1
|
Aroni S, Sagheddu C, Pistis M, Muntoni AL. Functional Adaptation in the Brain Habenulo-Mesencephalic Pathway During Cannabinoid Withdrawal. Cells 2024; 13:1809. [PMID: 39513916 PMCID: PMC11545051 DOI: 10.3390/cells13211809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes. We hypothesized that the LHb-RMTg pathway might be causally involved in the hypodopaminergic state during cannabinoid withdrawal. To induce Δ9-tetrahydrocannabinol (THC) dependence, adult male Sprague-Dawley rats were treated with THC (15 mg/kg, i.p.) twice daily for 6.5-7 days. Administration of the cannabinoid antagonist rimonabant (5 mg/kg, i.p.) precipitated a robust behavioral withdrawal syndrome, while abrupt THC suspension caused milder signs of abstinence. Extracellular single unit recordings confirmed a marked decrease in the discharge frequency and burst firing of VTA dopamine neurons during THC withdrawal. The duration of RMTg-evoked inhibition was longer in THC withdrawn rats. Additionally, the spontaneous activity of RMTg neurons and of LHb neurons was strongly depressed during cannabinoid withdrawal. These findings support the hypothesis that functional changes in the habenulo-mesencephalic circuit are implicated in the mechanisms underlying substance use disorders.
Collapse
Affiliation(s)
- Sonia Aroni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, I-09123 Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
| |
Collapse
|
2
|
Cao X, Zhu M, Xu G, Li F, Yan Y, Zhang J, Wang J, Zeng F, Bao Y, Zhang X, Liu T, Zhang D. HCN channels in the lateral habenula regulate pain and comorbid depressive-like behaviors in mice. CNS Neurosci Ther 2024; 30:e14831. [PMID: 38961317 PMCID: PMC11222070 DOI: 10.1111/cns.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.
Collapse
Affiliation(s)
- Xue‐zhong Cao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Meng‐ye Zhu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gang Xu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Fan Li
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jin‐jin Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianbing Wang
- Department of AnesthesiologyJiangxi Cancer HospitalNanchangJiangxiChina
| | - Fei Zeng
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yang Bao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xue‐xue Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tao Liu
- Department of Pediatricsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Da‐ying Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Tsuda MC, Wu TJ, Armstrong RC, Cox BM, Nugent FS. Effects of Repetitive Mild Traumatic Brain Injury on Corticotropin-Releasing Factor Modulation of Lateral Habenula Excitability and Motivated Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589760. [PMID: 38798343 PMCID: PMC11118357 DOI: 10.1101/2024.04.16.589760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI injury during late adolescence (at ~8 weeks old). Here we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior, and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Since persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we then tested whether LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb normalizes mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors towards more passive action-locking rather than escape behaviors in response to an aerial threat in both male and female mice as well as prolonging the latency to escape responses in female mice. While, this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this preclinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI injury during late adolescence.
Collapse
Affiliation(s)
- William J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Sarah C. Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Emily H. Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - T. John Wu
- Uniformed Services University of the Health Sciences, Department of Gynecologic Surgery and Obstetrics, Bethesda, MD 20814
| | - Regina C. Armstrong
- Uniformed Services University of the Health Sciences, Department of Anatomy, Physiology and Genetics, Bethesda, Maryland 20814, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| |
Collapse
|
4
|
Li Z, Shu Q, Chen Q, Yang H, Liu L, He Z, Lin H, Li Z. HCN1 in the lateral habenula contributes to morphine abstinence-induced anxiety-like behaviors in male mice. J Psychiatr Res 2024; 171:185-196. [PMID: 38301534 DOI: 10.1016/j.jpsychires.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Anxiety disorders, common symptoms during morphine withdrawal, are important negative reinforcement factors leading to relapse. Lateral habenula serves as a negative reinforcement center, however its role in morphine withdrawal-induced anxiety remains uncovered. The hyperpolarization activated cyclic nucleotide-gated (HCN) channels have been reported to be important in emotion processing and addiction, but the role of HCN in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, Western blot, immunofluorescence, electrophysiology and virus-mediated regulation of HCN, we found that: (1) Intra-LHb injection of selective HCN blocker ZD7288 alleviated anxiety-like behaviors in morphine protracted abstinent male mice. (2) The LHb neuronal activity was increased by morphine protracted abstinence. (3) LHb neurons were inhibited by ZD7288 and activated by 8-Br-cAMP respectively, which were enhanced by morphine withdrawal. (4) HCN1 in the LHb was upregulated by morphine withdrawal. (5) Virus-mediated overexpression of HCN1 in the LHb was sufficient to produce anxiety-like behaviors in male mice and virus-mediated knockdown of HCN1 in the LHb prevented the anxiety-like behaviors in male mice. The findings reveal that selective blockade of HCN1 channels in the LHb may represent a therapeutic approach to morphine withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Zonghui Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qigang Shu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qiuping Chen
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Hongwei Yang
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Lu Liu
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhi He
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.
| | - Hong Lin
- Yichang Mental Health Center, Yichang, China.
| | - Zicheng Li
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China; Yichang Mental Health Center, Yichang, China.
| |
Collapse
|
5
|
Ip CK, Rezitis J, Qi Y, Bajaj N, Koller J, Farzi A, Shi YC, Tasan R, Zhang L, Herzog H. Critical role of lateral habenula circuits in the control of stress-induced palatable food consumption. Neuron 2023; 111:2583-2600.e6. [PMID: 37295418 DOI: 10.1016/j.neuron.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice. Mechanistically, this is due to a circuit originating from central amygdala NPY neurons, with the upregulation of NPY induced by HFDS initiating a dual inhibitory effect via Npy1r signaling onto LHb and lateral hypothalamus neurons, thereby reducing the homeostatic satiety effect through action on the downstream ventral tegmental area. Together, these results identify LHb-Npy1r neurons as a critical node to adapt the response to chronic stress by driving palatable food intake in an attempt to overcome the negative valence of stress.
Collapse
Affiliation(s)
- Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jemma Rezitis
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nikita Bajaj
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Aitak Farzi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Yan-Chuan Shi
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Zhang Y, Ma L, Zhang X, Yue L, Wang J, Zheng J, Cui S, Liu FY, Wang Z, Wan Y, Yi M. Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats. Neurobiol Dis 2023; 180:106069. [PMID: 36893902 DOI: 10.1016/j.nbd.2023.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a promising therapy for treatment-resistant depression, while mechanisms underlying its therapeutic effects remain poorly defined. Increasing evidence has revealed an intimate association between the lateral habenula (LHb) and major depression, and suggests that the LHb might be an effective target of DBS therapy for depression. Here, we found that DBS in the LHb effectively decreased depression-like behaviors in rats experienced with chronic unpredictable mild stress (CUMS), a well-accepted paradigm for modeling depression in rodents. In vivo electrophysiological recording unveiled that CUMS increased neuronal burst firing, as well as the proportion of neurons showing hyperactivity to aversive stimuli in the LHb. Nevertheless, DBS downregulated local field potential power, reversed the CUMS-induced increase of LHb burst firing and neuronal hyperactivity to aversive stimuli, and decreased the coherence between LHb and ventral tegmental area (VTA). Our results demonstrate that DBS in the LHb exerts antidepressant-like effects and reverses local neural hyperactivity, supporting the LHb as a target of DBS therapy for depression.
Collapse
Affiliation(s)
- Yuqi Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Xueying Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Science, Beijing 100101, China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Science, Beijing 100101, China; National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Cardona-Acosta AM, Bolaños-Guzmán CA. Role of the mesolimbic dopamine pathway in the antidepressant effects of ketamine. Neuropharmacology 2023; 225:109374. [PMID: 36516891 PMCID: PMC9839658 DOI: 10.1016/j.neuropharm.2022.109374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Depression is a complex and highly heterogeneous disorder which diagnosis is based on an exceedingly variable set of clinical symptoms. Current treatments focus almost exclusively on the manipulation of monoamine neurotransmitter systems, but despite considerable efforts, these remain inadequate for a significant proportion of those afflicted by the disorder. The emergence of racemic (R, S)-ketamine as a fast-acting antidepressant has provided an exciting new path for the study of major depressive disorder (MDD) and the search for better therapeutics for its treatment. Previous work suggested that ketamine's mechanism of action is primarily mediated via blockaded of N-methyl-d-aspartate (NMDA) receptors, however, this is an area of active research and clinical and preclinical evidence now indicate that ketamine acts on multiple systems. The last couple of decades have cemented the mesolimbic dopamine reward pathway's involvement in the pathogenesis of MDD and related mood disorders. Exposure to negative stress dysregulates dopamine neuronal activity disrupting reward and motivational processes resulting in anhedonia (lack of pleasure), a hallmark symptom of depression. Although the mechanism(s) underlying ketamine's antidepressant activity continue to be elucidated, current evidence indicate that its therapeutic effects are mediated, at least in part, via long-lasting synaptic changes and subsequent molecular adaptations in brain regions within the mesolimbic dopamine system. Notwithstanding, ketamine is a drug of abuse, and this liability may pose limitations for long term use as an antidepressant. This review outlines the current knowledge of ketamine's actions within the mesolimbic dopamine system and its abuse potential. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
9
|
The intersection of astrocytes and the endocannabinoid system in the lateral habenula: on the fast-track to novel rapid-acting antidepressants. Mol Psychiatry 2022; 27:3138-3149. [PMID: 35585261 DOI: 10.1038/s41380-022-01598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/04/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Despite attaining significant advances toward better management of depressive disorders, we are still facing several setbacks. Developing rapid-acting antidepressants with sustained effects is an aspiration that requires thinking anew to explore possible novel targets. Recently, the lateral habenula (LHb), the brain's "anti-reward system", has been shown to go awry in depression in terms of various molecular and electrophysiological signatures. Some of the presumed contributors to such observed aberrations are astrocytes. These star-shaped cells of the brain can alter the firing pattern of the LHb, which keeps the activity of the midbrain's aminergic centers under tight control. Astrocytes are also integral parts of the tripartite synapses, and can therefore modulate synaptic plasticity and leave long-lasting changes in the brain. On the other hand, it was discovered that astrocytes express cannabinoid type 1 receptors (CB1R), which can also take part in long-term plasticity. Herein, we recount how the LHb of a depressed brain deviates from the "normal" one from a molecular perspective. We then try to touch upon the alterations of the endocannabinoid system in the LHb, and cast the idea that modulation of astroglial CB1R may help regulate habenular neuronal activity and synaptogenesis, thereby acting as a new pharmacological tool for regulation of mood and amelioration of depressive symptoms.
Collapse
|
10
|
Gakare SG, Varghese SS, Patni PP, Wagh SA, Ugale RR. Prevention of glutamate excitotoxicity in lateral habenula alleviates ethanol withdrawal-induced somatic and behavioral effects in ethanol dependent mice. Behav Brain Res 2022; 416:113557. [PMID: 34453973 DOI: 10.1016/j.bbr.2021.113557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Ethanol withdrawal commonly leads to anxiety-related disorder, a central factor toward negative reinforcement leading to relapse. The lateral habenula (LHb), an epithalamic nucleus, has emerged to be critical for both reward and aversion processing. Recent studies have also implicated the hyperactivity of LHb, adding to the emergence of negative emotional states during withdrawal from addictive drugs. Herein, we have studied the effects of glutamate transporter inhibitor (PDC), GluN2B-containing NMDAR antagonist (Ro25-6981), and intracellular calcium chelator (BAPTA-AM) injection in LHb on ethanol withdrawal symptoms. We found that ethanol 4 g/kg 20 % w/v intragastric (i.g.) for 10 days followed by 24 h of withdrawal showed a significant increase in somatic signs characterized by vocalization, shaking, and scratching. It also increased locomotor activity and anxiety-like behavior, collectively showing expression of ethanol withdrawal symptoms. The intra-LHb administration of PDC (0.5 ng) worsened the effect of ethanol withdrawal, whereas Ro25-6981 (2 and 4 ng) and BAPTA-AM (6.5 and 13 ng) significantly reversed ethanol withdrawal-induced behavior evident by a decrease in somatic signs, locomotor activity, and anxiety-like behavior. Further, pretreatment of Ro25-6981 and BAPTA-AM reduced the neuronal loss, whereas PDC increased it compared to the vehicle-treated group, as evidenced by NeuN staining. Altogether, our results suggest that increased glutamate, GluN2B activation, and likely calcium increase indicative of glutamate excitotoxicity-induced neuronal loss in LHb possibly endorse the emergence of ethanol withdrawal symptoms, while their inhibition might help in alleviating the ethanol withdrawal symptoms.
Collapse
Affiliation(s)
- Sukanya G Gakare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Shejin S Varghese
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Paras P Patni
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Samruddhi A Wagh
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
11
|
Kakall ZM, Gopalasingam G, Herzog H, Zhang L. Dynamic regional alterations in mouse brain neuronal activity following short-term changes in energy balance. Obesity (Silver Spring) 2021; 29:1650-1663. [PMID: 34402189 DOI: 10.1002/oby.23253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Knowledge of the functional contribution to energy homeostatic control by different brain areas is limited. This study employed a systematic approach to identify brain regions specifically influenced by a positive energy balance. METHODS The c-fos expression was mapped throughout the mouse brain after varying durations (24 hours to up to 14 days) of high-fat diet (HFD) exposure or after reversal from a 7-day HFD to a chow diet. In parallel, the metabolic and behavioral impacts of these treatments were examined. RESULTS A HFD elicited rapid and pronounced compensatory responses which were, however, insufficient to overcome the impact of the positive energy balance. Rapid and dynamic responses of c-fos expression throughout the brain were seen over the course of HFD exposure, with some regions showing linear-like responses and some regions exhibiting biphasic responses. The switch from HFD to chow resulted in metabolic compensations mitigating the effects of the negative energy balance and a heightened preference for sweet taste. Interestingly, this diet switch led to a significant c-fos activation in the lateral hypothalamus, an area unresponsive to HFD intervention. CONCLUSIONS Plasticity exists in the extended brain networks facilitating rapid adaptations dependent on energy availability. Knowledge of these critical control points may provide novel antiobesity treatment targets.
Collapse
Affiliation(s)
- Zohra Mohtat Kakall
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Faulty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Freudenmacher L, Twickel AV, Walkowiak W. Input of sensory, limbic, basal ganglia and pallial/cortical information into the ventral/lateral habenula: Functional principles in anuran amphibians. Brain Res 2021; 1766:147506. [PMID: 33930373 DOI: 10.1016/j.brainres.2021.147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
The habenula - a phylogenetically old brain structure present in all vertebrates - is involved in pain processing, reproductive behaviors, sleep-wake cycles, stress responses, reward, and learning. We performed intra- and extracellular recordings of ventral habenula (VHb) neurons in the isolated brain of anurans and revealed similar cell and response properties to those reported for the lateral habenula of mammals. We identified tonic regular, tonic irregular, rhythmic firing, and silent VHb neurons. Transitions between these firing patterns were observed during spontaneous activity. Electrical stimulation of various brain areas demonstrated VHb input of auditory, optic, limbic, basal ganglia, and pallial information. This resulted in three different response behaviors in VHb neurons: excitation, inhibition, or alternating facilitation and suppression of neuronal activity. Spontaneously changing activity patterns were observed to modulate, reset, or suppress the response behavior of VHb neurons, indicating a gating mechanism. This could be a network status or context dependent selection mechanism for which information are transmitted to task relevant brain areas (i.e., sensory system, limbic system, basal ganglia). Furthermore, alternating facilitation and suppression sequences upon auditory nerve stimulation correlated positively fictive motor activities recorded via the compound potential of the vagal nerve. Stimulation of the auditory nerve or the habenula led to facilitation, suppression, or alternating facilitation and suppression of neuronal activity in putative dopaminergic neurons. Due to complex habenula feedback loops with basal ganglia, limbic, and sensory systems, the habenula involvement in a variety of functions might therefore be explained by a modulatory effect on a task-relevant input stream.
Collapse
Affiliation(s)
- Lars Freudenmacher
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Arndt von Twickel
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Wolfgang Walkowiak
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
13
|
Simmons SC, Shepard RD, Gouty S, Langlois LD, Flerlage WJ, Cox BM, Nugent FS. Early life stress dysregulates kappa opioid receptor signaling within the lateral habenula. Neurobiol Stress 2020; 13:100267. [PMID: 33344720 PMCID: PMC7739170 DOI: 10.1016/j.ynstr.2020.100267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic brain region associated with value-based decision making and stress evasion through its modulation of dopamine (DA)-mediated reward circuitry. Specifically, increased activity of the LHb is associated with drug addiction, schizophrenia and stress-related disorders such as depression, anxiety and posttraumatic stress disorder. Dynorphin (Dyn)/Kappa opioid receptor (KOR) signaling is a mediator of stress response in reward circuitry. Previously, we have shown that maternal deprivation (MD), a severe early life stress, increases LHb spontaneous neuronal activity and intrinsic excitability while blunting the response of LHb neurons to extrahypothalamic corticotropin-releasing factor (CRF) signaling, another stress mediator. CRF pathways also interact with Dyn/KOR signaling. Surprisingly, there has been little study of direct KOR regulation of the LHb despite its distinct role in stress, reward and aversion processing. To test the functional role of Dyn/KOR signaling in the LHb, we utilized ex-vivo electrophysiology combined with pharmacological tools in rat LHb slices. We show that activation of KORs by a KOR agonist (U50,488) exerted differential effects on the excitability of two distinct sub-populations of LHb neurons that differed in their expression of hyperpolarization-activated cation currents (HCN, Ih). Specifically, KOR stimulation increased neuronal excitability in LHb neurons with large Ih currents (Ih+) while decreasing neuronal excitability in small/negative Ih (Ih-) neurons. We found that an intact fast-synaptic transmission was required for the effects of U50,488 on the excitability of both Ih- and Ih+ LHb neuronal subpopulations. While AMPAR-, GABAAR-, or NMDAR-mediated synaptic transmission alone was sufficient to mediate the effects of U50,488 on excitability of Ih- neurons, either GABAAR- or NMDAR-mediated synaptic transmission could mediate these effects in Ih+ neurons. Consistently, KOR activation also altered both glutamatergic and GABAergic synaptic transmission where stimulation of presynaptic KORs uniformly suppressed glutamate release onto LHb neurons while primarily decreased or in some cases increased GABA release. We also found that MD significantly increased immunolabeled Dyn (the endogenous KOR agonist) labeling in neuronal fibers in LHb while significantly decreasing mRNA levels of KORs in LHb tissues compared to those from non-maternally deprived (non-MD) control rats. Moreover, the U50,488-mediated increase in LHb neuronal firing observed in non-MD rats was absent following MD. Altogether, this is the first demonstration of the existence of functional Dyn/KOR signaling in the LHb that can be modulated in response to severe early life stressors such as MD.
Collapse
Key Words
- Dynorphin
- Early life stress
- KOR
- Kappa opioid receptor
- Kappa opioid receptor, (KOR)
- LHb
- Lateral habenula
- action potential, (AP)
- adverse childhood experiences, (ACE)
- artificial cerebral spinal fluid, (ACSF)
- corticotropin-releasing factor, (CRF)
- dopamine, (DA)
- dynorphin, (Dyn)
- early life stress, (ELS)
- fastafterhyperpolarization, (fAHP)
- hyperpolarization activated cation current, (HCN, Ih)
- input resistance, (Rin)
- inter-event interval, (IEI)
- maternal deprivation, (MD)
- medium afterhyperpolarization, (mAHP)
- miniature excitatory postsynaptic current, (mEPSC)
- miniature inhibitory postsynaptic current, (mIPSC)
- non-maternally deprived, (non-MD)
- nucleus accumbens, (NAc)
- postnatal age, (PN)
- raphe nuclei, (RN)
- rostromedial tegmental area, (RMTg)
- serotonin, (5HT)
- ventral tegmental area, (VTA)
Collapse
Affiliation(s)
- Sarah C. Simmons
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ryan D. Shepard
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ludovic D. Langlois
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - William J. Flerlage
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| |
Collapse
|
14
|
Kang M, Noh J, Chung JM. NMDA receptor-dependent long-term depression in the lateral habenula: implications in physiology and depression. Sci Rep 2020; 10:17921. [PMID: 33087756 PMCID: PMC7578045 DOI: 10.1038/s41598-020-74496-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Abnormally increased neuronal activity in the lateral habenula (LHb) is closely associated with depressive-like behavior. Despite the emphasis on the pathological importance of NMDA receptor (NMDAR)-dependent long-term depression (LTD) and the involvement of calcium permeable AMPA receptor (CP-AMPAR) as major Ca2+ source, the functions of NMDAR and CP-AMPAR on LTD modulation in the LHb still have not been fully investigated. Here, we found that NMDAR-dependent LTD by low frequency stimulation was induced in both synaptic and extrasynaptic regions in the LHb. In addition, CP-AMPAR was necessary for the activation of NMDAR in the induction phase of NMDAR-dependent LTD. The acute stress, which induced depressive behavior, had a blocked effect on synaptic NMDAR-dependent LTD but left extrasynaptic NMDAR-dependent LTD intact. These findings show that NMDAR-dependent LTD in LHb plays an important role in regulating neuronal activity, which is probable to be excessively increased by repeated stress, via maintaining homeostasis in both synaptic and extrasynaptic regions of the LHb. Moreover, NMDAR and CP-AMPAR may serve as a depression-related modulator and be regarded as a promising therapeutic target for treatment of psychopathology such as depression.
Collapse
Affiliation(s)
- Miseon Kang
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea.,Emotion, cognition & behavior research group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, Yongin-si, Republic of Korea.
| | - Jun-Mo Chung
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020; 21:277-295. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| | - Yihui Cui
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan Yang
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| |
Collapse
|
16
|
Bian G, Liu J, Guo Y, Yang Y, Li L, Qiao H, Li W, Xu T, Zhang Q. Kv7.2 subunit-containing M-type potassium channels in the lateral habenula are involved in the regulation of working memory in parkinsonian rats. Neuropharmacology 2020; 168:108012. [PMID: 32067988 DOI: 10.1016/j.neuropharm.2020.108012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Although the lateral habenula (LHb) is involved in the regulation of multiple brain functions and this region expresses abundant M-type potassium channel (M-channel) subunits Kv7.2 and Kv7.3, the role of M-channels in regulating working memory is unclear, particularly in Parkinson's disease (PD). Here we tested the effects of activation and blockade of LHb M-channels on working memory by the T-maze rewarded alternation test in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra compacta (SNc). The SNc lesion induced working memory impairment, increased the firing rate of LHb neurons, decreased dopamine (DA) level in the ventral medial prefrontal cortex (vmPFC) and reduced the expression of Kv7.2 subunit in the LHb. Intra-LHb injection of M-channel activator retigabine induced enhancement of working memory in SNc sham-lesioned and SNc-lesioned rats; conversely, the injection of M-channel blocker XE-991 impaired working memory in the two groups of rats. However, doses producing significant effects in SNc-lesioned rats were higher than those in SNc sham-lesioned rats. Further, intra-LHb injection of retigabine decreased the firing rate of LHb neurons and increased release of DA and serotonin (5-HT) in the vmPFC, while XE-991 increased the firing rate and decreased DA and 5-HT release in the two groups of rats. Compared with SNc sham-lesioned rats, the duration of M-channel activation and blockade action on the firing rate of the neurons and release of DA and 5-HT was significantly shortened in SNc-lesioned rats, which was consistent with reduced expression of Kv7.2 subunit in the LHb after lesioning the SNc. Collectively, these findings suggest involvement of LHb Kv7.2 subunit-containing M-channels in working memory impairment in SNc-lesioned rats, and that enhanced or impaired working memory after activation or blockade of M-channels in the LHb is related to the changes in the firing activity of LHb neurons and DA and 5-HT release in the vmPFC.
Collapse
Affiliation(s)
- Guanyun Bian
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hongfei Qiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tian Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
17
|
Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2019; 53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The habenula (Hb) is a phylogenetically old epithalamic structure differentiated into two nuclear complexes, the medial (MHb) and lateral habenula (LHb). After decades of search for a great unifying function, interest in the Hb resurged when it was demonstrated that LHb plays a major role in the encoding of aversive stimuli ranging from noxious stimuli to the loss of predicted rewards. Consistent with a role as an anti-reward center, aberrant LHb activity has now been identified as a key factor in the pathogenesis of major depressive disorder. Moreover, both MHb and LHb emerged as new players in the reward circuitry by primarily mediating the aversive properties of distinct drugs of abuse. Anatomically, the Hb serves as a bridge that links basal forebrain structures with monoaminergic nuclei in the mid- and hindbrain. So far, research on Hb has focused on the role of the LHb in regulating midbrain dopamine release. However, LHb/MHb are also interconnected with the dorsal (DR) and median (MnR) raphe nucleus. Hence, it is conceivable that some of the habenular functions are at least partly mediated by the complex network that links MHb/LHb with pontomesencephalic monoaminergic nuclei. Here, we summarize research about the topography and transmitter phenotype of the reciprocal connections between the LHb and ventral tegmental area-nigra complex, as well as those between the LHb and DR/MnR. Indirect MHb outputs via interpeduncular nucleus to state-setting neuromodulatory networks will also be commented. Finally, we discuss the role of specific LHb-VTA and LHb/MHb-raphe circuits in anxiety and depression.
Collapse
Affiliation(s)
- Martin Metzger
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rudieri Souza
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Bueno
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano Gonçalves
- Department of Human Anatomy, Federal University of the Triângulo Mineiro, Uberaba, Brazil
| | - Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara J Shammah-Lagnado
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019; 527:3046-3072. [DOI: 10.1002/cne.24729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Debora Bueno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Leandro B. Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Rudieri Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Luciano Gonçalves
- Department of Human AnatomyFederal University of the Triângulo Mineiro Uberaba Brazil
| | - Fernanda Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Stefani Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Martin Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
19
|
Cui Y, Hu S, Hu H. Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine. Trends Neurosci 2019; 42:179-191. [PMID: 30823984 DOI: 10.1016/j.tins.2018.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
The revolutionary discovery of the rapid antidepressant ketamine has been a milestone in psychiatry field in the last half century. Unlike conventional antidepressants that often take weeks to months to show efficacy, ketamine causes rapid antidepressant effects, emerging as early as within 1h after administration. However, how ketamine improves mood symptoms so quickly has remained elusive. Here, we first introduce the historical background of ketamine as a rapid antidepressant. We then discuss current hypotheses underlying ketamine's rapid antidepressant effects, with a focus on our latest discovery that ketamine silences NMDAR-dependent burst firing in the 'anti-reward center', the lateral habenula. While ketamine may act on many brain regions, we argue that its rapid antidepressant effects are critically dependent on ketamine's action in the lateral habenula, with this brain region acting as a primary site of action (or one among a few primary nodes). This molecular-, cellular-, and circuit-based mechanism advances our understanding of the etiology of depression and suggests a new conceptual framework for the rapid antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Yihui Cui
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou 310058, China
| | - Shaohua Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Brain Research Institute of Zhejiang University, Hangzhou 310003, China
| | - Hailan Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Weiss T, Bernard R, Bernstein HG, Veh RW, Laube G. Agmatine modulates spontaneous activity in neurons of the rat medial habenular complex-a relevant mechanism in the pathophysiology and treatment of depression? Transl Psychiatry 2018; 8:201. [PMID: 30250120 PMCID: PMC6155246 DOI: 10.1038/s41398-018-0254-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
The dorsal diencephalic conduction system connects limbic forebrain structures to monaminergic mesencephalic nuclei via a distinct relay station, the habenular complexes. Both habenular nuclei, the lateral as well as the medial nucleus, are considered to play a prominent role in mental disorders like major depression. Herein, we investigate the effect of the polyamine agmatine on the electrical activity of neurons within the medial habenula in rat. We present evidence that agmatine strongly decreases spontaneous action potential firing of medial habenular neurons by activating I1-type imidazoline receptors. Additionally, we compare the expression patterns of agmatinase, an enzyme capable of inactivating agmatine, in rat and human habenula. In the medial habenula of both species, agmatinase is similarly distributed and observed in neurons and, in particular, in distinct neuropil areas. The putative relevance of these findings in the context of depression is discussed. It is concluded that increased activity of the agmatinergic system in the medial habenula may strengthen midbrain dopaminergic activity. Consequently, the habenular-interpeduncular axis may be dysregulated in patients with major depression.
Collapse
Affiliation(s)
- Torsten Weiss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Anatomy, Berlin, Germany.
| | - René Bernard
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Neurologie, Department of Experimental Neurology, Berlin, Germany
| | - Hans-Gert Bernstein
- 0000 0001 1018 4307grid.5807.aDepartment of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Rüdiger W. Veh
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Anatomy, Berlin, Germany
| | - Gregor Laube
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Vegetative Anatomy, Berlin, Germany
| |
Collapse
|
21
|
Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, Zhan J, Singer JH, Kirkwood A, Zhao H, Berson DM, Hattar S. Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 2018; 175:71-84.e18. [PMID: 30173913 PMCID: PMC6190605 DOI: 10.1016/j.cell.2018.08.004] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/03/2018] [Accepted: 08/02/2018] [Indexed: 01/25/2023]
Abstract
Light exerts a range of powerful biological effects beyond image vision, including mood and learning regulation. While the source of photic information affecting mood and cognitive functions is well established, viz. intrinsically photosensitive retinal ganglion cells (ipRGCs), the central mediators are unknown. Here, we reveal that the direct effects of light on learning and mood utilize distinct ipRGC output streams. ipRGCs that project to the suprachiasmatic nucleus (SCN) mediate the effects of light on learning, independently of the SCN's pacemaker function. Mood regulation by light, on the other hand, requires an SCN-independent pathway linking ipRGCs to a previously unrecognized thalamic region, termed perihabenular nucleus (PHb). The PHb is integrated in a distinctive circuitry with mood-regulating centers and is both necessary and sufficient for driving the effects of light on affective behavior. Together, these results provide new insights into the neural basis required for light to influence mood and learning.
Collapse
Affiliation(s)
| | | | | | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M Layne
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel Severin
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jesse Zhan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Alfredo Kirkwood
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|