1
|
Shaykin JD, Baker LE. Conditioned place preference with low dose mixtures of α-pyrrolidinopentiophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV) in male and female Sprague-Dawley rats. Pharmacol Biochem Behav 2024; 245:173907. [PMID: 39561949 DOI: 10.1016/j.pbb.2024.173907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two common constituents of psychoactive "bath salts", 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinoipentiophenone (α-PVP) belong to a novel class of synthetic chemicals structurally related to the psychostimulant drug, cathinone. Recreational use of MDPV and α-PVP pose serious health risks, which may be exacerbated by concomitant use of both substances. Preclinical psychopharmacology studies have established that MDPV and α-PVP have high abuse liabilities, comparable to that of cocaine and methamphetamine. Whereas polysubstance use is common among recreational users of synthetic cathinones, preclinical behavioral assays can serve to inform potential behavioral health risks of drug mixtures. This study employed a rodent model of conditioned drug reward, conditioned place preference (CPP), to determine if concurrent treatment with MDPV (1 mg/kg) and α-PVP (1 mg/kg) produced stronger locomotor activation or CPP compared to each individual substance. A secondary aim of this study was to assess sex as variable in the behavioral effects of these substances. Females exhibited a stronger response than males to the locomotor stimulant effects of α-PVP and the α-PVP + MDPV mixture. Additionally, the α-PVP + MDPV mixture produced significantly greater increases in activity compared to either drug alone in females. MDPV and the α-PVP + MDPV mixture established CPP in both sexes, whereas α-PVP alone failed to produce CPP in either sex. These results are consistent with previous preclinical study findings that females may be more susceptible to the psychostimulant effects of these synthetic cathinones. Further investigation is warranted to determine the mechanisms responsible for sex differences in the behavioral effects of these drugs.
Collapse
Affiliation(s)
- Jakob D Shaykin
- Department of Psychology, Western Michigan University, Kalamazoo, MI 49008, United States of America
| | - Lisa E Baker
- Department of Psychology, Western Michigan University, Kalamazoo, MI 49008, United States of America.
| |
Collapse
|
2
|
Espinosa-Velasco M, Castro-Zavala A, Reguilón MD, Gallego-Landin I, Bellot M, Rublinetska O, Valverde O, Rodríguez-Arias M, Nadal-Gratacós N, Berzosa X, Gómez-Canela C, Carbó ML, Camarasa J, Escubedo E, López-Arnau R, Pubill D. Sex differences in the effects of N-ethylpentylone in young CD1 mice: Insights on behaviour, thermoregulation and early gene expression. Br J Pharmacol 2024; 181:4491-4513. [PMID: 39014975 DOI: 10.1111/bph.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND AND PURPOSE New psychoactive substances such as N-ethylpentylone (NEP) are continuously emerging in the illicit drug market, and knowledge of their effects and risks, which may vary between sexes, is scarce. Our present study compares some key effects of NEP in male and female mice. EXPERIMENTAL APPROACH Psychostimulant, rewarding and reinforcing effects were investigated by tracking locomotor activity, conditioned place preference (CPP) paradigm and through a self-administration (SA) procedure, respectively, in CD1 mice. Moreover, the expression of early genes (C-fos, Arc, Csnk1e, Pdyn, Pp1r1b and Bdnf in addiction-related brain areas) was assessed by qPCR. Finally, serum and brain levels of NEP were determined by UHPLC-MS/MS. KEY RESULTS NEP-treated males experimented locomotor sensitisation and showed higher and longer increases in locomotion as well as higher hyperthermia after repeated administration than females. Moreover, while preference score in the CPP was similar in both sexes, extinction occurred later, and reinstatement was more easily established for males. Female mice self-administered more NEP than males at a higher dose. Differences in early gene expression (Arc, Bdnf, Csnk1e and Ppp1r1b) were found, but the serum and brain NEP levels did not differ between sexes. CONCLUSION AND IMPLICATIONS Our results suggest that male mice are more sensitive to NEP psychostimulant and rewarding effects. These differences may be attributed to different early gene expression but not to pharmacokinetic factors. Moreover, males appear to be more vulnerable to the hyperthermic effects of NEP, while females might be more prone to NEP abuse.
Collapse
Affiliation(s)
- María Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Inés Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina Bellot
- Department of Analytical Chemistry (Chromatography Section), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Olga Rublinetska
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Chemical Reactions for Innovative Solutions (CRISOL), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Chemical Reactions for Innovative Solutions (CRISOL), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry (Chromatography Section), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Marcel Lí Carbó
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
3
|
Angoa-Perez M, Kuhn DM. The pharmacology and neurotoxicology of synthetic cathinones. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:61-82. [PMID: 38467489 DOI: 10.1016/bs.apha.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The synthetic cathinones are man-made compounds derived from the naturally occurring drug cathinone, which is found in the khat plant. The drugs in this pharmacological class that will be the focus of this chapter include mephedrone, MDPV, methcathinone and methylone. These drugs are colloquially known as "bath salts". This misnomer suggests that these drugs are used for health improvement or that they have legitimate medical uses. The synthetic cathinones are dangerous drugs with powerful pharmacological effects that include high abuse potential, hyperthermia and hyperlocomotion. These drugs also share many of the pharmacological effects of the amphetamine class of drugs including methamphetamine, amphetamine and MDMA and therefore have high potential to cause damage to the central nervous system. The synthetic cathinones are frequently taken in combination with other psychoactive drugs such as alcohol, marijuana and the amphetamine-like stimulants, creating a situation where heightened pharmacological and neurotoxicological effects are likely to occur. Despite the structural features shared by the synthetic cathinones and amphetamine-like stimulants, including their actions at monoamine transporters and receptors, the effects of the synthetic cathinones do not always match those of the amphetamines. In particular, the synthetic cathinones are far less neurotoxic than their amphetamine counterparts, they produce a weaker hyperthermia, and they cause less glial activation. This chapter will briefly review the pharmacology and neurotoxicology of selected synthetic cathinones with the aim of delineating key areas of agreement and disagreement in the literature particularly as it relates to neurotoxicological outcomes.
Collapse
Affiliation(s)
- Mariana Angoa-Perez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
4
|
Manke HN, Nunn SS, Sulima A, Rice KC, Riley AL. Effects of Serial Polydrug Use on the Rewarding and Aversive Effects of the Novel Synthetic Cathinone Eutylone. Brain Sci 2023; 13:1294. [PMID: 37759895 PMCID: PMC10526358 DOI: 10.3390/brainsci13091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND As individual synthetic cathinones become scheduled and regulated by the Drug Enforcement Administration (DEA), new ones regularly are produced and distributed. One such compound is eutylone, a novel third-generation synthetic cathinone whose affective properties (and abuse potential) are largely unknown. The following experiments begin to characterize these effects and how they may be impacted by drug history (a factor affecting reward/aversion for other drugs of abuse). METHODS Eutylone was assessed for its ability to induce conditioned taste avoidance (CTA; aversive effect) and conditioned place preference (CPP; rewarding effect) and their relationship (Experiment 1). Following this, the effects of exposure to cocaine or 3,4-methylenedioxymethamphetamine [MDMA] on eutylone's affective properties were investigated (Experiment 2). RESULTS Eutylone produced dose-dependent CTA and CPP (Experiment 1), and these endpoints were unrelated. Pre-exposure to cocaine and MDMA differentially impacted taste avoidance induced by eutylone (MDMA > cocaine) and did not impact eutylone-induced place preference. CONCLUSIONS These data indicate that eutylone, like other synthetic cathinones, has co-occurring, independent rewarding and aversive effects that may contribute to its abuse potential and that these effects are differentially impacted by drug history. Although these studies begin the characterization of eutylone, future studies should examine the impact of other factors on eutylone's affective properties and its eventual reinforcing effects (i.e., intravenous self-administration [IVSA]) to predict its use and abuse liability.
Collapse
Affiliation(s)
- Hayley N. Manke
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA; (H.N.M.)
| | - Samuel S. Nunn
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA; (H.N.M.)
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA (K.C.R.)
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA (K.C.R.)
| | - Anthony L. Riley
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA; (H.N.M.)
| |
Collapse
|
5
|
Manke HN, Nunn SS, Jones RA, Rice KC, Riley AL. Male and female C57BL/6 mice display drug-induced aversion and reward in the combined conditioned taste avoidance/conditioned place preference procedure. Pharmacol Biochem Behav 2023; 225:173562. [PMID: 37156400 DOI: 10.1016/j.pbb.2023.173562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Drugs of abuse have rewarding and aversive effects that, in balance, impact abuse potential. Although such effects are generally examined in independent assays (e.g., CPP and CTA, respectively), a number of studies have examined these effects concurrently in rats in a combined CTA/CPP design. The present study assessed if similar effects can be produced in mice which would allow for determining how each is affected by subject and experiential factors relevant to drug use and abuse and the relationship between these affective properties. METHODS Male and female C57BL/6 mice were exposed to a novel saccharin solution, injected (IP) with saline or 5.6, 10 or 18 mg/kg of the synthetic cathinone, methylone, and placed on one side of the place conditioning apparatus. The following day, they were injected with saline, given access to water and placed on the other side of the apparatus. After four conditioning cycles, saccharin avoidance and place preferences were assessed in a final two-bottle CTA test and a CPP Post-Test, respectively. RESULTS In the combined CTA/CPP design, mice acquired a significant dose-dependent CTA (p = 0.003) and a significant CPP (p = 0.002). These effects were independent of sex (all p's > 0.05). Further, there was no significant relationship between the degree of taste avoidance and place preference (p > 0.05). CONCLUSIONS Similar to rats, mice displayed significant CTA and CPP in the combined design. It will be important to extend this design in mice to other drugs and to examine the impact of different subject and experiential factors on these effects to facilitate predictions of abuse liability.
Collapse
Affiliation(s)
- Hayley N Manke
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Samuel S Nunn
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Robert A Jones
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| |
Collapse
|
6
|
Manke HN, Nelson KH, Huang S, Bailey JM, Bowman SK, Jones RA, Cerveny SE, Rice KC, Riley AL. Methylone pre-exposure differentially impacts the aversive effects of MDPV and MDMA in male and female Sprague-Dawley rats: Implications for abuse vulnerability. Pharmacol Biochem Behav 2022; 220:173470. [PMID: 36206863 PMCID: PMC9667388 DOI: 10.1016/j.pbb.2022.173470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Polydrug use is well documented in synthetic cathinone users, although the consequences of such use are not well characterized. In pre-clinical research, a pre-exposure to a drug has been reported to attenuate the aversive effects of other drugs which has implications for their abuse potential. The goal of the present study was to investigate the impact of pre-exposure to the synthetic cathinone methylone on the aversive effects of MDPV and MDMA. METHOD Male and female Sprague-Dawley rats were exposed to 10 mg/kg of methylone every 4th day (for a total of five injections) prior to taste avoidance training with 1.8 mg/kg of MDPV or 1 mg/kg of MDMA. RESULTS MDPV and MDMA induced taste avoidance in males and females (all p's < 0.05). In males, methylone pre-exposure attenuated the avoidance induced by MDPV and MDMA (all p's < 0.05) with the attenuation greater with MDPV. In females, methylone pre-exposure attenuated avoidance induced by MDPV (all p's < 0.05), but it had no effect on those induced by MDMA (all p's > 0.05). CONCLUSIONS The effects of exposure to methylone on taste avoidance induced by MDPV and MDMA were drug- (MDPV > MDMA) and sex- (MDMA only in males) dependent. The attenuating effects of methylone pre-exposure on MDPV and MDMA were discussed in terms of their shared neurochemical action. These findings suggest that a history of methylone use may reduce the aversive effects of MDPV and MDMA which may have implications for polydrug use involving the synthetic cathinones.
Collapse
Affiliation(s)
- Hayley N Manke
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| | - Katharine H Nelson
- Reichel Neuropsychopharmacology Laboratory, Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shihui Huang
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Jacob M Bailey
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Sara K Bowman
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Robert A Jones
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Sydney E Cerveny
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Neuroscience and Behavior, Department of Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| |
Collapse
|
7
|
Riley AL, Manke HN, Huang S. Impact of the Aversive Effects of Drugs on Their Use and Abuse. Behav Neurol 2022; 2022:8634176. [PMID: 35496768 PMCID: PMC9045991 DOI: 10.1155/2022/8634176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Drug use and abuse are complex issues in that the basis of each may involve different determinants and consequences, and the transition from one to the other may be equally multifaceted. A recent model of the addiction cycle (as proposed by Koob and his colleagues) illustrates how drug-taking patterns transition from impulsive (acute use) to compulsive (chronic use) as a function of various neuroadaptations leading to the downregulation of DA systems, upregulation of stress systems, and the dysregulation of the prefrontal/orbitofrontal cortex. Although the nature of reinforcement in the initiation and mediation of these effects may differ (positive vs. negative), the role of reinforcement in drug intake (acute and chronic) is well characterized. However, drugs of abuse have other stimulus properties that may be important in their use and abuse. One such property is their aversive effects that limit drug intake instead of initiating and maintaining it. Evidence of such effects comes from both clinical and preclinical populations. In support of this position, the present review describes the aversive effects of drugs (assessed primarily in conditioned taste aversion learning), the fact that they occur concurrently with reward as assessed in combined taste aversion/place preference designs, the role of aversive effects in drug-taking (in balance with their rewarding effects), the dissociation of these affective properties in that they can be affected in different ways by the same manipulations, and the impact of various parametric, experiential, and subject factors on the aversive effects of drugs and the consequent impact of these factors on their use and abuse potential.
Collapse
Affiliation(s)
- Anthony L. Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Hayley N. Manke
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| |
Collapse
|
8
|
Lee W, Lee JW, Kim JM, Hong YK, Kim MS, Choi SO, Kang MS. The abuse potential of prolintane in rodents: Behavioral pharmacology approaches. Neuropharmacology 2021; 205:108917. [PMID: 34896117 DOI: 10.1016/j.neuropharm.2021.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Prolintane (1-Phenyl-2-pyrrolidinylpentane), a synthetic central nervous system (CNS) stimulant, is structurally similar to amphetamine but pharmacologically acts as a dopamine reuptake inhibitor like cocaine. While several case studies reported adverse effects and recreational use of prolintane, the abuse potential of the drug has not been systemically examined yet. In the present study, we evaluated the behavioral effects of prolintane regarding its abuse liability in rodents using locomotor activity, conditioned place preference (CPP), self-administration (SA), and drug discrimination paradigms, as well as in-vivo microdialysis experiment. First, acute prolintane (10 and 20 mg/kg, intraperitoneal injection) increased locomotor activity (distance traveled, cm) in mice but to a lesser degree than methamphetamine (as a positive control). We also found that a single and solitary injection of prolintane (20 mg/kg, IP) significantly increased extracellular dopamine in the striatum. The following result suggests that its stimulatory effects might be associated with the mesolimbic dopaminergic pathway. Further, prolintane produced a significant drug-paired place preference at doses of both 10 and 20 mg/kg. In the SA experiment, the mice that self-administered prolintane intravenously (4 mg/kg/inf) showed a higher infusion and active lever responses but not inactive lever responses. Additionally, cumulative doses of prolintane partially elicited cocaine-appropriate lever responses (38.57% at doses up to 10 mg/kg) in rats. These results implied that prolintane has not only rewarding and reinforcing effects but also interoceptive stimulus properties, which are similar to cocaine at a moderate level. Taken together, this study was the first to show, to our knowledge, that prolintane has a certain level of abuse potential and should be considered carefully as a valuable basis for legal restrictions on use.
Collapse
Affiliation(s)
- Wonjong Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Jung Won Lee
- Scientific Officer Division of in Vitro Diagnostic Devices National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Jin Mook Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Young-Ki Hong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Mi-Seon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea
| | - Mi Sun Kang
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju, 28159, South Korea.
| |
Collapse
|
9
|
Nelson KH, Manke HN, Bailey JM, Vlachos A, Maradiaga KJ, Huang S, Weiss TD, Rice KC, Riley AL. Ethanol pre-exposure differentially impacts the rewarding and aversive effects of α-pyrrolidinopentiophenone (α-PVP): Implications for drug use and abuse. Pharmacol Biochem Behav 2021; 211:173286. [PMID: 34634300 DOI: 10.1016/j.pbb.2021.173286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 11/15/2022]
Abstract
RATIONALE Exposure to a drug can subsequently impact its own reactivity as well as that of other drugs. Given that users of synthetic cathinones, i.e., "bath salts", typically have extensive and varied drug histories, an understanding of the effects of drug history on the behavioral and physiological consequences of synthetic cathiones may be important to their abuse liability. OBJECTIVES The goal of the current work was to assess the effects of an ethanol pre-exposure on the rewarding and aversive effects of α-PVP. METHODS Adult male Sprague Dawley rats were exposed to ethanol prior to combined conditioned taste avoidance/conditioned place preference training in which rats were injected with 1.5, 3 or 5 mg/kg of racemic α-PVP or vehicle. Following a 7-day washout period, rats were then tested for thermoregulatory effects of α-PVP using subcutaneous probes to measure body temperature changes over the course of 8 h. This was followed 10 days later by assessments for α-PVP-induced locomotor activity and stereotypies over a 1-h session. RESULTS α-PVP induced significant dose- and trial-dependent taste avoidance that was significantly attenuated by ethanol history and dose- and time-dependent increases in locomotor activity that were significantly increased by ethanol. α-PVP also induced place preferences and dose- and time-dependent increases in body temperature, but these measures were unaffected by ethanol history. CONCLUSIONS α-PVP's aversive effects (as measured by taste avoidance) were attenuated, while its rewarding effects (as indexed by place preference conditioning) were unaffected, by ethanol pre-exposure. Such a pattern may indicate increased α-PVP abuse liability, as changes in the balance of aversion and reward may impact overall drug effects and likelihood of drug intake. Future self-administration studies will be necessary to explore this possibility.
Collapse
Affiliation(s)
- Katharine H Nelson
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA.
| | - Hayley N Manke
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Jacob M Bailey
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Anna Vlachos
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Karina J Maradiaga
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Tania D Weiss
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA.
| |
Collapse
|
10
|
Thomas AM, Cargile KJ, Lunn JA, Baker LE. Characterization of 3,4-methylenedioxypyrovalerone discrimination in female Sprague-Dawley rats. Behav Pharmacol 2021; 32:524-532. [PMID: 34397448 PMCID: PMC8371744 DOI: 10.1097/fbp.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV), one of several synthetic cathinones, is a popular constituent of illicit 'bath salts'. In preclinical studies utilizing drug discrimination methods with male rodents, MDPV has been characterized as similar to both cocaine and 3,4-methylenedioxymethamphetamine-hydrochloride (MDMA). Whereas few drug discrimination studies have utilized female rats, the current study evaluated the discriminative stimulus effects of MDPV in 12 adult female Sprague-Dawley rats trained to discriminate 0.5 mg/kg MDPV from saline under a fixed ratio 20 schedule of food reinforcement. Stimulus substitution was assessed with MDPV and its enantiomers, other synthetic cathinones [alpha pyrrolidinopentiophenone-hydrochloride(α-PVP), 4-methylmethcathinone (4-MMC)], other dopamine agonists (cocaine, [+)-methamphetamine] and serotonin agonists [MDMA, lysergic acid diethylamide (LSD)] Stimulus antagonism was assessed with the dopamine D1 receptor antagonist, Sch 23390 and the D2 receptor antagonist, haloperidol. Cocaine and (+)-methamphetamine engendered full stimulus generalization to MDPV with minimal effects on response rate. LSD produced partial substitution, whereas MDMA and 4-MMC produced complete substitution, and all these serotonergic compounds produced dose-dependent response suppression. (S)-MDPV and α-PVP engendered full substitution with similar potency to the racemate, while (R)-MDPV failed to substitute up to 5 mg/kg. Both Sch 23390 and haloperidol attenuated the discrimination of low MDPV doses and essentially shifted the dose-response curve to the right but failed to block discrimination of the training dose. These findings are generally consistent with previous reports based exclusively on male rodents. Moreover, they confirm the contribution of dopaminergic mechanisms but do not rule out the possible contribution of other neurotransmitter actions to the interoceptive stimulus effects of MDPV.
Collapse
Affiliation(s)
- Angela M Thomas
- Department of Psychology, Western Michigan University, Kalamazoo, Michigan, USA
| | | | | | | |
Collapse
|
11
|
Alegre-Zurano L, López-Arnau R, Luján MÁ, Camarasa J, Valverde O. Cannabidiol Modulates the Motivational and Anxiety-Like Effects of 3,4-Methylenedioxypyrovalerone (MDPV) in Mice. Int J Mol Sci 2021; 22:8304. [PMID: 34361071 PMCID: PMC8348800 DOI: 10.3390/ijms22158304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is a new psychoactive substance (NPS) and the most widespread and life-threatening synthetic cathinone of the "bath salts". Preclinical research has proven the cocaine-like psychostimulant effects of MDPV and its potential for abuse. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid that has emerged as a new potential treatment for drug addiction. Here, we tested the effects of CBD (20 mg/kg) on MDPV (2 mg/kg)-induced conditioned place preference and MDPV (0.05 and 0.075 mg/kg/infusion) self-administration paradigms. In addition, we assessed the effects of the co-administration of CBD and MDPV (3 and 4 mg/kg) on anxiety-like behaviour using the elevated plus maze (EPM). CBD mitigated the MDPV-induced conditioned place preference. On the contrary, CBD administration throughout the MDPV (0.075 mg/kg/infusion) self-administration increased drug-seeking and taking behaviours, but only in the high-responders group of mice. Furthermore, CBD exerted anxiolytic-like effects, exclusively in MDPV-treated mice. Taken together, our results indicate that CBD modulation of MDPV-induced motivational responses in mice varies depending on the requirements of the learning task, resulting in a complex response. Therefore, further research attempting to decipher the behavioural and molecular interactions between CBD and MDPV is needed.
Collapse
Affiliation(s)
- Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (L.A.-Z.); (M.Á.L.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section and Institute of Biomedicine (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Miguel Á. Luján
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (L.A.-Z.); (M.Á.L.)
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section and Institute of Biomedicine (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (L.A.-Z.); (M.Á.L.)
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain
| |
Collapse
|
12
|
Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiol Behav 2021; 239:113511. [PMID: 34181929 DOI: 10.1016/j.physbeh.2021.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.
Collapse
|
13
|
Doyle MR, Sulima A, Rice KC, Collins GT. MDPV self-administration in female rats: influence of reinforcement history. Psychopharmacology (Berl) 2021; 238:735-744. [PMID: 33236170 PMCID: PMC7914194 DOI: 10.1007/s00213-020-05726-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
RATIONALE A subset of male rats that self-administer 3,4-methylenedioxypyrovalerone (MDPV) have unusually high levels of drug intake; however, factor(s) that influence this behavior (e.g., reinforcement history and sex) are unknown. OBJECTIVES Characterize the reinforcing potency and effectiveness of MDPV in female rats to determine whether (1) a subset of females also develop high levels of MDPV self-administration (i.e., a high-responder phenotype) and (2) the degree to which the high-responder phenotype is influenced by various reinforcement histories (i.e., responding for cocaine or food). METHODS Female Sprague Dawley rats initially responded for MDPV (0.032 mg/kg/infusion), cocaine (0.32 mg/kg/infusion), or food (45-mg grain pellet) under fixed ratio (FR) 1 and FR5 schedules of reinforcement. After 20 sessions, the cocaine- and food-history rats responded for MDPV for 20 additional sessions. Dose-response curves for MDPV were generated under FR5 and progressive ratio (PR) schedules of reinforcement. RESULTS A subset of rats responding for MDPV developed high levels of MDPV intake. A history of responding for cocaine, but not food, inhibited the development of high levels of MDPV intake. Large individual differences were observed in the level of self-administration when MDPV was available under an FR5, but not PR, schedule of reinforcement. CONCLUSIONS MDPV functions as a powerful reinforcer in female rats, as has been previously reported in male rats. The substantial variability in MDPV self-administration between subjects may be related to individual differences in human drug-taking behavior.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr - MC 7764, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr - MC 7764, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
14
|
Duart-Castells L, Nadal-Gratacós N, Muralter M, Puster B, Berzosa X, Estrada-Tejedor R, Niello M, Bhat S, Pubill D, Camarasa J, Sitte HH, Escubedo E, López-Arnau R. Role of amino terminal substitutions in the pharmacological, rewarding and psychostimulant profiles of novel synthetic cathinones. Neuropharmacology 2021; 186:108475. [PMID: 33529677 DOI: 10.1016/j.neuropharm.2021.108475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/01/2023]
Abstract
The emergence of new synthetic cathinones continues to be a matter of public health concern. In fact, they are quickly replaced by new structurally related alternatives. The main goal of the present study was to characterize the pharmacological profile, the psychostimulant and rewarding properties of novel cathinones (pentedrone, N-ethyl-pentedrone, α-PVP, N,N-diethyl-pentedrone and α-PpVP) which only differs in their amino terminal substitution. Rat synaptosomes were used for [3H]dopamine uptake experiments. HEK293 transfected cells (hDAT, hSERT, hOCT; human dopamine, serotonin and organic cation transporter) were also used for [3H]monoamine uptake and transporter binding assays. Molecular docking was used to investigate the effect of the amino substitutions on the biological activity. Hyperlocomotion and conditioned place preference paradigm were used in order to study the psychostimulant and rewarding effects in mice. All compounds tested are potent inhibitors of DAT with very low affinity for SERT, hOCT-2 and -3, and their potency for inhibiting DAT increased when the amino-substituent expanded from a methyl to either an ethyl-, a pyrrolidine- or a piperidine-ring. Regarding the in vivo results, all the compounds induced an increase in locomotor activity and possess rewarding properties. Results also showed a significant correlation between predicted binding affinities by molecular docking and affinity constants (Ki) for hDAT as well as the cLogP of their amino-substituent with their hDAT/hSERT ratios. Our study demonstrates the role of the amino-substituent in the pharmacological profile of novel synthetic cathinones as well as their potency inhibiting DA uptake and ability to induce psychostimulant and rewarding effects in mice.
Collapse
Affiliation(s)
- L Duart-Castells
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - N Nadal-Gratacós
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - M Muralter
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - B Puster
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - X Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - R Estrada-Tejedor
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - M Niello
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - S Bhat
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - D Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - J Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - H H Sitte
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090; Center for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090, Vienna, Austria
| | - E Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| | - R López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Assessment of aversive effects of methylone in male and female Sprague-Dawley rats: Conditioned taste avoidance, body temperature and activity/stereotypies. Neurotoxicol Teratol 2021; 86:106977. [PMID: 33831534 PMCID: PMC9924097 DOI: 10.1016/j.ntt.2021.106977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
Methylone's rewarding effects have been well characterized; however, little is known about its aversive effects and how such effects may be impacted by sex. In this context, the present study investigated the aversive effects of methylone (vehicle, 5.6, 10 or 18 mg/kg, IP) in 35 male and 31 female Sprague-Dawley rats assessed by conditioned taste avoidance and changes in body temperature and activity/stereotypies. Methylone induced significant taste avoidance, changes in temperature and increased activity and stereotypies in both males and females. Similar to work with other synthetic cathinones, methylone has aversive effects as indexed by significant taste avoidance and changes in temperature and activity (two characteristics of methylone overdose in humans). The only endpoint for which there were significant sex differences was in general activity with males displaying a faster onset and females displaying a longer duration. Although sex was not a factor with taste avoidance and temperature, separate analyses for males and females revealed different patterns, e.g., males displayed a more rapid acquisition of taste avoidance and females displayed changes in temperature at lower doses. Males displayed a faster onset and females displayed a longer duration of activity (consistent with the analyses considering sex as a factor), while time- and dose-dependent stereotypies did not show consistent pattern differences. Although sex differences were relatively limited when sex was specifically assessed as a factor (or only evident when sex comparisons were made in the patterns of effects), sex as a biological variable in the study of drugs should be made to determine if differences exist and, if evident, the basis for these differences.
Collapse
|
16
|
Schiavi S, Melancia F, Carbone E, Buzzelli V, Manduca A, Peinado PJ, Zwergel C, Mai A, Campolongo P, Vanderschuren LJ, Trezza V. Detrimental effects of the 'bath salt' methylenedioxypyrovalerone on social play behavior in male rats. Neuropsychopharmacology 2020; 45:2012-2019. [PMID: 32506112 PMCID: PMC7547114 DOI: 10.1038/s41386-020-0729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022]
Abstract
Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone.
Collapse
Affiliation(s)
- Sara Schiavi
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Francesca Melancia
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Emilia Carbone
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Valeria Buzzelli
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | - Antonia Manduca
- grid.8509.40000000121622106Department of Science, University “Roma Tre”, Rome, Italy
| | | | - Clemens Zwergel
- grid.7841.aDepartment of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy ,Department of precision medicine, “Luigi Vanvitelli”, Università della Campania, Naples, Italy
| | - Antonello Mai
- grid.7841.aDepartment of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy ,grid.7841.aIstituto Pasteur—Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Patrizia Campolongo
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Louk J.M.J. Vanderschuren
- grid.5477.10000000120346234Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, University "Roma Tre", Rome, Italy.
| |
Collapse
|
17
|
Risca HI, Zuarth-Gonzalez JD, Baker LE. Conditioned place preference following concurrent treatment with 3, 4-methylenedioxypyrovalerone (MDPV) and methamphetamine in male and female Sprague-Dawley rats. Pharmacol Biochem Behav 2020; 198:173032. [PMID: 32888971 PMCID: PMC8667570 DOI: 10.1016/j.pbb.2020.173032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023]
Abstract
Synthetic cathinones gained initial popularity on the illicit drug market as a result of attempts to evade legal restrictions on other commonly abused psychostimulants. A body of published research has determined that the psychopharmacology of the synthetic cathinone 3, 4-methylenedioxypyrovalerone (MDPV) is comparable to cocaine and methamphetamine (METH). Few preclinical studies have systematically investigated concurrent use of synthetic cathinones with other psychostimulant drugs. The present study utilized conditioned place preference (CPP), a rodent model of conditioned drug reward, to evaluate the effects of concurrent treatment with MDPV and METH. Male (N = 72) and female (N = 105) Sprague-Dawley rats underwent a two-compartment biased CPP procedure, with one trial per day for eight consecutive days. Subjects were randomly assigned to the following treatment groups: saline, METH (1 mg/kg), MDPV (1, 3.2, 5.6 mg/kg) or a mixture consisting of METH (1 mg/kg) and MDPV (1, 3.2, 5.6 mg/kg). All treatments increased locomotor activity during drug conditioning trials, and most treatments produced higher activity increases in females compared to males. Although the level of CPP established by MDPV and MDPV + METH mixtures varied between males and females, sex differences were not statistically significant. Although none of the MDPV+METH mixtures produced stronger CPP than either substance alone, some mixtures of MDPV and METH produced higher increases in locomotor activity compared to either drug alone. Further studies with higher doses may be warranted to determine if concurrent use of MDPV and METH pose an enhanced risk for abuse.
Collapse
Affiliation(s)
- Harmony I Risca
- Department of Psychology, Western Michigan University, Kalamazoo, MI 49008, USA
| | | | - Lisa E Baker
- Department of Psychology, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
18
|
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci 2020; 10:brainsci10090606. [PMID: 32899299 PMCID: PMC7564810 DOI: 10.3390/brainsci10090606] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Sex and gender deeply affect the subjective effects and pharmaco-toxicological responses to drugs. Men are more likely than women to use almost all types of illicit drugs and to present to emergency departments for serious or fatal intoxications. However, women are just as likely as men to develop substance use disorders, and may be more susceptible to craving and relapse. Clinical and preclinical studies have shown important differences between males and females after administration of “classic” drugs of abuse (e.g., Δ9-tetrahydrocannabinol (THC), morphine, cocaine). This scenario has become enormously complicated in the last decade with the overbearing appearance of the new psychoactive substances (NPS) that have emerged as alternatives to regulated drugs. To date, more than 900 NPS have been identified, and can be catalogued in different pharmacological categories including synthetic cannabinoids, synthetic stimulants (cathinones and amphetamine-like), hallucinogenic phenethylamines, synthetic opioids (fentanyls and non-fentanyls), new benzodiazepines and dissociative anesthetics (i.e., methoxetamine and phencyclidine-derivatives). This work collects the little knowledge reached so far on the effects of NPS in male and female animal and human subjects, highlighting how much sex and gender differences in the effects of NPS has yet to be studied and understood.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- Correspondence:
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy;
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, 00187 Rome, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
- National Institute of Neuroscience (INN), University of Cagliari, 09124 Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
19
|
Riley AL, Nelson KH, To P, López-Arnau R, Xu P, Wang D, Wang Y, Shen HW, Kuhn DM, Angoa-Perez M, Anneken JH, Muskiewicz D, Hall FS. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci Biobehav Rev 2020; 110:150-173. [DOI: 10.1016/j.neubiorev.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
20
|
Marusich JA, Gay EA, Watson SL, Blough BE. Synthetic cathinone self-administration in female rats modulates neurotransmitter levels in addiction-related brain regions. Behav Brain Res 2019; 376:112211. [PMID: 31493431 PMCID: PMC6783379 DOI: 10.1016/j.bbr.2019.112211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Synthetic cathinones are used for their stimulant-like properties. Stimulant-induced neurochemical changes are thought to occur at different times in different brain regions and neurotransmitter systems. This study sought to examine the behavioral and neurochemical effects of α-pyrrolidinopentiophenone (α-PVP) and mephedrone (4MMC) in female rats. Methods probed the chronology of effects of synthetic cathinone exposure. Female rats were trained to self-administer α-PVP, 4MMC, or saline. Drug exposure ceased after 7 days of autoshaping for half of each drug group; the other half self-administered for another 21 days. Amygdala, hippocampus, hypothalamus, PFC, striatum, and thalamus were extracted, and tissue was analyzed with electrochemical detection and liquid chromatography mass spectrometry. Responding was minimal during autoshaping; thus, most infusions were delivered noncontingently in the autoshaping phase. Rats acquired self-administration of α-PVP and 4MMC. Synthetic cathinone administration, and duration of exposure produced several effects on neurotransmitters. α-PVP primarily increased serotonin, 5-hydroxy-3-acetic acid (5-HIAA), norepinephrine, and glutamate in hypothalamus. In contrast, 4MMC decreased serotonin and 5-HIAA in several brain regions. Longer durations of exposure to both synthetic cathinones increased 5-HIAA, norepinephrine, and glutamate in multiple brain regions compared to the short exposure during autoshaping. Notably, both α-PVP and 4MMC produced minimal changes in dopamine levels, suggesting that the dopaminergic effects of these synthetic cathinones are transient. These alterations in neurotransmitter levels indicate that synthetic cathinone use may produce differential neurochemical changes during the transition from use to abuse.
Collapse
Affiliation(s)
- Julie A Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA.
| | - Elaine A Gay
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Scott L Watson
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
21
|
Martyniuk CJ, Pompilus M, Schmidt J, Duncan A, Febo M. The effects of acute and repeated methylenedioxypyrovalerone (MDPV) administration on striatal transcriptome networks in male long evans rats. Neurosci Lett 2019; 712:134499. [PMID: 31536752 DOI: 10.1016/j.neulet.2019.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
The psychoactive drug methylenedioxypyrovalerone (MDPV) elicits feelings of euphoria and hyperexcitability, but can also result in paranoia, agitation, and depression by unknown mechanisms. We identified molecular networks in the rat striatum that were affected by single or repeated exposure to MDPV. Male Long Evans rats were injected with either saline or MDPV (1 mg/kg) (single or repeated MDPV) over 5 days. To distinguish the effects of repeated MDPV from a single exposure, an additional group received saline over 4 days and then MDPV on the 5th day. Twenty-four hours after the final injection, the left dorsal striatum was processed for transcriptomics. The transcriptome response was subtle after 24 h, and a single gene passed an FDR correction (LOC103691845) following repeated MDPV treatment. Gene set and subnetwork enrichment analyses were conducted to improve data interpretation from a network perspective. Consistent with the mode of action of MDPV, networks related to the nigrostriatal dopaminergic system were altered in the rat striatum. Transcriptional networks related to cognition, short and long-term memory, and synaptic transmission were over-represented in the striatum of rats repeatedly injected with MDPV. This study identifies potential transcriptional networks altered by single or repeated MDPV exposure, which can be interrogated further to elucidate molecular mechanisms underlying cathinone abuse.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA.
| | - Marjory Pompilus
- Department of Psychiatry, Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jordan Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Allison Duncan
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Marcelo Febo
- Department of Psychiatry, Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
22
|
Nelson KH, Manke HN, Imanalieva A, Rice KC, Riley AL. Sex differences in α-pyrrolidinopentiophenone (α-PVP)-induced taste avoidance, place preference, hyperthermia and locomotor activity in rats. Pharmacol Biochem Behav 2019; 185:172762. [PMID: 31445057 DOI: 10.1016/j.pbb.2019.172762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
RATIONALE The majority of synthetic cathinone research has used only male subjects, and as a result there are few studies assessing the impact of biological sex on their effects. OBJECTIVES The current work extends the characterization of the second-generation synthetic cathinone, α-PVP, by investigating how biological sex impacts α-PVP's aversive and rewarding effects important to its use and potential abuse. METHODS A combined conditioned taste avoidance/conditioned place preference preparation was utilized in which adult male and female Sprague Dawley rats were injected with 1.5, 3 or 6 mg/kg of racemic α-PVP or vehicle (saline) (IP). Following a 24-day washout period, rats were then tested for thermoregulatory effects of α-PVP using subcutaneous microchips to measure body temperature changes over the course of 8 h. This was followed 21 days later by assessments for α-PVP-induced locomotor activity and stereotypies over a 1-h session. RESULTS Dose-dependent conditioned taste avoidance was evident in both males and females, although females displayed weaker avoidance at 3 mg/kg compared to males. Males displayed a dose-dependent conditioned place preference, while females did not form a place preference at any dose. α-PVP elicited dose- and time-dependent hyperthermia, with males displaying a faster on-set and delayed off-set compared to females. α-PVP also produced dose- and time-dependent increases in locomotor activity (F > M) and stereotypies (M > F). CONCLUSIONS As described, males displayed greater rewarding (as indexed by place preference conditioning) and aversive (as indexed by taste avoidance, hyperthermia and stereotypies) effects of α-PVP. Although comparisons between males and females in α-PVP self-administration have not been reported, these data suggest that males may be more likely to use the drug. The implications for sex differences in human use of α-PVP were discussed.
Collapse
Affiliation(s)
- Katharine H Nelson
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| | - Hayley N Manke
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Aikerim Imanalieva
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| |
Collapse
|
23
|
Risca HI, Baker LE. Contribution of monoaminergic mechanisms to the discriminative stimulus effects of 3,4-methylenedioxypyrovalerone (MDPV) in Sprague-Dawley rats. Psychopharmacology (Berl) 2019; 236:963-971. [PMID: 30554256 PMCID: PMC6571067 DOI: 10.1007/s00213-018-5145-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/03/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE 3,4-Methylenedioxypyrovalerone (MDPV) is a popular synthetic cathinone reported to have a high abuse potential. Recent preclinical research indicates the psychopharmacology of MDPV is comparable to cocaine. Despite a recent influx of research on the psychopharmacology of MDPV, few studies have employed preclinical drug discrimination methods to discern the neurochemical mechanisms involved in its interoceptive stimulus effects. OBJECTIVE The aim of this study was to evaluate a variety of monoaminergic agents for substitution, potentiation, or antagonism in rats trained to discriminate MDPV. METHODS Male Sprague-Dawley rats were trained to discriminate 0.5 (experiment 1) or 1 mg/kg MDPV (experiment 2) from saline under an FR 20 schedule of food reinforcement. In experiment 1, MDMA, MDA, and their respective optical isomers (0.75-3 mg/kg), cocaine (2.5-20 mg/kg), GBR 12909 (5-40 mg/kg), and desipramine (3.2-10 mg/kg) were assessed for substitution. GBR 12909 (40 mg/kg) and desipramine (3.2 mg/kg) were subsequently assessed for potentiation of the MDPV cue. In experiment 2, stimulus antagonism tests were conducted with dopamine antagonists (Sch 23390, haloperidol) and serotonin antagonists (pirenperone, MDL100907, WAY 100635). RESULTS The MDMA and MDA enantiomers produced divergent results, with virtually no substitution by (-)-MDMA or (-)-MDA, partial substitution with (+)-MDA, and full substitution with (+)-MDMA, as well as full substitution by the racemates, (±)-MDMA and (±)-MDA. Consistent with previous findings, cocaine fully substituted for MDPV. Although no dose of GBR 12909 or desipramine substituted for MDPV, these reuptake inhibitors enhanced the discriminative stimulus effects of lower MDPV doses. Both D1 (Sch 23390) and D2 (haloperidol) DA antagonists attenuated 1 mg/kg MDPV discrimination, whereas none of the 5-HT antagonists assessed altered MDPV discrimination. CONCLUSIONS These findings indicate MDPV's interoceptive stimulus effects are mediated predominantly by dopaminergic actions, although serotonergic and/or noradrenergic modulation of these effects cannot be ruled out. Further investigations into the neurochemical actions involved in the discriminative stimulus effects of MDPV may serve to inform medication discovery and development for the treatment of MDPV abuse.
Collapse
Affiliation(s)
- Harmony I Risca
- Department of Psychology, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Lisa E Baker
- Department of Psychology, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
24
|
Bath salts and polyconsumption: in search of drug-drug interactions. Psychopharmacology (Berl) 2019; 236:1001-1014. [PMID: 30911791 DOI: 10.1007/s00213-019-05213-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND RATIONALE Polydrug use is a widespread phenomenon, especially among adolescents and young adults. Synthetic cathinones are frequently consumed in combination with other drugs of abuse. However, there is very little information regarding the consequences of this specific consumption pattern. OBJECTIVES The aim of this review is to introduce this topic and highlight the gaps in the existing literature. In three different sections, we focus on specific interactions of synthetic cathinones with alcohol, cannabinoids, and the stimulants nicotine and cocaine. We then dedicate a section to the existence of sex and gender differences in the effects of synthetic cathinones and the long-term psychophysiological consequences of adolescent and prenatal exposure to these drugs. MAJOR FINDINGS Epidemiological studies, case reports, and results obtained in animal models point to the existence of pharmacological and pharmacokinetic interactions between synthetic cathinones and other drugs of abuse. This pattern of polyconsumption can cause the potentiation of negative effects, and the dissociation between objective and subjective effects can increase the combined use of the drugs and the risk of toxicity leading to serious health problems. Certain animal studies indicate a higher vulnerability and effect of cathinones in females. In humans, most of the users are men and case reports show long-term psychotic symptoms after repeated use. CONCLUSIONS The co-use of synthetic cathinones and the other drugs of abuse analyzed indicates potentiation of diverse effects including dependence and addiction, neurotoxicity, and impaired cognition and emotional responses. The motivations for and effects of synthetic cathinone use appear to be influenced by sex/gender. The long-term consequences of their use by adolescents and pregnant women deserve further investigation.
Collapse
|
25
|
Stereoselective effects of the second-generation synthetic cathinone α-pyrrolidinopentiophenone (α-PVP): assessments of conditioned taste avoidance in rats. Psychopharmacology (Berl) 2019; 236:1067-1077. [PMID: 30334086 PMCID: PMC8328279 DOI: 10.1007/s00213-018-5070-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
RATIONALE Work with α-pyrrolidinopentiophenone (α-PVP), a second-generation synthetic cathinone, has been generally limited to the racemate. Given that with other synthetic cathinones, there are behavioral and neurochemical differences between their enantiomers, differences may also be seen with α-PVP. OBJECTIVES The present study assessed the relative contribution of each enantiomer to the aversive effects of racemic-α-PVP by comparing their ability to induce a conditioned taste avoidance. METHODS Adult male Sprague-Dawley rats were exposed every other day for four exposures to a novel saccharin solution followed immediately by an injection of 0 (saline vehicle) or 1.5, 3, or 6 mg/kg of S-, R-, or racemic-α-PVP (IP). On alternating days, all subjects were given access to water to assess any unconditioned effects of α-PVP on general fluid consumption. RESULTS Rats injected with the racemate and S-isomer of α-PVP displayed avoidance of the drug-associated saccharin solution, although this avoidance was dose-dependent only for the subjects injected with the racemate. There was no evidence of taste avoidance in animals injected with the R-enantiomer at any dose tested. Animals injected with 3 mg/kg racemic-α-PVP did not differ in avoidance from those treated with 1.5 mg/kg of the S-enantiomer, but subjects treated with 6 mg/kg racemic-α-PVP displayed a significantly stronger avoidance than those treated with 3 mg/kg S-α-PVP. CONCLUSIONS The present work suggests that the aversive effects of racemic α-PVP are mediated primarily by its S-isomer. The fact that at the highest dose tested (6 mg/kg), the racemate induces an avoidance greater than the simple additive effects of the S- and R-isomers (at 3 mg/kg) suggests that while the R-isomer may not induce taste avoidance at this dose, it may interact synergistically with the S-isomer in mediating the effects of the racemic mixture. These results were discussed in terms of similar effects with other behavioral and physiological endpoints reported with a number of psychostimulants and suggest that the enantiomers of α-PVP are an important variable in characterizing its behavioral effects.
Collapse
|
26
|
Cardiovascular effects of 3,4-methylenedioxypyrovalerone (MDPV) in male and female Sprague-Dawley rats. Drug Alcohol Depend 2019; 195:140-147. [PMID: 30634109 PMCID: PMC6915966 DOI: 10.1016/j.drugalcdep.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/02/2018] [Accepted: 12/02/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND 3,4-methylenedioxypyrovalerone (MDPV) toxicity includes intense neurological and cardiovascular events. We examined MDPV-induced cardiovascular, temperature, and locomotor effects following escalating and repeated MDPV administration in adult male and female Sprague-Dawley rats and compared these effects to cocaine in male rats. METHODS Telemetry devices were surgically implanted to allow continuous measurement of cardiovascular, temperature, and locomotor activity over a 22 h period after dosing. Rats were administered increasing intraperitoneal (IP) MDPV doses (1-5.6 mg/kg) every other day, followed two days later by a binge regimen of four injections of 3 mg/kg MDPV at 2 h intervals. MDPV serum concentrations were measured by LC-MS/MS. Cocaine (3-30 mg/kg) and four injections of 30 mg/kg IP were administered to male rats for comparison with male MDPV data. RESULTS The duration of MDPV cardiovascular effects was significantly greater (p < 0.05) in male rats than female rats at 3-5.6 mg/kg. The ED50 for MDPV-induced locomotor was significantly lower in males (2.4 ± 0.3) than females (3.4 ± 0.2). Males showed significantly greater variability in MDPV serum concentrations than females after binge dosing. MDPV produced five-fold more potent cardiovascular effects than cocaine in male rats. MDPV did not alter thermoregulation in either sex, but cocaine binge administration decreased temperature. CONCLUSION Effects of MDPV on temperature were not significantly different between sexes. MDPV-induced cardiovascular and locomotor effects in males lasted significantly longer and were more potent than in females. These differences appeared to be related to pharmacokinetic factors leading to greater variance in MDPV serum concentrations in males.
Collapse
|
27
|
Colon-Perez LM, Pino JA, Saha K, Pompilus M, Kaplitz S, Choudhury N, Jagnarine DA, Geste JR, Levin BA, Wilks I, Setlow B, Bruijnzeel AW, Khoshbouei H, Torres GE, Febo M. Functional connectivity, behavioral and dopaminergic alterations 24 hours following acute exposure to synthetic bath salt drug methylenedioxypyrovalerone. Neuropharmacology 2018; 137:178-193. [PMID: 29729891 DOI: 10.1016/j.neuropharm.2018.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022]
Abstract
Among cathinone drugs known as bath salts, methylenedioxypyrovalerone (MDPV) exerts its potent actions via the dopamine (DA) system, and at intoxicating doses may produce adverse behavioral effects. Previous work by our group suggests that prolonged alterations in correlated neural activity between cortical and striatal areas could underlie, at least in part, the adverse reactions to this bath salt drug. In the present study, we assessed the effect of acute MDPV administration on brain functional connectivity at 1 and 24 h in rats. Using graph theory metrics to assess in vivo brain functional network organization we observed that 24 h after MDPV administration there was an increased clustering coefficient, rich club index, and average path length. Increases in these metrics suggests that MDPV produces a prolonged pattern of correlated activity characterized by greater interactions between subsets of high degree nodes but a reduced interaction with regions outside this core subset. Further analysis revealed that the core set of nodes include prefrontal cortical, amygdala, hypothalamic, somatosensory and striatal areas. At the molecular level, MDPV downregulated the dopamine transporter (DAT) in striatum and produced a shift in its subcellular distribution, an effect likely to involve rapid internalization at the membrane. These new findings suggest that potent binding of MDPV to DAT may trigger internalization and a prolonged alteration in homeostatic regulation of DA and functional brain network reorganization. We propose that the observed MDPV-induced network reorganization and DAergic changes may contribute to previously reported adverse behavioral responses to MDPV.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA; Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jose A Pino
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kaustuv Saha
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Marjory Pompilus
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sherman Kaplitz
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nafisa Choudhury
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Darin A Jagnarine
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jean R Geste
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon A Levin
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Isaac Wilks
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Barry Setlow
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Gonzalo E Torres
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education (CARE), College of Medicine, University of Florida, Gainesville, FL 32610, USA; Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
28
|
Characterization of the discriminative stimulus effects of 3,4-methylenedioxypyrovalerone in male Sprague-Dawley rats. Behav Pharmacol 2018; 28:394-400. [PMID: 28598863 DOI: 10.1097/fbp.0000000000000310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recreational use of 3,4-methylenedioxypyrovalerone (MDPV) in the early 2000s prompted numerous scientific investigations of its behavioral and neurochemical effects. The purpose of this study was to further characterize the interoceptive stimulus effects of MDPV using a validated in-vivo drug-detection assay. Male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg MDPV from saline under a fixed ratio 20 (FR 20) schedule of food reinforcement. After stimulus control was established with MDPV (∼35 training sessions), substitution tests were commenced with drugs from several chemical classes, including drugs with predominantly dopaminergic actions [MDPV, D-amphetamine, (+)-methamphetamine, (-)-cocaine], drugs with predominantly serotonergic actions [(+)-lysergic acid diethylamide, (+)-fenfluramine], and drugs with both serotonergic and dopaminergic actions (3,4-methylenedioxymethamphetamine, 4-methylmethcathinone). Full substitution for the 0.3 mg/kg MDPV cue was observed with D-amphetamine, (+)-methamphetamine, and (-)-cocaine. Surprisingly, the 5-HT releaser (+)-fenfluramine fully substituted in half the subjects, but completely suppressed responding in the remaining subjects. 3,4-Methylenedioxymethamphetamine, 4-methylmethcathinone, and (+)-lysergic acid diethylamide failed to fully substitute for MDPV. These results indicate that the MDPV cue is similar to cues produced by drugs with predominantly dopamine-increasing effects and perhaps serotonin-releasing effects among individual subjects. Given these findings, further research is warranted to directly assess the contributions of dopamine and serotonin receptor isoforms to the discriminative stimulus functions of MDPV.
Collapse
|
29
|
Riley AL, Hempel BJ, Clasen MM. Sex as a biological variable: Drug use and abuse. Physiol Behav 2017; 187:79-96. [PMID: 29030249 DOI: 10.1016/j.physbeh.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/11/2023]
Abstract
The study of sex as a biological variable is a necessary emphasis across a wide array of endpoints, including basic neuroscience, medicine, mental health, physiology and behavior. The present review summarizes work from clinical and preclinical populations on sex differences in drug use and abuse, ranging from initiation to escalation/dysregulation and from drug cessation/abstinence to relapse. These differences are analyzed in the context of the addiction cycle conceptualization of Koob and his colleagues and address patterns of drug use (binge/intoxication), motivation underlying its use (withdrawal/negative affect) and likelihood and causes of craving and relapse of drug taking (preoccupation/anticipation). Following this overview, an assessment of the basis for the reported sex differences is discussed in the context of the affective (rewarding and aversive) properties of drugs of abuse and how such properties and their balance vary with sex and contribute to drug intake. Finally, the interaction of sex with several experiential (drug history) and subject (age) factors and how these interactions affect reward and aversion are discussed to highlight the importance of understanding such interactions in predicting drug use and abuse. We note that sex as a biological variable remains one of critical evaluation and that such investigations of sex differences in drug use and abuse continue and be expanded to assess all facets of their mediation, including these affective properties, how their balance may be impacted by the multiple conditions under which drugs are taken and how this overall balance affects drug use and addiction vulnerability.
Collapse
Affiliation(s)
- Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| |
Collapse
|
30
|
Hicks C, Gregg RA, Nayak SU, Cannella LA, Schena GJ, Tallarida CS, Reitz AB, Smith GR, Rawls SM. Glutamate carboxypeptidase II (GCPII) inhibitor 2-PMPA reduces rewarding effects of the synthetic cathinone MDPV in rats: a role for N-acetylaspartylglutamate (NAAG). Psychopharmacology (Berl) 2017; 234:1671-1681. [PMID: 28251297 PMCID: PMC5433920 DOI: 10.1007/s00213-017-4568-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE Metabotropic glutamate 2 and 3 (mGluR2/3) receptors are implicated in drug addiction as they limit excessive glutamate release during relapse. N-acetylaspartylglutamate (NAAG) is an endogenous mGluR2/3 agonist that is inactivated by the glutamate carboxypeptidase II (GCPII) enzyme. GCPII inhibitors, and NAAG itself, attenuate cocaine-seeking behaviors. However, their effects on the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) have not been examined. OBJECTIVES We determined whether withdrawal following repeated MDPV administration alters GCPII expression in corticolimbic regions. We also examined whether a GCPII inhibitor (2-(phosphonomethyl)-pentanedioic acid (2-PMPA)), and NAAG, reduce the rewarding and locomotor-stimulant effects of MDPV in rats. METHODS GCPII was assessed following repeated MDPV exposure (7 days). The effects of 2-PMPA and NAAG on acute MDPV-induced hyperactivity were determined using a locomotor test. We also examined the inhibitory effects of 2-PMPA and NAAG on MDPV-induced place preference, and whether the mGluR2/3 antagonist LY341495 could prevent these effects. RESULTS MDPV withdrawal reduced GCPII expression in the prefrontal cortex. Systemic injection of 2-PMPA (100 mg/kg) did not affect the hyperactivity produced by MDPV (0.5-3 mg/kg). However, nasal administration of NAAG did reduce MDPV-induced ambulation, but only at the highest dose (500 μg/10 μl). We also showed that 2-PMPA (10-30 mg/kg) and NAAG (10-500 μg/10 μl) dose-dependently attenuated MDPV place preference, and that the effect of NAAG was blocked by LY341495 (3 mg/kg). CONCLUSIONS These findings demonstrate that MDPV withdrawal produces dysregulation in the endogenous NAAG-GCPII signaling pathway in corticolimbic circuitry. Systemic administration of the GCPII inhibitor 2-PMPA, or NAAG, attenuates MDPV reward.
Collapse
Affiliation(s)
- Callum Hicks
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ryan A Gregg
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Sunil U Nayak
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Lee Anne Cannella
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Giana J Schena
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Christopher S Tallarida
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Doylestown, PA, USA
| | - Garry R Smith
- Fox Chase Chemical Diversity Center, Doylestown, PA, USA
| | - Scott M Rawls
- Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Nelson KH, Hempel BJ, Clasen MM, Rice KC, Riley AL. Conditioned taste avoidance, conditioned place preference and hyperthermia induced by the second generation 'bath salt' α-pyrrolidinopentiophenone (α-PVP). Pharmacol Biochem Behav 2017; 156:48-55. [PMID: 28427995 PMCID: PMC6155479 DOI: 10.1016/j.pbb.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND α-Pyrrolidinopentiophenone (α-PVP) has been reported to be rewarding in a variety of pre-clinical models. Given that a number of drugs of abuse have both rewarding and aversive effects, the balance of which influences addiction potential, the present study examined the aversive properties of α-PVP by assessing its ability to induce taste avoidance. This assessment was made in a combined taste avoidance/place conditioning design that also allowed an evaluation of the relationship between α-PVP's aversive and rewarding effects. METHODS Male Sprague-Dawley rats were exposed to a novel saccharin solution, injected with one of four doses of α-PVP (0, 0.3, 1.0 and 3.0mg/kg) (IP) and placed on one side of a place conditioning apparatus. The next day, they were injected with vehicle, given access to water and placed on the other side. Following four conditioning cycles, saccharin avoidance and place preferences were then assessed. The effects of α-PVP on body temperature were also examined. RESULTS α-PVP induced dose-dependent taste avoidance as well as significant increases in time spent on the drug-paired side (although this effect was not dependent on dose). α-PVP also induced dose- and time-dependent hyperthermia. CONCLUSIONS α-PVP induced significant taste avoidance whose strength relative to the psychostimulants methylenedioxypyrovalerone (MDPV) and cocaine paralleled their relative binding to the dopamine transporter. Similar to other drugs of abuse, α-PVP has both aversive and rewarding effects. It will be important to assess how various experiential and subject variables impact these effects and their balance to predict abuse liability.
Collapse
Affiliation(s)
- Katharine H Nelson
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| |
Collapse
|
32
|
Weinstein AM, Rosca P, Fattore L, London ED. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front Psychiatry 2017; 8:156. [PMID: 28878698 PMCID: PMC5572353 DOI: 10.3389/fpsyt.2017.00156] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022] Open
Abstract
As part of an increasing worldwide use of designer drugs, recent use of compounds containing cathinones and synthetic cannabinoids is especially prevalent. Here, we reviewed current literature on the prevalence, epidemiology, bio-behavioral effects, and detection of these compounds. Gender differences and clinical effects will also be examined. Chronic use of synthetic cathinone compounds can have major effects on the central nervous system and can induce acute psychosis, hypomania, paranoid ideation, and delusions, similar to the effects of other better-known amphetamine-type stimulants. Synthetic cannabinoid products have effects that are somewhat similar to those of natural cannabis but more potent and long-lasting than THC. Some of these compounds are potent and dangerous, having been linked to psychosis, mania, and suicidal ideation. Novel compounds are developed rapidly and new screening techniques are needed to detect them as well as a rigorous regulation and legislation reinforcement to prevent their distribution and use. Given the rapid increase in the use of synthetic cathinones and cannabinoid designer drugs, their potential for dependence and abuse, and harmful medical and psychiatric effects, there is a need for research and education in the areas of prevention and treatment.
Collapse
Affiliation(s)
- Aviv M Weinstein
- Department of Behavioral Science, Ariel University, Ariel, Israel
| | - Paola Rosca
- Department for the Treatment of Substance Abuse, Ministry of Health, Jerusalem, Israel
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council of Italy, Cagliari, Italy
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
33
|
King HE, Riley AL. The Affective Properties of Synthetic Cathinones: Role of Reward and Aversion in Their Abuse. Curr Top Behav Neurosci 2017; 32:165-181. [PMID: 27431397 DOI: 10.1007/7854_2016_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The drug class known as synthetic cathinones has gained significant attention in the last few years as a result of increased use and abuse. These compounds have been shown to possess reinforcing efficacy in that they are abused in human populations and are self-administered in animal models. The present chapter outlines the affective properties of synthetic cathinones that are thought to impact drug self-administration in general and presents research confirming that these drugs have both rewarding and aversive effects in standalone and concurrent assessments. The implications of these affective properties for the overall abuse potential of these compounds are discussed along with directions for future research.
Collapse
Affiliation(s)
- Heather E King
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Ave, NW, Washington, DC, 20016, USA.
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Ave, NW, Washington, DC, 20016, USA
| |
Collapse
|
34
|
Hempel BJ, Wakeford AGP, Nelson KH, Clasen MM, Woloshchuk CJ, Riley AL. An assessment of sex differences in Δ 9-tetrahydrocannabinol (THC) taste and place conditioning. Pharmacol Biochem Behav 2016; 153:69-75. [PMID: 27986515 DOI: 10.1016/j.pbb.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, D.C. 20016, USA.
| | - Alison G P Wakeford
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, D.C. 20016, USA
| | - Katharine H Nelson
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, D.C. 20016, USA
| | - Claudia J Woloshchuk
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, D.C. 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, D.C. 20016, USA.
| |
Collapse
|
35
|
Woloshchuk CJ, Nelson KH, Rice KC, Riley AL. Effects of 3,4-methylenedioxypyrovalerone (MDPV) pre-exposure on the aversive effects of MDPV, cocaine and lithium chloride: Implications for abuse vulnerability. Drug Alcohol Depend 2016; 167:121-7. [PMID: 27520883 PMCID: PMC5548127 DOI: 10.1016/j.drugalcdep.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Drug use is thought to be a balance of the rewarding and aversive effects of drugs. Understanding how various factors impact these properties and their relative balance may provide insight into their abuse potential. In this context, the present study attempted to evaluate the effects of drug history on the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV), one of a variety of synthetic cathinones (collectively known as "bath salts"). METHODS Different groups of male Sprague-Dawley rats were exposed to either vehicle or MDPV (1.8mg/kg) once every fourth day for five total injections prior to taste avoidance conditioning in which a novel saccharin solution was repeatedly paired with either vehicle, MDPV (1.8mg/kg), the related psychostimulant cocaine (18mg/kg) or the emetic lithium chloride (LiCl) (13.65mg/kg). RESULTS In animals pre-exposed to vehicle, all three drugs induced significant and comparable taste avoidance relative to animals injected with vehicle during conditioning. MDPV pre-exposure attenuated the avoidance induced by both MDPV and cocaine (greater attenuation for MDPV than cocaine), but had no effect on that induced by LiCl. CONCLUSIONS These findings suggest that a history of MDPV use may reduce or attenuate MDPV and cocaine's (but not LiCl's) aversive effects. The implications for such changes in MDPV's aversive effects to its potential use and abuse were discussed.
Collapse
Affiliation(s)
- Claudia J Woloshchuk
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW Washington, D.C. 20016, USA.
| | - Katharine H Nelson
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW Washington, D.C. 20016, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW Washington, D.C. 20016, USA.
| |
Collapse
|
36
|
Glennon RA, Young R. Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Res Bull 2016; 126:111-126. [PMID: 27142261 DOI: 10.1016/j.brainresbull.2016.04.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023]
Abstract
Synthetic cathinones are analogs of cathinone or β-ketoamphetamine - the major psychostimulant component of the shrub Catha edulis or khat. Cathinone analogs - though not termed as such - have been known for >100 years, but confusing chemical nomenclature often made the topic difficult to appreciate. In addition, many of the early analogs were prepared as synthetic precursors for the development of various other agents, and relatively few were pharmacologically evaluated. Cathinone is a close structural relative of amphetamine. Today, certain cathinone derivatives, synthetic cathinones, are known to produce central stimulant actions and represent a "new" class of drugs of abuse. Depending upon the nature of their terminal amine, α substituent, and aryl substituents, they seem to produce their effects via release or reuptake of various neurotansmitters including dopamine norepinephreine and/or serotonin. Two of the newest and most prominent members of the class are MDPV and its parent α-PVP ("flakka"). Both have been encountered on their own and in what might be constituents of what has been termed by a variety of names including psychoactive "bath salts". Here, we describe the nomenclature of synthetic cathinones, the mechanism(s) of action of MDPV and α-PVP, and their structure-activity relationships. In order to assist in forensic studies, and to identify novel substances requiring future pharmacological evaluation, the metabolism of these agents is also described. Finally, the preclinical behavioral actions of these two agents in a variety of behavioral assays, including rodent locomotor assays, self-administration studies, intracranial self-stimulation, conditioned place preference, and drug discrimination, is summarized. The results of these studies with MDPV and α-PVP are consistent with their acting as potent cocaine-like central stimulants with abuse liability.
Collapse
Affiliation(s)
- Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Box 980540, Richmond, VA, 23298 USA.
| | - Richard Young
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Box 980540, Richmond, VA, 23298 USA
| |
Collapse
|
37
|
Gregg RA, Hicks C, Nayak SU, Tallarida CS, Nucero P, Smith GR, Reitz AB, Rawls SM. Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator. Neuropharmacology 2016; 108:111-9. [PMID: 27085607 DOI: 10.1016/j.neuropharm.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Synthetic cathinones produce dysregulation of monoamine systems, but their effects on the glutamate system and the influence of glutamate on behavioral effects related to cathinone abuse are unknown. A principal regulator of glutamate homeostasis is glutamate transporter subtype 1 (GLT-1), an astrocytic protein that clears glutamate from the extracellular space and influences behavioral effects of established psychostimulants. We hypothesized that repeated administration of the synthetic cathinone, MDPV (3,4-methylenedioxypyrovalerone), would affect GLT-1 expression in the corticolimbic circuit, and that a GLT-1 activator (ceftriaxone, CTX) would reduce rewarding and locomotor-stimulant effects of MDPV in rats. GLT-1 protein expression in the nucleus accumbens (NAcc), but not prefrontal cortex (PFC), was decreased following withdrawal (2, 5 and 10 days) from repeated MDPV treatment, but not immediately after the last MDPV injection. CTX (200 mg/kg) pretreatment did not affect acute locomotor activation produced by MDPV (0.5, 1, 3 mg/kg). However, CTX (200 mg/kg) administered during a 7-day MDPV treatment paradigm attenuated the development of MDPV-induced sensitization of repetitive movements in rats challenged with MDPV following 11 days of drug abstinence. Pretreatment with CTX (200 mg/kg) during a 4-day MDPV (2 mg/kg) conditioned place preference (CPP) paradigm reduced the development of place preference produced by MDPV. The present data demonstrate dysregulation of corticolimbic glutamate transport systems during withdrawal from chronic MDPV exposure, and show that a GLT-1 transporter activator disrupts behavioral effects of MDPV that are related to synthetic cathinone abuse.
Collapse
Affiliation(s)
- Ryan A Gregg
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Callum Hicks
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Sunil U Nayak
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Christopher S Tallarida
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Paul Nucero
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Garry R Smith
- Fox Chase Chemical Diversity Center, Doylestown, PA, United States
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Doylestown, PA, United States
| | - Scott M Rawls
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Delta-9-tetrahydrocannabinol (THC) history fails to affect THC's ability to induce place preferences in rats. Pharmacol Biochem Behav 2016; 144:1-6. [PMID: 26905371 DOI: 10.1016/j.pbb.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/07/2023]
Abstract
RATIONALE In pre-clinical models of marijuana abuse, there is relatively limited evidence of delta-9-tetrahydrocannabinol's (THC) rewarding effects, as indexed by its general inability to induce a place preference. One explanation for this failure is that its rewarding effects are masked by its concurrently occurring aversive properties. Consistent with this explanation, THC pre-exposure, which presumably weakens its aversive effects, induces place preferences. Such demonstrations are limited to mice and given reported species differences in THC reactivity, it is unknown to what extent the same shift in affective properties would be evident in rats. METHODS The present experiment examined the effect of THC history (3.2mg/kg) on THC (1 or 3.2mg/kg) induced place preference conditioning in rats. An assessment of taste avoidance was also run to independently characterize THC's aversive effects and any changes that occurred with drug pre-exposure. These assessments were made in a combined taste avoidance/place preference procedure in which a novel saccharin solution and environment were paired with THC (0, 1 or 3.2mg/kg). RESULTS THC did not induce place conditioning, and a history of THC was ineffective in increasing THC's ability to do so, despite the fact that this same history significantly attenuated the aversive effects of THC. CONCLUSIONS The failure of THC to consistently induce place preferences has been argued to be a function of its concurrently occurring aversive effects masking its rewarding properties. The fact that pre-exposure to THC significantly reduced its aversive effects without impacting THC's ability to induce place preferences suggests that THC has weak rewarding effects and/or its residual aversive affects may have still masked its rewarding properties. An important area for future work will be characterizing under what conditions THC is rewarding and whether its overall reinforcing effects are impacted by the relationship between its affective properties.
Collapse
|