1
|
Tamboli S, Topolnik D, Radhakrishnan R, Veilleux-Lemieux D, Topolnik L. Protocol for synchronized wireless fiber photometry and video recordings in rodents during behavior. STAR Protoc 2024; 5:103407. [PMID: 39425933 PMCID: PMC11513555 DOI: 10.1016/j.xpro.2024.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Fiber photometry technique allows investigation of in vivo neural activity during behavior allowing understanding of brain-behavior relationship. Here, we provide a protocol for synchronized wireless fiber photometry and video recordings in rodents during behavior. We explain the detailed steps for stereotaxic virus injection, optic fiber cannula implantation, setup for synchronized fiber photometry and behavioral recording, and analysis of photometry data. These protocol steps can be adapted for various animal models, photometry, and behavioral recording systems. For complete details on the use and execution of this protocol, please refer to Tamboli et al.1 and Amalyan et al.2.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
2
|
Loewinger G, Cui E, Lovinger DM, Pereira F. A Statistical Framework for Analysis of Trial-Level Temporal Dynamics in Fiber Photometry Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565896. [PMID: 37986853 PMCID: PMC10659337 DOI: 10.1101/2023.11.06.565896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials . We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point , and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.
Collapse
|
3
|
Castillo VCG, Akbar L, Siwadamrongpong R, Ohta Y, Kawahara M, Sunaga Y, Takehara H, Tashiro H, Sasagawa K, Ohta J. Region of interest determination algorithm of lensless calcium imaging datasets. PLoS One 2024; 19:e0308573. [PMID: 39288120 PMCID: PMC11407621 DOI: 10.1371/journal.pone.0308573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Advances in fluorescence imaging technology have been crucial to the progress of neuroscience. Whether it was specific expression of indicator proteins, detection of neurotransmitters, or miniaturization of fluorescence microscopes, fluorescence imaging has improved upon electrophysiology, the gold standard for monitoring brain activity, and enabled novel methods to sense activity in the brain. Hence, we developed a lightweight and compact implantable CMOS-based lensless Ca2+ imaging device for freely moving transgenic G-CaMP mouse experiments. However, without a lens system, determination of regions of interest (ROI) has proven challenging. Localization of fluorescence activity and separation of signal from noise are difficult. In this study, we report an ROI selection method using a series of adaptive binarizations with a gaussian method and morphological image processing. The parameters for each operation such as the kernel size, sigma and footprint size were optimized. We then validated the utility of the algorithm with simulated data and freely moving nociception experiments using the lensless devices. The device was implanted in the dorsal raphe nucleus to observe pain-related brain activity following a formalin test to stimulate pain. We observed significant increases in fluorescence activity after formalin injection compared to the control group when using the ROI determination algorithm.
Collapse
Affiliation(s)
| | - Latiful Akbar
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Yasumi Ohta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mamiko Kawahara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Sunaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hironari Takehara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroyuki Tashiro
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Sasagawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Jun Ohta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
4
|
Rimoli CV, Moretti C, Soldevila F, Brémont E, Ventalon C, Gigan S. Demixing fluorescence time traces transmitted by multimode fibers. Nat Commun 2024; 15:6286. [PMID: 39060262 PMCID: PMC11282286 DOI: 10.1038/s41467-024-50306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Optical methods based on thin multimode fibers (MMFs) are promising tools for measuring neuronal activity in deep brain regions of freely moving mice thanks to their small diameter. However, current methods are limited: while fiber photometry provides only ensemble activity, imaging techniques using of long multimode fibers are very sensitive to bending and have not been applied to unrestrained rodents yet. Here, we demonstrate the fundamentals of a new approach using a short MMF coupled to a miniscope. In proof-of-principle in vitro experiments, we disentangled spatio-temporal fluorescence signals from multiple fluorescent sources transmitted by a thin (200 µm) and short (8 mm) MMF, using a general unconstrained non-negative matrix factorization algorithm directly on the raw video data. Furthermore, we show that low-cost open-source miniscopes have sufficient sensitivity to image the same fluorescence patterns seen in our proof-of-principle experiment, suggesting a new avenue for novel minimally invasive deep brain studies using multimode fibers in freely behaving mice.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Claudio Moretti
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France
| | - Enora Brémont
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France.
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, Paris, F-75005, France.
| |
Collapse
|
5
|
Lin CH, Gao BY, Ge RD, Cui R, Han W, Jiang S. The application of optogenetics in traumatic brain injury research: A narrative review. Brain Circ 2024; 10:220-228. [PMID: 39526108 PMCID: PMC11542761 DOI: 10.4103/bc.bc_33_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Abstract
Optogenetics has revolutionized the landscape of research on neurological disorders by enabling high spatial specificity and millisecond-level temporal precision in neuroscience studies. In the field of traumatic brain injury (TBI), optogenetic techniques have greatly advanced our understanding of the pathological and physiological processes involved, providing valuable guidance for both monitoring and therapeutic interventions. This article offers a review of the latest research applications of optogenetics in the study of TBI.
Collapse
Affiliation(s)
- Cheng-Hao Lin
- College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, Beijing, China
| | - Rui-Dong Ge
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, Beijing, China
| | - Rui Cui
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, Beijing, China
| | - Wen Han
- College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Shan Jiang
- Department of Rehabilitation Medicine, The China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Frei MS, Mehta S, Zhang J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism. Annu Rev Biophys 2024; 53:275-297. [PMID: 38346245 DOI: 10.1146/annurev-biophys-030722-021359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Genetically encoded fluorescent biosensors have revolutionized the study of cell signaling and metabolism, as they allow for live-cell measurements with high spatiotemporal resolution. This success has spurred the development of tailor-made biosensors that enable the study of dynamic phenomena on different timescales and length scales. In this review, we discuss different approaches to enhancing and developing new biosensors. We summarize the technologies used to gain structural insights into biosensor design and comment on useful screening technologies. Furthermore, we give an overview of different applications where biosensors have led to key advances over recent years. Finally, we give our perspective on where future work is bound to make a large impact.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity during expression of goal-directed vs. habit-like cue-induced cocaine seeking. ADDICTION NEUROSCIENCE 2024; 11:100149. [PMID: 38957402 PMCID: PMC11218864 DOI: 10.1016/j.addicn.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.
Collapse
Affiliation(s)
- Brooke N. Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Sierra J. Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Mary M. Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| |
Collapse
|
8
|
Kim Y, Lee Y, Yoo J, Nam KS, Jeon W, Lee S, Park S. Multifunctional and Flexible Neural Probe with Thermally Drawn Fibers for Bidirectional Synaptic Probing in the Brain. ACS NANO 2024; 18:13277-13285. [PMID: 38728175 PMCID: PMC11112973 DOI: 10.1021/acsnano.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.
Collapse
Affiliation(s)
- Yeji Kim
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yunheum Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongeun Yoo
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kum Seok Nam
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woojin Jeon
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungmin Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongjun Park
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department
of Materials Science, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic
of Korea
- KAIST
Institute for NanoCentury (KINC), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic
of Korea
| |
Collapse
|
9
|
Vasudevan K, Hassell JE, Maren S. Hippocampal Engrams and Contextual Memory. ADVANCES IN NEUROBIOLOGY 2024; 38:45-66. [PMID: 39008010 DOI: 10.1007/978-3-031-62983-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.
Collapse
Affiliation(s)
- Krithika Vasudevan
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Conlisk D, Ceau M, Fiancette JF, Winke N, Darmagnac E, Herry C, Deroche-Gamonet V. Integrating operant behavior and fiber photometry with the open-source python library Pyfiber. Sci Rep 2023; 13:16562. [PMID: 37783729 PMCID: PMC10545777 DOI: 10.1038/s41598-023-43565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Despite the popularity of fiber photometry (FP), its integration with operant behavior paradigms is progressing slowly. This can be attributed to the complex protocols in operant behavior - resulting in a combination of diverse non-predictable behavioral responses and scheduled events, thereby complicating data analysis. To overcome this, we developed Pyfiber, an open-source python library which facilitates the merge of FP with operant behavior by relating changes in fluorescent signals within a neuronal population to behavioral responses and events. Pyfiber helps to 1. Extract events and responses that occur in operant behavior, 2. Extract and process the FP signals, 3. Select events of interest and align them to the corresponding FP signals, 4. Apply appropriate signal normalization and analysis according to the type of events, 5. Run analysis on multiple individuals and sessions, 6. Collect results in an easily readable format. Pyfiber is suitable for use with many different fluorescent sensors and operant behavior protocols. It was developed using Doric lenses FP systems and Imetronic behavioral systems, but it possesses the capability to process data from alternative systems. This work sets a solid foundation for analyzing the relationship between different dimensions of complex behavioral paradigms with fluorescent signals from brain regions of interest.
Collapse
Affiliation(s)
- Dana Conlisk
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Matias Ceau
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Nanci Winke
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- UCL, Sainsbury Wellcome Centre, London, UK
| | - Elise Darmagnac
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Cyril Herry
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | |
Collapse
|
12
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity mediate expression of goal-directed vs. habit-like cue-induced cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550364. [PMID: 37546826 PMCID: PMC10402009 DOI: 10.1101/2023.07.24.550364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking when drug seeking is goal-directed but not habitual. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habitual cue-induced cocaine seeking and how it is impacted by cue extinction. Rats trained to self-administer cocaine paired with an audiovisual cue on schedules of reinforcement that promote goal-directed or habitual cocaine seeking had different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium and dopamine responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habitual behavior and the DLS are unaffected.
Collapse
|
14
|
Formozov A, Dieter A, Wiegert JS. A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation. CELL REPORTS METHODS 2023; 3:100418. [PMID: 37056369 PMCID: PMC10088095 DOI: 10.1016/j.crmeth.2023.100418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Here, we present simultaneous fiber photometry recordings and optogenetic stimulation based on a multimode fused fiber coupler for both light delivery and collection without the need for dichroic beam splitters. In combination with a multi-color light source and appropriate optical filters, our approach offers remarkable flexibility in experimental design and facilitates the exploration of new molecular tools in vivo at minimal cost. We demonstrate straightforward re-configuration of the setup to operate with green, red, and near-infrared calcium indicators with or without simultaneous optogenetic stimulation and further explore the multi-color photometry capabilities of the system. The ease of assembly, operation, characterization, and customization of this platform holds the potential to foster the development of experimental strategies for multi-color fused fiber photometry combined with optogenetics far beyond its current state.
Collapse
Affiliation(s)
- Andrey Formozov
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
15
|
Eleftheriou A, Ravotto L, Wyss MT, Warnock G, Siebert A, Zaiss M, Weber B. Simultaneous dynamic glucose-enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain. Neuroimage 2023; 265:119762. [PMID: 36427752 DOI: 10.1016/j.neuroimage.2022.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose is the main energy source in the brain and its regulated uptake and utilization are important biomarkers of pathological brain function. Glucose Chemical Exchange Saturation Transfer (GlucoCEST) and its time-resolved version Dynamic Glucose-Enhanced MRI (DGE) are promising approaches to monitor glucose and detect tumors, since they are radioactivity-free, do not require 13C labeling and are is easily translatable to the clinics. The main principle of DGE is clear. However, what remains to be established is to which extent the signal reflects vascular, extracellular or intracellular glucose. To elucidate the compartmental contributions to the DGE signal, we coupled it with FRET-based fiber photometry of genetically encoded sensors, a technique that combines quantitative glucose readout with cellular specificity. The glucose sensor FLIIP was used with fiber photometry to measure astrocytic and neuronal glucose changes upon injection of D-glucose, 3OMG and L-glucose, in the anaesthetized murine brain. By correlating the kinetic profiles of the techniques, we demonstrate the presence of a vascular contribution to the signal, especially at early time points after injection. Furthermore, we show that, in the case of the commonly used contrast agent 3OMG, the DGE signal actually anticorrelates with the glucose concentration in neurons and astrocytes.
Collapse
Affiliation(s)
- Afroditi Eleftheriou
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Matthias T Wyss
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Geoffrey Warnock
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Anita Siebert
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Moritz Zaiss
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany; High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Jiménez-Díaz E, Del-Rio D, Fiordelisio T. The Contribution of Cell Imaging to the Study of Anterior Pituitary Function and Its Regulation. Neuroendocrinology 2023; 113:179-192. [PMID: 35231920 DOI: 10.1159/000523860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Advances in the knowledge of the neuroendocrine system are closely related to the development of cellular imaging and labeling techniques. This synergy ranges from the staining techniques that allowed the first characterizations of the anterior pituitary gland, its relationship with the hypothalamus, and the birth of neuroendocrinology; through the development of fluorescence microscopy applications, specific labeling strategies, transgenic systems, and intracellular calcium sensors that enabled the study of processes and dynamics at the cellular and tissue level; until the advent of super-resolution microscopy, miniscopes, optogenetics, fiber photometry, and other imaging methods that allowed high spatiotemporal resolution and long-term three-dimensional cellular activity recordings in living systems in a conscious and freely moving condition. In this review, we briefly summarize the main contributions of cellular imaging techniques that have allowed relevant advances in the field of neuroendocrinology and paradigm shifts that have improved our understanding of the function of the hypothalamic-pituitary axes. The development of these methods and equipment is the result of the integration of knowledge achieved by the integration of several disciplines and effort to solve scientific questions and problems of high impact on health and society that this system entails.
Collapse
Affiliation(s)
- Edgar Jiménez-Díaz
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Del-Rio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Next generation genetically encoded fluorescent sensors for serotonin. Nat Commun 2022; 13:7525. [PMID: 36473867 PMCID: PMC9726753 DOI: 10.1038/s41467-022-35200-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
We developed a family of genetically encoded serotonin (5-HT) sensors (sDarken) on the basis of the native 5-HT1A receptor and circularly permuted GFP. sDarken 5-HT sensors are bright in the unbound state and diminish their fluorescence upon binding of 5-HT. Sensor variants with different affinities for serotonin were engineered to increase the versatility in imaging of serotonin dynamics. Experiments in vitro and in vivo showed the feasibility of imaging serotonin dynamics with high temporal and spatial resolution. As demonstrated here, the designed sensors show excellent membrane expression, have high specificity and a superior signal-to-noise ratio, detect the endogenous release of serotonin and are suitable for two-photon in vivo imaging.
Collapse
|
18
|
Barry J, Peng A, Levine MS, Cepeda C. Calcium imaging: A versatile tool to examine Huntington's disease mechanisms and progression. Front Neurosci 2022; 16:1040113. [PMID: 36408400 PMCID: PMC9669372 DOI: 10.3389/fnins.2022.1040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that causes chorea, cognitive deficits, and psychiatric symptoms. It is characterized by accumulation of mutant Htt protein, which primarily impacts striatal medium-sized spiny neurons (MSNs), as well as cortical pyramidal neurons (CPNs), causing synapse loss and eventually cell death. Perturbed Ca2+ homeostasis is believed to play a major role in HD, as altered Ca2+ homeostasis often precedes striatal dysfunction and manifestation of HD symptoms. In addition, dysregulation of Ca2+ can cause morphological and functional changes in MSNs and CPNs. Therefore, Ca2+ imaging techniques have the potential of visualizing changes in Ca2+ dynamics and neuronal activity in HD animal models. This minireview focuses on studies using diverse Ca2+ imaging techniques, including two-photon microscopy, fiber photometry, and miniscopes, in combination of Ca2+ indicators to monitor activity of neurons in HD models as the disease progresses. We then discuss the future applications of Ca2+ imaging to visualize disease mechanisms and alterations associated with HD, as well as studies showing how, as a proof-of-concept, Ca2+imaging using miniscopes in freely-behaving animals can help elucidate the differential role of direct and indirect pathway MSNs in HD symptoms.
Collapse
Affiliation(s)
| | | | | | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center (IDDRC), Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Miguel Telega L, Ashouri Vajari D, Stieglitz T, Coenen VA, Döbrössy MD. New Insights into In Vivo Dopamine Physiology and Neurostimulation: A Fiber Photometry Study Highlighting the Impact of Medial Forebrain Bundle Deep Brain Stimulation on the Nucleus Accumbens. Brain Sci 2022; 12:brainsci12081105. [PMID: 36009169 PMCID: PMC9406226 DOI: 10.3390/brainsci12081105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
New technologies, such as fiber photometry, can overcome long-standing methodological limitations and promote a better understanding of neuronal mechanisms. This study, for the first time, aimed at employing the newly available dopamine indicator (GRABDA2m) in combination with this novel imaging technique. Here, we present a detailed methodological roadmap leading to longitudinal repetitive transmitter release monitoring in in vivo freely moving animals and provide proof-of-concept data. This novel approach enables a fresh look at dopamine release patterns in the nucleus accumbens, following the medial forebrain bundle (mfb) DBS in a rodent model. Our results suggest reliable readouts of dopamine levels over at least 14 days of DBS-induced photometric measurements. We show that mfb-DBS can elicit an increased dopamine response during stimulation (5 s and 20 s DBS) compared to its baseline dopamine activity state, reaching its maximum peak amplitude in about 1 s and then recovering back after stimulation. The effect of different DBS pulse widths (PWs) also suggests a potential differential effect on this neurotransmitter response, but future studies would need to verify this. Using the described approach, we aim to gain insights into the differences between pathological and healthy models and to elucidate more exhaustively the mechanisms under which DBS exerts its therapeutic action.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Danesh Ashouri Vajari
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Máté D. Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
20
|
Lake EMR, Higley MJ. Building bridges: simultaneous multimodal neuroimaging approaches for exploring the organization of brain networks. NEUROPHOTONICS 2022; 9:032202. [PMID: 36159712 PMCID: PMC9506627 DOI: 10.1117/1.nph.9.3.032202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Brain organization is evident across spatiotemporal scales as well as from structural and functional data. Yet, translating from micro- to macroscale (vice versa) as well as between different measures is difficult. Reconciling disparate observations from different modes is challenging because each specializes within a restricted spatiotemporal milieu, usually has bounded organ coverage, and has access to different contrasts. True intersubject biological heterogeneity, variation in experiment implementation (e.g., use of anesthesia), and true moment-to-moment variations in brain activity (maybe attributable to different brain states) also contribute to variability between studies. Ultimately, for a deeper and more actionable understanding of brain organization, an ability to translate across scales, measures, and species is needed. Simultaneous multimodal methods can contribute to bettering this understanding. We consider four modes, three optically based: multiphoton imaging, single-photon (wide-field) imaging, and fiber photometry, as well as magnetic resonance imaging. We discuss each mode as well as their pairwise combinations with regard to the definition and study of brain networks.
Collapse
Affiliation(s)
- Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Michael J. Higley
- Yale School of Medicine, Departments of Neuroscience and Psychiatry, New Haven, Connecticut, United States
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, New Haven, Connecticut, United States
| |
Collapse
|
21
|
Qin J, Huang WS, DU HR, Zhang CQ, Xie P, Qin H. Ca 2+-based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomed Res 2022; 43:81-89. [PMID: 35718448 DOI: 10.2220/biomedres.43.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The claustrum has been hypothesized to participate in high-order brain functions, but experimental studies to demonstrate these functions are currently lacking. Neural activity recording of the claustrum in freely-behaving animals allows for correlating claustral activities with specific behaviors. However, previously utilized methods for studying the claustrum make it difficult to monitor neural activity patterns of freely-behaving animals in real time. Here we applied fiber photometry to monitor Ca2+ activity in the claustrum of freely-behaving mice. Using this method, we were able to achieve Ca2+ activity recording in both anesthetized and freely-behaving mice. We found that the dynamics of Ca2+ activity depended on anesthesia levels. As compared to the use of genetically encoded Ca2+ indicators that requires a few weeks of virus-dependent expression, we used a synthetic fluorescent Ca2+-sensitive dye, Oregon green 488 BAPTA-1, that allows for rapidly screening neural activity of interest within a few hours that relates to certain behaviors. In this way, we found the correlation between Ca2+ activity and specific behaviors, such as approaching an object. Our work offers an effective method for recording neural activity in the claustrum and thus for rapidly screening any behavioral relevance of the claustrum in freely-behaving mice.
Collapse
Affiliation(s)
- Jing Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Wu-Shuang Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Hao-Ran DU
- Center for Neurointelligence, School of Medicine, Chongqing University
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University
| |
Collapse
|
22
|
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 2022; 23:257-274. [PMID: 35361961 PMCID: PMC11163306 DOI: 10.1038/s41583-022-00577-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
23
|
Ceto S, Courtine G. Optogenetic Interrogation of Circuits Following Neurotrauma. Front Mol Neurosci 2022; 14:803856. [PMID: 34975403 PMCID: PMC8716760 DOI: 10.3389/fnmol.2021.803856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Biological and engineering strategies for neural repair and recovery from neurotrauma continue to emerge at a rapid pace. Until recently, studies of the impact of neurotrauma and repair strategies on the reorganization of the central nervous system have focused on broadly defined circuits and pathways. Optogenetic modulation and recording methods now enable the interrogation of precisely defined neuronal populations in the brain and spinal cord, allowing unprecedented precision in electrophysiological and behavioral experiments. This mini-review summarizes the spectrum of light-based tools that are currently available to probe the properties and functions of well-defined neuronal subpopulations in the context of neurotrauma. In particular, we highlight the challenges to implement these tools in damaged and reorganizing tissues, and we discuss best practices to overcome these obstacles.
Collapse
Affiliation(s)
- Steven Ceto
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
24
|
Vickstrom CR, Snarrenberg ST, Friedman V, Liu QS. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction. Mol Psychiatry 2022; 27:640-651. [PMID: 34145393 PMCID: PMC9190069 DOI: 10.1038/s41380-021-01181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
The neurobiology of addiction has been an intense topic of investigation for more than 50 years. Over this time, technological innovation in methods for studying brain function rapidly progressed, leading to increasingly sophisticated experimental approaches. To understand how specific brain regions, cell types, and circuits are affected by drugs of abuse and drive behaviors characteristic of addiction, it is necessary both to observe and manipulate neural activity in addiction-related behavioral paradigms. In pursuit of this goal, there have been several key technological advancements in in vivo imaging and neural circuit modulation in recent years, which have shed light on the cellular and circuit mechanisms of addiction. Here we discuss some of these key technologies, including circuit modulation with optogenetics, in vivo imaging with miniaturized single-photon microscopy (miniscope) and fiber photometry, and how the application of these technologies has garnered novel insights into the neurobiology of addiction.
Collapse
|
25
|
GuPPy, a Python toolbox for the analysis of fiber photometry data. Sci Rep 2021; 11:24212. [PMID: 34930955 PMCID: PMC8688475 DOI: 10.1038/s41598-021-03626-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
Fiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be challenging for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is designed to operate across computing platforms and can accept data from a variety of FP data acquisition systems. The program presents users with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs are produced that can be easily exported for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.
Collapse
|
26
|
Montinaro C, Pisanello M, Bianco M, Spagnolo B, Pisano F, Balena A, De Nuccio F, Lofrumento DD, Verri T, De Vittorio M, Pisanello F. Influence of the anatomical features of different brain regions on the spatial localization of fiber photometry signals. BIOMEDICAL OPTICS EXPRESS 2021; 12:6081-6094. [PMID: 34745723 PMCID: PMC8547979 DOI: 10.1364/boe.439848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 05/30/2023]
Abstract
Fiber photometry is widely used in neuroscience labs for in vivo detection of functional fluorescence from optical indicators of neuronal activity with a simple optical fiber. The fiber is commonly placed next to the region of interest to both excite and collect the fluorescence signal. However, the path of both excitation and fluorescence photons is altered by the uneven optical properties of the brain, due to local variation of the refractive index, different cellular types, densities and shapes. Nonetheless, the effect of the local anatomy on the actual shape and extent of the volume of tissue that interfaces with the fiber has received little attention so far. To fill this gap, we measured the size and shape of fiber photometry efficiency field in the primary motor and somatosensory cortex, in the hippocampus and in the striatum of the mouse brain, highlighting how their substructures determine the detected signal and the depth at which photons can be mined. Importantly, we show that the information on the spatial expression of the fluorescent probes alone is not sufficient to account for the contribution of local subregions to the overall collected signal, and it must be combined with the optical properties of the tissue adjacent to the fiber tip.
Collapse
Affiliation(s)
- Cinzia Montinaro
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Marco Bianco
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Barbara Spagnolo
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Francesco De Nuccio
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Dario Domenico Lofrumento
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Tiziano Verri
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- Equally contributing authors
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
- Equally contributing authors
| |
Collapse
|
27
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|