterations of Groups I and II Metabotropic Glutamate Receptor and GABAergic Receptor Expression Along the Dorsoventral Hippocampal Axis in an Animal Model of Psychosis. Front Behav Neurosci 2019; 13:98. [PMID: 31139061 PMCID: PMC6519509 DOI: 10.3389/fnbeh.2019.00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Psychosis is a clinical state that encompasses a range of abnormal conditions, including distortions in sensory information processing and the resultant delusional thinking, emotional discordance and cognitive impairments. Upon developing this condition, the rate at which cognitive and behavioral deteriorations progress steadily increases suggesting an active contribution of the first psychotic event to the progression of structural and functional abnormalities and disease establishment in diagnosed patients. Changes in GABAergic and glutamatergic function, or expression, in the hippocampus have been proposed as a key factor in the pathophysiology of psychosis. However, little is known as to the time-point of onset of putative changes, to what extent they are progressive, and their relation to disease stabilization. Here, we characterized the expression and distribution patterns of groups I and II metabotropic glutamate (mGlu) receptors and GABA receptors 1 week and 3 months after systemic treatment with an N-methyl-D-aspartate receptor (NMDAR) antagonist (MK801) that is used to model a psychosis-like state in adult rats. We found an early alteration in the expression of mGlu1, mGlu2/3, and GABAB receptors across the hippocampal dorsoventral and transverse axes. This expanded to include an up-regulation of mGlu5 levels across the entire CA1 region and a reduction in GABAB expression, as well as GAD67-positive interneurons particularly in the dorsal hippocampus that appeared 3 months after treatment. Our findings indicate that a reduction of excitability may occur in the hippocampus soon after first-episode psychosis. This changes, over time, into increased excitability. These hippocampus-specific alterations are likely to contribute to the pathophysiology and stabilization of psychosis.
Collapse
Affiliation(s)
- Valentyna Dubovyk
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
38
|
Chang CH, Lane HY, Tseng PT, Chen SJ, Liu CY, Lin CH. Effect of N-methyl-D-aspartate-receptor-enhancing agents on cognition in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. J Psychopharmacol 2019; 33:436-448. [PMID: 30730250 DOI: 10.1177/0269881118822157] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple N-methyl-d-aspartate (NMDA)-receptor-enhancing agents have demonstrated promising effects for cognition in schizophrenia. However, the results of studies have been conflicting. This updated meta-analysis explored the effect of NMDA-receptor-enhancing agents on cognitive function. METHODS We searched PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials and Cochrane Systematic Reviews for studies on the effect of NMDA-receptor-enhancing agents on cognitive function in patients with schizophrenia up to September 2018. Double-blind randomised placebo trials with cognition rating scales were included. We pooled studies by using a random-effect model for comparisons with add-on NMDA-receptor-enhancing agents. Cognitive function scores were compared between baseline and subsequent levels, and NMDA-receptor-positive modulators were assessed using the standardised mean difference (SMD) with 95% confidence intervals (CIs). We evaluated statistical heterogeneity through visual inspection of funnel plots and by using the I2 statistic. RESULTS We identified 25 trials with 1951 participants meeting the inclusion criteria. NMDA-receptor-enhancing agents had a small but nonsignificant effect compared with the placebo on overall cognitive function (SMD = 0.068, CI = -0.056 to 0.193, P = 0.283). We identified trials enrolling patients aged between 30 and 39 years old, which reported significant positive effects (SMD: 0.163, 95% CI: 0.016-0.310, P = 0.030). Men were associated with a smaller effect of NMDA-receptor-positive modulators on overall cognitive function. Moreover, subgroup meta-analysis of cognitive domains revealed that N-acetyl cysteine (NAC) had a significant effect on working memory ( P-value for interaction = 0.038; SMD = 0.679, CI = 0.397-0.961, P < 0.001). CONCLUSIONS Our meta-analysis revealed no significant effect of NMDA-enhancing agents on overall cognition. However, subgroup analysis suggested that NMDAR-enhancing agents may benefit young patients with schizophrenia, and NAC may have an effect on working memory. Additional trials with larger samples are suggested to evaluate these cognitive domains and ascertain the possible mechanisms.
Collapse
Affiliation(s)
- Chun-Hung Chang
- 1 Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,2 Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- 1 Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,2 Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Ping-Tao Tseng
- 5 Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung, Taiwan.,6 WinShine Clinics in Specialty of Psychiatry, Kaohsiung, Taiwan
| | - Shaw-Ji Chen
- 7 Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung, Taiwan.,8 Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chieh-Yu Liu
- 9 Biostatistical Consulting Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chieh-Hsin Lin
- 1 Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,10 Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Lin CH, Lane HY. Early Identification and Intervention of Schizophrenia: Insight From Hypotheses of Glutamate Dysfunction and Oxidative Stress. Front Psychiatry 2019; 10:93. [PMID: 30873052 PMCID: PMC6400883 DOI: 10.3389/fpsyt.2019.00093] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a severe mental disorder which leads to functional deterioration. Early detection and intervention are vital for better prognosis. However, the diagnosis of schizophrenia still depends on clinical observation to date. Without reliable biomarkers, schizophrenia is difficult to detect in its early phase. Further, there is no approved medication for prodromal schizophrenia because current antipsychotics fail to show satisfactory efficacy and safety. Therefore, to develop an effective early diagnostic and therapeutic approach for schizophrenia, especially in its prodromal phase, is crucial. Glutamate signaling dysfunction and dysregulation of oxidative stress have been considered to play important roles in schizophrenic prodrome. The N-methyl-D-aspartate receptor (NMDAR) is one of three types of ionotropic glutamate receptors. In this article, we reviewed literature regarding NMDAR hypofunction, oxidative stress, and the linkage between both in prodromal schizophrenia. The efficacy of NMDAR enhancers such as D-amino acid oxidase inhibitor was addressed. Finally, we highlighted potential biomarkers related to NMDAR and oxidative stress regulation, and therefore suggested the strategies of early detection and intervention of prodromal schizophrenia. Future larger-scale studies combining biomarkers and novel drug development for early psychosis are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
40
|
Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 2019; 245:1119-1125. [PMID: 30699855 DOI: 10.1016/j.jad.2018.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a complex mental disorder. The lack of well-established biomarkers hinders its diagnosis, treatment, and new-drug development. N-methyl-D-aspartate receptor (NMDAR) dysfunction has been implicated in the pathogenesis of MDD. This study examined whether expressions of the NMDAR-related genes are characteristic of MDD. METHODS Expressions of NMDAR-related genes including SRR, SHMT2, PSAT1, GCAT, GAD1, SLC1A4, NRG1 and COMT in peripheral WBCs of 110 patients with MDD (25 drug-naïve, 21 drug-free, and 64 medicated patients) and 125 healthy individuals were measured using quantitative PCR. RESULTS The mRNA expression levels of SRR, PSAT1, GCAT, GAD1, NRG1 and COMT were significantly different among the four groups (all p < 0.05). For drug-naïve patients, the ΔΔCT values of SRR, PSAT1, GCAT, GAD1, and NRG1 mRNA expressions were significantly different from those in healthy individuals (all p < 0.05). The ROC analysis of the ΔΔCT values of the target genes for differentiating drug-naïve patients from healthy controls showed an excellent sensitivity (0.960) and modest specificity (0.640) (AUC = 0.889). Drug-free and medicated patients obtained less favorable AUC values while compared to healthy controls. The results for the age- and sex-matched cohort were similar to those of the unmatched cohort. CONCLUSIONS This is the first study demonstrating that the peripheral mRNA expression levels of NMDAR-related genes may be altered in patients with MDD, especially drug-naïve individuals. The finding supports the NMDAR hypothesis of depression. Whether mRNA expresssion of NMDAR-related genes could serve as a potential biomarker of MDD deserves further investigations.
Collapse
|
41
|
Wang X, Ding S, Lu Y, Jiao Z, Zhang L, Zhang Y, Yang Y, Zhang Y, Li W, Lv L. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia. Brain Res Bull 2019; 147:140-147. [PMID: 30772438 DOI: 10.1016/j.brainresbull.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
Abstract
Schizophrenia treatment remains a major challenge, especially the associated cognitive impairments, as these are not consistently alleviated by conventional antipsychotics. Recent animal and clinical studies suggest that the nitric oxide (NO) donor sodium nitroprusside (SNP) reduces the psychiatric symptoms and cognitive deficits of schizophrenia. The present study was designed to investigate the efficacy of SNP against schizophrenia-like behavioral and cognitive deficits in the dizocilpine (MK-801) rat model. We used the rotarod and open field tests to identify the SNP dose which had no adverse effects on rat's exploratory and motor behavior, then established the schizophrenia model by injecting adult Sprague-Dawley rats intraperitoneally with MK-801 (0.4 mg/kg) with or without SNP pre-treatment. Behavioral changes were examined after 10 min. Prepulse inhibition (PPI) and the Y maze tests were conducted to assess cognitive deficits, and elevated plus maze and open field tests to assess anxiety-like behaviors. Preliminary rotarod and open field tests demonstrated that 2.5 mg/kg SNP had no effect on motor performance. Acute MK-801 treatment induced both cognitive deficits and anxiety. Co-administration of SNP (2.5 mg/kg) failed to improve these schizophrenia-like abnormalities. Sodium nitroprusside appears unable to improve schizophrenia-like symptoms and cognitive deficits induced by MK-801, inconsistent with the effectiveness of SNP as an adjunct therapy for anxiety disorders and working memory impairments in schizophrenia patients. Future studies are required to define an effective dose range for SNP monotherapy and adjunct therapy in different rodent models.
Collapse
Affiliation(s)
- Xiujuan Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Shuang Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Yanli Lu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Zhiqiang Jiao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Lin Zhang
- Wuhan Mental Health Center, The Ninth Clinical College of Huazhong University of Science and Technology, No.93, Youyi Road, Wuhan, 430022, Hubei, People's Republic of China.
| | - Yan Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, No.83, Hulan East Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| | - Yujuan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| |
Collapse
|
42
|
Tu CH, MacDonald I, Chen YH. The Effects of Acupuncture on Glutamatergic Neurotransmission in Depression, Anxiety, Schizophrenia, and Alzheimer's Disease: A Review of the Literature. Front Psychiatry 2019; 10:14. [PMID: 30809158 PMCID: PMC6379324 DOI: 10.3389/fpsyt.2019.00014] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropsychiatric disorders, including depression, anxiety, schizophrenia, and Alzheimer's disease (AD), are diseases that are directly or indirectly associated with cerebral dysfunction and contribute significantly to disability in adult populations worldwide. Important limitations surround the currently available pharmacologic agents for neuropsychiatric disorders and, moreover, many patients fail to respond to these therapies. Acupuncture might be a complementary therapy for neuropsychiatry disorders. In this review, we investigate the current evidence for the treatment efficacy of acupuncture in depression, anxiety, schizophrenia, and AD. Secondly, we review recent advances in understanding of the dysregulated glutamate system underlying the pathophysiology of these disorders. Finally, we discuss the ways in which acupuncture treatment can potentially modulate glutamate receptors and excitatory amino acid transporters. We conclude that the treatment effects of acupuncture may be underpinned by its intervention in the dysregulated glutamate system. Further preclinical and clinical studies are needed to clarify the possible mechanisms of acupuncture in these neuropsychiatric disorders and to establish protocols for treatment guidelines.
Collapse
Affiliation(s)
- Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Iona MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
MacKay MAB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front Psychiatry 2019; 10:25. [PMID: 30787885 PMCID: PMC6372501 DOI: 10.3389/fpsyt.2019.00025] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
D-Serine is a potent co-agonist at the NMDA glutamate receptor and has been the object of many preclinical studies to ascertain the nature of its metabolism, its regional and cellular distribution in the brain, its physiological functions and its possible clinical relevance. The enzymes involved in its formation and catabolism are serine racemase (SR) and D-amino acid oxidase (DAAO), respectively, and manipulations of the activity of those enzymes have been useful in developing animal models of schizophrenia and in providing clues to the development of potential new antipsychotic strategies. Clinical studies have been conducted in schizophrenia patients to evaluate body fluid levels of D-serine and/or to use D-serine alone or in combination with antipsychotics to determine its effectiveness as a therapeutic agent. D-serine has also been used in combination with DAAO inhibitors in preclinical investigations, and interesting results have been obtained. Genetic studies and postmortem brain studies have also been conducted on D-serine and the enzymes involved in its metabolism. It is also of considerable interest that in recent years clinical and preclinical investigations have suggested that D-serine may also have antidepressant properties. Clinical studies have also shown that D-serine may be a biomarker for antidepressant response to ketamine. Relevant to both schizophrenia and depression, preclinical and clinical studies with D-serine indicate that it may be effective in reducing cognitive dysfunction.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Maryana Kravtsenyuk
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rejish Thomas
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nicholas D Mitchell
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Chang CH, Lane HY, Liu CY, Cheng PC, Chen SJ, Lin CH. C-reactive protein is associated with severity of thought and language dysfunction in patients with schizophrenia. Neuropsychiatr Dis Treat 2019; 15:2621-2627. [PMID: 31571879 PMCID: PMC6750161 DOI: 10.2147/ndt.s223278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated an association between C-reactive protein (CRP) levels and schizophrenia. However, the findings on psychotic severity and cognition remain inconsistent. The relationship between CRP and formal thought disorder in subdomains remains unclear. METHODS We enrolled stable patients (defined as those who had no treatment changes during the 4-week period before evaluation) with a diagnosis of schizophrenia or schizoaffective disorder, according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. We used the 30-item Thought and Language Disorder (TALD) scale to evaluate thought and language dysfunction over four subscales. We assessed psychotic symptoms using the Positive and Negative Syndrome Scale (PANSS). We collected fasting venous blood and measured plasma CRP levels. RESULTS We enrolled 60 patients with schizophrenia. All patients received TALD and PANSS evaluation, and 33 of them had their CRP levels checked. The multivariate regression analysis indicated that CRP levels were significantly associated with the total score on the TALD (t=2.757, P=0.010) and the TALD Objective Positive subscale (t=2.749, P=0.011), after sex, age, duration of illness (in years), and use of atypical antipsychotics were adjusted for. Additionally, CRP was significantly associated with the PANSS positive subscale (t=2.102, P=0.045). A significantly positive correlation was observed between the total scores on the TALD scale and PANSS (ρ =0.751, P<0.001). CONCLUSION Our results suggest that abnormal CRP levels are significantly associated with formal thought and language dysfunction in the Objective Positive subdomain and positive psychotic symptoms.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consulting Laboratory, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Po-Chih Cheng
- Biostatistical Consulting Laboratory, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Memorial Hospital Taitung Branch, Taitung, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Wang X, Zhao J, Hu Y, Jiao Z, Lu Y, Ding M, Kou Y, Li B, Meng F, Zhao H, Li H, Li W, Yang Y, Lv L. Sodium nitroprusside treatment for psychotic symptoms and cognitive deficits of schizophrenia: A randomized, double-blind, placebo-controlled trial. Psychiatry Res 2018; 269:271-277. [PMID: 30170285 DOI: 10.1016/j.psychres.2018.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/07/2018] [Accepted: 08/19/2018] [Indexed: 11/24/2022]
Abstract
Schizophrenia presents with a broad range of negative, positive, and cognitive symptoms, and comprehensive treatment is still a challenge. Sodium nitroprusside (SNP) has been reported to rapidly reduce psychotic symptoms and improve cognitive functions in patients with schizophrenia, providing a new possible direction for treatment. In this study, we tested whether SNP can improve psychotic symptoms and cognitive function in schizophrenia patients with longer disease history. This was a randomized, double-blind, placebo-controlled trial conducted between May 2016 and April 2017. Forty-two schizophrenia patients aged 18-45 years were recruited from Henan Province Mental Hospital. Baseline psychiatric symptoms were measured using the Positive and Negative Syndrome Scale (PANSS), and baseline cognitive functions were measured using the Wechsler Adult Intelligence Scale. Patients received two SNP or placebo infusions (0.5 μg/kg per min for 4 h) at a one-week interval. We reassessed psychiatric symptoms and cognitive functions using the same tests shortly after the first and second infusions and 4 weeks after the second infusion. We did not find any significant effect of SNP over placebo on psychotic symptoms or cognitive functions, although SNP was relatively well tolerated with a good safety profile.
Collapse
Affiliation(s)
- Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - YunQing Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Zhiqiang Jiao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanna Kou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Benliang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fancui Meng
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongzu Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hong Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
46
|
Lin CH, Lin CH, Chang YC, Huang YJ, Chen PW, Yang HT, Lane HY. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol Psychiatry 2018; 84:422-432. [PMID: 29397899 DOI: 10.1016/j.biopsych.2017.12.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Clozapine is the last-line antipsychotic agent for refractory schizophrenia. To date, there is no convincing evidence for augmentation on clozapine. Activation of N-methyl-D-aspartate receptors, including inhibition of D-amino acid oxidase that may metabolize D-amino acids, has been reported to be beneficial for patients receiving antipsychotics other than clozapine. This study aimed to examine the efficacy and safety of a D-amino acid oxidase inhibitor, sodium benzoate, for schizophrenia patients who had poor response to clozapine. METHODS We conducted a randomized, double-blind, placebo-controlled trial. Sixty schizophrenia inpatients that had been stabilized with clozapine were allocated into three groups for 6 weeks' add-on treatment of 1 g/day sodium benzoate, 2 g/day sodium benzoate, or placebo. The primary outcome measures were Positive and Negative Syndrome Scale (PANSS) total score, Scale for the Assessment of Negative Symptoms, Quality of Life Scale, and Global Assessment of Functioning. Side effects and cognitive functions were also measured. RESULTS Both doses of sodium benzoate produced better improvement than placebo in the Scale for the Assessment of Negative Symptoms. The 2 g/day sodium benzoate also produced better improvement than placebo in PANSS-total score, PANSS-positive score, and Quality of Life Scale. Sodium benzoate was well tolerated without evident side effects. The changes of catalase, an antioxidant, were different among the three groups and correlated with the improvement of PANSS-total score and PANSS-positive score in the sodium benzoate group. CONCLUSIONS Sodium benzoate adjuvant therapy improved symptomatology of patients with clozapine-resistant schizophrenia. Further studies are warranted to elucidate the optimal dose and treatment duration as well as the mechanisms of sodium benzoate for clozapine-resistant schizophrenia.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ching-Hua Lin
- Department of Adult Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Yu-Jhen Huang
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Po-Wei Chen
- Department of Psychiatry, Taichung Chin-Ho Hospital, Taichung, Taiwan
| | - Hui-Ting Yang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
47
|
Moschetti V, Desch M, Goetz S, Liesenfeld KH, Rosenbrock H, Kammerer KP, Wunderlich G, Wind S. Safety, Tolerability and Pharmacokinetics of Oral BI 425809, a Glycine Transporter 1 Inhibitor, in Healthy Male Volunteers: A Partially Randomised, Single-Blind, Placebo-Controlled, First-in-Human Study. Eur J Drug Metab Pharmacokinet 2018; 43:239-249. [PMID: 29076028 PMCID: PMC5854750 DOI: 10.1007/s13318-017-0440-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Schizophrenia and Alzheimer's disease are characterised by glutamatergic pathway abnormalities related to N-methyl-D-aspartate (NMDA) receptor hypofunction and cognitive impairment. Glycine is an NMDA receptor co-agonist; inhibition of glycine transporter 1 (GlyT1) should improve NMDA receptor hypofunction. This study evaluated safety and pharmacokinetic properties of BI 425809-a potent and selective GlyT1 inhibitor. METHODS In the single-rising dose (SRD) component of this study, subjects were randomised to a single dose of BI 425809 [doses (mg): 0.5, 1, 2, 5, 10, 25, 50, 100 and 150], or placebo. The bioavailability/food effect (BA/FE) component investigated BI 425809 pharmacokinetics following single dosing (25-mg tablet) after overnight fasting or with a high-calorie meal or as solution (25 mg) after overnight fasting. RESULTS Overall, 33/83 (39.8%) subjects had ≥ 1 treatment-related adverse event (AE); there were no deaths or serious AEs. Reported SRD part AEs trended towards dose dependency, occurring at the higher doses (mostly central nervous system related). BI 425809 plasma concentration-time profiles were similarly shaped across all doses and plasma exposure increased proportional to dose. In the BA/FE component, geometric mean ratios for the area under the concentration-time curve from time zero to the last measurable concentration and the maximum plasma concentration for tablet fasted versus solution fasted were 80.5 and 50.0%, respectively, and for tablet fed versus fasted were 125.9 and 142.1%, respectively. CONCLUSION BI 425809 was generally well-tolerated at doses expected to be clinically relevant. The AE profile suggested possible GlyT1-inhibiting effects. CLINICAL TRIAL IDENTIFIER NCT02068690.
Collapse
Affiliation(s)
| | - Michael Desch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sophia Goetz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Holger Rosenbrock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Sven Wind
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
48
|
Azmanova M, Pitto-Barry A, Barry NPE. Schizophrenia: synthetic strategies and recent advances in drug design. MEDCHEMCOMM 2018; 9:759-782. [PMID: 30108966 PMCID: PMC6072500 DOI: 10.1039/c7md00448f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a complex and unpredictable mental disorder which affects several domains of cognition and behaviour. It is a heterogeneous illness characterised by positive, negative, and cognitive symptoms, often accompanied by signs of depression. In this tutorial review, we discuss recent progress in understanding the target sites and mechanisms of action of second-generation antipsychotic drugs. Progress in identifying and defining target sites has been accelerated recently by advances in neuroscience, and newly developed agents that regulate signalling by the main excitatory neurotransmitters in the brain are surveyed. Examples of novel molecules for the treatment of schizophrenia in preclinical and clinical development and their industrial sponsors are highlighted.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and Biosciences , University of Bradford , Bradford BD7 1DP , UK . ;
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences , University of Bradford , Bradford BD7 1DP , UK . ;
| | - Nicolas P E Barry
- School of Chemistry and Biosciences , University of Bradford , Bradford BD7 1DP , UK . ;
| |
Collapse
|
49
|
Positive Allosteric Modulation as a Potential Therapeutic Strategy in Anti-NMDA Receptor Encephalitis. J Neurosci 2018; 38:3218-3229. [PMID: 29476014 DOI: 10.1523/jneurosci.3377-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterol-mimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation of NMDAR function explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.SIGNIFICANCE STATEMENT Anti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is increasingly recognized as an important cause of sudden-onset psychosis and other neuropsychiatric symptoms. Current treatment leaves unmet medical need. Here we demonstrate cellular evidence that newly identified positive allosteric modulators of NMDAR function may be a viable therapeutic strategy.
Collapse
|
50
|
Nakashima M, Imada H, Shiraishi E, Ito Y, Suzuki N, Miyamoto M, Taniguchi T, Iwashita H. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia. J Pharmacol Exp Ther 2018; 365:179-188. [PMID: 29440309 DOI: 10.1124/jpet.117.245506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/05/2018] [Indexed: 11/22/2022] Open
Abstract
The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N-methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, (N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia.
Collapse
Affiliation(s)
- Masato Nakashima
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruka Imada
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Eri Shiraishi
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuki Ito
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Maki Miyamoto
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takahiko Taniguchi
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroki Iwashita
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|