1
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
2
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
3
|
Caged-carvedilol as a new tool for visible-light photopharmacology of β-adrenoceptors in native tissues. iScience 2022; 25:105128. [PMID: 36185381 PMCID: PMC9515591 DOI: 10.1016/j.isci.2022.105128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/08/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Adrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool. In this study, we present a caged version of the approved non-selective β-adrenoceptor antagonist carvedilol, synthesized by alkylation of its secondary amine with a coumarin derivative. Introducing this photo-removable group abolished carvedilol physiological effects in cell cultures, mouse isolated perfused hearts and living zebrafish larvae. Only after visible light application, carvedilol was released and the different physiological systems were pharmacologically modulated in a similar manner as the control drug. This research provides a new photopharmacological tool for a wide range of research applications that may help in the development of future precise therapies. We report a diffusible caged antagonist based on the beta blocker carvedilol (C-C) Carvedilol release from C-C is produced by light on the visible range (405 nm) Light-dependent effects are assessed in cells, mice hearts, and zebrafish larvae Physiological processes can be regulated by C-C and light (heart rate and behavior)
Collapse
|
4
|
De Berardis D, Fornaro M, Ventriglio A, Pettorruso M, Vellante F, Napoletano C, Di Giannantonio M. Case of aripiprazole long-acting-related akathisia successfully managed with carvedilol: A case report. Psychiatry Clin Neurosci 2021; 75:114-115. [PMID: 33331019 DOI: 10.1111/pcn.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini", Teramo, Italy
| | - Michele Fornaro
- Department of Psychiatry, Federico II University, Naples, Italy
| | | | - Mauro Pettorruso
- Department of Neurosciences and Imaging, University "G. D'Annunzio" Chieti, Chieti, Italy
| | - Federica Vellante
- Department of Neurosciences and Imaging, University "G. D'Annunzio" Chieti, Chieti, Italy
| | - Cosimo Napoletano
- Cardio-Thoracic-Vascular Department, Hospital "G. Mazzini", Teramo, Italy
| | | |
Collapse
|
5
|
Effects of the synthetic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) on ethanol consumption and place conditioning in male mice. Psychopharmacology (Berl) 2019; 236:3567-3578. [PMID: 31309240 PMCID: PMC6895420 DOI: 10.1007/s00213-019-05328-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE Approximately 20 million adults in the USA have an alcohol use disorder (AUD). There are clinical and preclinical data suggesting that psychedelics may have benefits for AUD. OBJECTIVE To investigate the effects of the synthetic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) on the behavioral effects of ethanol. METHODS The effects of DOI were examined using ethanol-induced place conditioning (1.8 g/kg ethanol) and 2-bottle choice ethanol drinking (20% v/v), using a dose of DOI (3 mg/kg) that produced the maximal response in the serotonin 2A (5-HT2A) receptor-dependent head-twitch assay. Interactions between DOI and ethanol (3 g/kg) were examined using the ethanol-induced loss of righting reflex procedure and blood-ethanol analysis. To examine additional mechanisms by which psychedelics may interact with ethanol, we determined whether DOI reverses ethanol-induced nitric oxide release in macrophages, a marker of inflammation. RESULTS DOI significantly attenuated ethanol-induced place conditioning and ethanol drinking. DOI-induced suppression of alcohol drinking depended upon 5-HT2A receptors, was selective for alcohol over water, and was selective for high alcohol-preferring subjects. DOI had no apparent pharmacokinetic interactions with ethanol, and DOI reduced ethanol-induced nitric oxide release. CONCLUSIONS Our findings demonstrate that DOI blocks ethanol place conditioning and selectively reduces voluntary ethanol consumption. This may be related to modulation of the effects of ethanol in the reward circuitry of the brain, ethanol-induced neuroinflammation, or a combination of both. Additional studies to elucidate the mechanisms through which psychedelics attenuate the effects of ethanol would inform the pathophysiology of AUD and potentially provide new treatment options.
Collapse
|
6
|
Ray A, Canal CE, Ehlen JC, Rice KC, Murnane KS. M100907 and BD 1047 attenuate the acute toxic effects of methamphetamine. Neurotoxicology 2019; 74:91-99. [PMID: 31163210 PMCID: PMC6750996 DOI: 10.1016/j.neuro.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023]
Abstract
There are no Food and Drug Administration approved pharmacotherapies for methamphetamine (METH) overdose, thus identifying novel drug targets to prevent this devastating adverse event is a public-health imperative. Previous research suggests that serotonin and sigma receptors may contribute to the adverse effects of METH. The present study assessed whether pretreatment with the 5-HT2A receptor antagonist M100907 or the sigma 1 (σ1) receptor antagonist BD 1047 attenuated METH-induced lethality, hyperthermia, convulsions, and seizures. Male, Swiss-Webster mice received intraperitoneal injections of M100907 (1 and 10 mg/kg), BD 1047 (10 mg/kg), or a combination of M100907 (1 mg/kg) and BD 1047 (10 mg/kg) prior to treatment with METH (78 mg/kg). Convulsions and lethality were assessed by observation, core body temperature was assessed by surgically implanted telemetric probes, and seizures were assessed by electroencephalography. M100907 reduced METH-elicited lethality from 67% to 33%, BD1047 reduced METH-elicited lethality from 67% to 50%, and combined administration of both agents eliminated lethality in all mice tested. Similarly, both agents and their combination reduced METH-elicited seizures and convulsions. None of the treatments decreased METH-induced hyperthermia. This research suggests that reducing METH-induced seizures is an important factor in reducing lethality associated with METH overdose. However, future studies should examine whether M100907 and BD 1047 modulate METH-induced hypertension and other adverse effects that may also contribute to METH overdose. Our data support the continued investigation of compounds that target 5-HT2A and σ1 receptors in METH-induced overdose, including their potential to yield emergency reversal agents.
Collapse
Affiliation(s)
- Azizi Ray
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | | | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
7
|
Oppong-Damoah A, Blough BE, Makriyannis A, Murnane KS. The sesquiterpene beta-caryophyllene oxide attenuates ethanol drinking and place conditioning in mice. Heliyon 2019; 5:e01915. [PMID: 31245644 PMCID: PMC6581871 DOI: 10.1016/j.heliyon.2019.e01915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/05/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Approximately 20 million adults in the United States have an alcohol use disorder. In recent years, modulation of the behavioral effects of ethanol by phytochemicals has been explored. In this study, we used the ethanol-induced loss of righting reflex (LORR) assay to assess potency differences between the sesquiterpene phytochemical beta-caryophyllene (BCP) and its derivative caryophyllene oxide (BCPO). We also investigated the effects of BCPO on two bottle-choice ethanol drinking and the ethanol-induced conditioned place preference (CPP). We then determined whether there are any pharmacokinetic or pharmacodynamic interactions between BCPO and ethanol, using blood ethanol analysis and pretreatments with the selective cannabinoid receptor 2 (CB2) antagonist AM630, respectively. BCPO augmented the ethanol-induced LORR at a dose (30 mg/kg) tenfold lower than BCP (300 mg/kg). Swiss-Webster mice were found to split into stable high and low drinking groups. This same dose (30 mg/kg) of BCPO significantly decreased ethanol intake and preference for ethanol over water in mice that consumed high amounts of ethanol, without any effect on total fluid intake. BCPO had limited effects in mice that consumed low amounts of ethanol. BCPO also significantly attenuated the ethanol-induced CPP. Blood ethanol analysis showed no significant effect of ethanol on the pharmacokinetics of ethanol. Furthermore, the enhancement of the ethanol-induced LORR by BCPO was reversed by AM630. These findings demonstrate that BCPO more potently modulates the behavioral effects of ethanol than the parent compound BCP. Moreover, they suggest that BCPO modulates the behavioral effects of ethanol through pharmacodynamic rather than pharmacokinetic mechanisms.
Collapse
Affiliation(s)
- Aboagyewaah Oppong-Damoah
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| |
Collapse
|
8
|
Lindsey LP, Daphney CM, Oppong-Damoah A, Uchakin PN, Abney SE, Uchakina ON, Khusial RD, Akil A, Murnane KS. The cannabinoid receptor 2 agonist, β-caryophyllene, improves working memory and reduces circulating levels of specific proinflammatory cytokines in aged male mice. Behav Brain Res 2019; 372:112012. [PMID: 31173795 DOI: 10.1016/j.bbr.2019.112012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Age-related cognitive decline has been associated with proinflammatory cytokines, yet the precise relationship between cognitive decline and cytokine load remains to be elucidated. β-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist with established anti-inflammatory effects that is known to improve memory and increase lifespan. It is of interest to explore the potential of BCP to reduce age-related cognitive decline and proinflammatory cytokine load. In this study, we assessed changes in circulating cytokines across the lifespan, memory performance in young and aged mice, and the effects of BCP on memory function and cytokine load. The plasma levels of 12 cytokines were assessed in male Swiss-Webster mice at 3, 12, and 18 months of age using multiplexed flow cytometry. Working memory was compared in 3 and 12 month-old mice using spontaneous alternations. A dose-response function (100-300 mg/kg, subchronic administration) for BCP-induced memory restoration was determined in 3- and 12- month-old mice. Finally, the effects on cytokine levels of the peak memory enhancing dose of BCP were assessed in 18- month-old mice. Circulating levels of several cytokines significantly increased with age. Multilinear regression analysis showed that IL-23 levels were most strongly associated with age. Aged mice showed deficits in working memory and higher levels of IL-23, both of which were reversed by BCP treatment. BCP appears to reverse age-associated impairments in memory and modulates cytokine production. IL-23 may play a significant role in the aging process, and future research should determine whether it has utility as a biomarker for novel anti-aging therapeutics.
Collapse
Affiliation(s)
- Lindsey Phillips Lindsey
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Cedrick Maceo Daphney
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Aboagyewaah Oppong-Damoah
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Peter Nikolaevich Uchakin
- Department of Biomedical Sciences, Mercer University School of Medicine, Mercer University Health Sciences Center, Macon, GA, USA
| | - Sarah E Abney
- Department of Biomedical Sciences, Mercer University School of Medicine, Mercer University Health Sciences Center, Macon, GA, USA
| | - Olga N Uchakina
- Department of Biomedical Sciences, Mercer University School of Medicine, Mercer University Health Sciences Center, Macon, GA, USA
| | - Richard Darien Khusial
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Ayman Akil
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|