1
|
Urrutia M, Blein-Nicolas M, Fernandez O, Bernillon S, Maucourt M, Deborde C, Balliau T, Rabier D, Bénard C, Prigent S, Quilleré I, Jacob D, Gibon Y, Zivy M, Giauffret C, Hirel B, Moing A. Identification of metabolic and protein markers representative of the impact of mild nitrogen deficit on agronomic performance of maize hybrids. Metabolomics 2024; 20:128. [PMID: 39520587 PMCID: PMC11550246 DOI: 10.1007/s11306-024-02186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION A better understanding of the physiological response of silage maize to a mild reduction in nitrogen (N) fertilization and the identification of predictive biochemical markers of N utilization efficiency could contribute to limit the detrimental effect of the overuse of N inputs. OBJECTIVES We integrated phenotypic and biochemical data to interpret the physiology of maize in response to a mild reduction in N fertilization under agronomic conditions and identify predictive leaf metabolic and proteic markers that could be used to pilot and rationalize N fertilization. METHODS Eco-physiological, developmental and yield-related traits were measured and complemented with metabolomic and proteomic approaches performed on young leaves of a core panel of 29 European genetically diverse dent hybrids cultivated in the field under non-limiting and reduced N fertilization conditions. RESULTS Metabolome and proteome data were analyzed either individually or in an integrated manner together with eco-physiological, developmental, phenotypic and yield-related traits. They allowed to identify (i) common N-responsive metabolites and proteins that could be used as predictive markers to monitor N fertilization, (ii) silage maize hybrids that exhibit improved agronomic performance when N fertilization is reduced. CONCLUSIONS Among the N-responsive metabolites and proteins identified, a cytosolic NADP-dependent malic enzyme and four metabolite signatures stand out as promising markers that could be used for both breeding and agronomic purposes.
Collapse
Affiliation(s)
- Maria Urrutia
- INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, UMR BioEcoAgro, AgroImpact, Site d'Estrées Mons, 80203, Péronne, France
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), UMA-CSIC, Av. Luis Pasteur 49, 29071, Málaga, Spain
| | - Mélisande Blein-Nicolas
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190, Gif-Sur-Yvette, France
| | - Olivier Fernandez
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- University of Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes Research Unit, EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, 51000, Reims, France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190, Gif-Sur-Yvette, France
| | | | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Isabelle Quilleré
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, 91190, Gif-Sur-Yvette, France
| | - Catherine Giauffret
- INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, UMR BioEcoAgro, AgroImpact, Site d'Estrées Mons, 80203, Péronne, France
| | - Bertrand Hirel
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| |
Collapse
|
2
|
Guo R, Gregory BD. PELOTA and HBS1 suppress co-translational messenger RNA decay in Arabidopsis. PLANT DIRECT 2023; 7:e553. [PMID: 38149303 PMCID: PMC10751093 DOI: 10.1002/pld3.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Various messenger RNA (mRNA) decay mechanisms play major roles in controlling mRNA quality and quantity in eukaryotic organisms under different conditions. While it is known that the recently discovered co-translational mRNA decay (CTRD), the mechanism that allows mRNAs to be degraded while still being actively translated, is prevalent in yeast, humans, and various angiosperms, the regulation of this decay mechanism is less well studied. Moreover, it is still unclear whether this decay mechanism plays any role in the regulation of specific physiological processes in eukaryotes. Here, by re-analyzing the publicly available polysome profiling or ribosome footprinting and degradome sequencing datasets, we discovered that highly translated mRNAs tend to have lower co-translational decay levels. Based on this finding, we then identified Pelota and Hbs1, the translation-related ribosome rescue factors, as suppressors of co-translational mRNA decay in Arabidopsis. Furthermore, we found that Pelota and Hbs1 null mutants have lower germination rates compared to the wild-type plants, implying that proper regulation of co-translational mRNA decay is essential for normal developmental processes. In total, our study provides further insights into the regulation of CTRD in Arabidopsis and demonstrates that this decay mechanism does play important roles in Arabidopsis physiological processes.
Collapse
Affiliation(s)
- Rong Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
3
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
Yang Z, Ma W, Wang L, Yang X, Zhao T, Liang L, Wang G, Ma Q. Population genomics reveals demographic history and selection signatures of hazelnut ( Corylus). HORTICULTURE RESEARCH 2023; 10:uhad065. [PMID: 37249951 PMCID: PMC10208898 DOI: 10.1093/hr/uhad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Hazelnut (Corylus spp.) is known as one of the four famous tree nuts in the world due to its pleasant taste and nutritional benefits. However, hazelnut promotion worldwide is increasingly challenged by global climate change, limiting its production to a few regions. Focusing on the eurytopic Section Phyllochlamys, we conducted whole-genome resequencing of 125 diverse accessions from five geo-ecological zones in Eurasia to elucidate the genomic basis of adaptation and improvement. Population structure inference outlined five distinct genetic lineages corresponding to climate conditions and breeding background, and highlighted the differentiation between European and Asian lineages. Demographic dynamics and ecological niche modeling revealed that Pleistocene climatic oscillations dominantly shaped the extant genetic patterns, and multiple environmental factors have contributed to the lineage divergence. Whole-genome scans identified 279, 111, and 164 selective sweeps that underlie local adaptation in Corylus heterophylla, Corylus kweichowensis, and Corylus yunnanensis, respectively. Relevant positively selected genes were mainly involved in regulating signaling pathways, growth and development, and stress resistance. The improvement signatures of hybrid hazelnut were concentrated in 312 and 316 selected genes, when compared to C. heterophylla and Corylus avellana, respectively, including those that regulate protein polymerization, photosynthesis, and response to water deprivation. Among these loci, 22 candidate genes were highly associated with the regulation of biological quality. Our study provides insights into evolutionary processes and the molecular basis of how sibling species adapt to contrasting environments, and offers valuable resources for future climate-resilient breeding.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenxu Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei, 230031, China
| | - Xiaohong Yang
- Research Institute of Walnut, Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Tiantian Zhao
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guixi Wang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | | |
Collapse
|
5
|
Tong J, Ren Z, Sun L, Zhou S, Yuan W, Hui Y, Ci D, Wang W, Fan LM, Wu Z, Qian W. ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules. NATURE PLANTS 2022; 8:778-791. [PMID: 35817823 DOI: 10.1038/s41477-022-01175-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
High temperature is one of the major environmental stresses affecting plant growth and fitness. Heat stress transcription factors (HSFs) play critical roles in regulating the expression of heat-responsive genes. However, how HSFs are regulated remains obscure. Here, we show that ALBA4, ALBA5 and ALBA6, which phase separate into stress granules (SGs) and processing bodies (PBs) under heat stress, directly bind selected messenger RNAs, including HSF mRNAs, and recruit them into SGs and PBs to protect them from degradation under heat stress in Arabidopsis. The alba456 triple mutants, but not single and double mutants, display pleiotropic developmental defects and hypersensitivity to heat stress. Mutations in XRN4, a cytoplasmic 5' to 3' exoribonuclease, can rescue the observed developmental and heat-sensitive phenotypes of alba456 seedlings. Our study reveals a new layer of regulation for HSFs whereby HSF mRNAs are stabilized by redundant action of ALBA proteins in SGs and PBs for plant thermotolerance.
Collapse
Affiliation(s)
- Jinjin Tong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Zhitong Ren
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Sixian Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Yuan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yufan Hui
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- School of Computing Sciences, University of East Anglia, Norwich, UK
| | - Dong Ci
- School of Life Sciences, Peking University, Beijing, China
| | - Wei Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Liu-Min Fan
- School of Life Sciences, Peking University, Beijing, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Robb EJ, Nazar RN. Tomato Ve-resistance locus: resilience in the face of adversity? PLANTA 2021; 254:126. [PMID: 34811576 DOI: 10.1007/s00425-021-03783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The Ve-resistance locus in tomato acts as a resilience gene by affecting both the stress/defense cascade and growth, constituting a signaling intercept with a competitive regulatory mechanism. For decades, the tomato Ve-gene has been recognized as a classical resistance R-gene, inherited as a dominant Mendelian trait and encoding a receptor protein that binds with a fungal effector to provide defense against Verticillium dahliae and V. albo-atrum. However, recent molecular studies suggest that the function and role(s) of the Ve-locus and the two proteins that it encodes are more complex than previously understood. This review summarizes both the background and recent molecular evidence and provides a reinterpretation of the function and role(s) of the Ve1- and Ve2-genes and proteins that better accommodates existing data. It is proposed that these two plasma membrane proteins interact to form a signaling intercept that directly links defense and growth. The induction of Ve1 by infection or wounding promotes growth but also downregulates Ve2 signaling, resulting in a decreased biosynthesis of PR proteins. In this context, the Ve1 R-gene acts as a Resilience gene rather than a Resistance gene, promoting taller more robust tomato plants with reduced symptoms (biotic and abiotic) and Verticillium concentration.
Collapse
Affiliation(s)
- E Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Huang R, Liu M, Gong G, Wu P, Patra B, Yuan L, Qin H, Wang X, Wang G, Liao H, Gao L, Yang C, Li H, Zhang S. The Pumilio RNA-binding protein APUM24 regulates seed maturation by fine-tuning the BPM-WRI1 module in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1240-1259. [PMID: 33729679 DOI: 10.1111/jipb.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 05/25/2023]
Abstract
Pumilio RNA-binding proteins participate in messenger RNA (mRNA) degradation and translational repression, but their roles in plant development are largely unclear. Here, we show that Arabidopsis PUMILIO PROTEIN24 (APUM24), an atypical Pumilio-homology domain-containing protein, plays an important part in regulating seed maturation, a major stage of plant development. APUM24 is strongly expressed in maturing seeds. Reducing APUM24 expression resulted in abnormal seed maturation, wrinkled seeds, and lower seed oil contents, and APUM24 knockdown resulted in lower levels of WRINKLED 1 (WRI1), a key transcription factor controlling seed oil accumulation, and lower expression of WRI1 target genes. APUM24 reduces the mRNA stability of BTB/POZMATH (BPM) family genes, thus decreasing BPM protein levels. BPM is responsible for the 26S proteasome-mediated degradation of WRI1 and has important functions in plant growth and development. The 3' untranslated regions of BPM family genes contain putative Pumilio response elements (PREs), which are bound by APUM24. Reduced BPM or increased WRI1 expression rescued the deficient seed maturation of apum24-2 knockdown mutants, and APUM24 overexpression resulted in increased seed size and weight. Therefore, APUM24 is crucial to seed maturation through its action as a positive regulator fine-tuning the BPM-WRI1 module, making APUM24 a promising target for breeding strategies to increase crop yields.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mengling Liu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guanping Gong
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, 40546, USA
| | - Hongting Qin
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoxu Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guohe Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimei Liao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lu Gao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
8
|
Wang P, Li L, Wei H, Sun W, Zhou P, Zhu S, Li D, Zhuge Q. Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor 1) Family and Its Expression in Poplar. PLANTS 2021; 10:plants10050981. [PMID: 34068989 PMCID: PMC8155972 DOI: 10.3390/plants10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Poplar is one of the most widely used tree in afforestation projects. However, it is susceptible to abiotic and biotic stress. CCR4-associated factor 1 (CAF1) is a major member of CCR4-NOT, and it is mainly involved in transcriptional regulation and mRNA degradation in eukaryotes. However, there are no studies on the molecular phylogeny and expression of the CAF1 gene in poplar. In this study, a total of 19 PtCAF1 genes were identified in the Populus trichocarpa genome. Phylogenetic analysis of the PtCAF1 gene family was performed with two closely related species (Arabidopsis thaliana and Oryza sativa) to investigate the evolution of the PtCAF1 gene. The tissue expression of the PtCAF1 gene showed that 19 PtCAF1 genes were present in different tissues of poplar. Additionally, the analysis of the expression of the PtCAF1 gene showed that the CAF1 family was up-regulated to various degrees under biotic and abiotic stresses and participated in the poplar stress response. The results of our study provide a deeper understanding of the structure and function of the PtCAF1 gene and may contribute to our understanding of the molecular basis of stress tolerance in poplar.
Collapse
|
9
|
Fang JC, Tsai YC, Chou WL, Liu HY, Chang CC, Wu SJ, Lu CA. A CCR4-associated factor 1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings. PLANT MOLECULAR BIOLOGY 2021; 105:177-192. [PMID: 33025522 DOI: 10.1007/s11103-020-01079-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. Expression of OsCAF1B was tightly coupled with low-temperature exposure. In the present study, we investigated the function of OsCAF1B in rice by characterizing the molecular and physiological responses to cold stress in OsCAF1B overexpression lines and dominant-negative mutant lines. Our results demonstrate that OsCAF1B plays an important role in growth and development of rice seedlings at low temperatures. Rice is a tropical and subtropical crop that is sensitive to low temperature, and activates a complex gene regulatory network in response to cold stress. Poly(A) tail shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. CCR4-associated factor 1 (CAF1) proteins are important enzymes for catalysis of mRNA deadenylation in eukaryotes. In the present study, the role of a rice cold-induced CAF1, OsCAF1B, in adaptation of rice plants to low-temperature stress was investigated. Expression of OsCAF1B was closely linked with low-temperature exposure. The increased survival percentage and reduced electrolyte leakage exhibited by OsCAF1B overexpression transgenic lines subjected to cold stress indicate that OsCAF1B plays a positive role in rice growth under low ambient temperature. The enhancement of cold tolerance by OsCAF1B in transgenic rice seedlings involved OsCAF1B deadenylase gene expression, and was associated with elevated expression of late-response cold-related transcription factor genes. In addition, the expression level of OsCAF1B was higher in a cold-tolerant japonica rice cultivar than in a cold-sensitive indica rice cultivar. The results reveal a hitherto undiscovered function of OsCAF1B deadenylase gene expression, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC.
| |
Collapse
|
10
|
Zhang Z, Sun Y, Li Y. Plant rejuvenation: from phenotypes to mechanisms. PLANT CELL REPORTS 2020; 39:1249-1262. [PMID: 32780162 DOI: 10.1007/s00299-020-02577-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Plant rejuvenation refers to the reversal of the adult phase in plants and the recovery of part or all of juvenile plant characteristics. The growth and reproductive vitality of plants can be increased after rejuvenation. In recent years, research has successfully reversed the development clock in plants by certain methods; created rejuvenated plants and revealed the basic rules of plant morphology, physiology and reproduction. Here, we reconstitute the changes at the morphological and macromolecular levels, including those in RNA, phytohormones and DNA, during plant rejuvenation. In addition, the characteristics of plant phase changes that can be used as references for plant rejuvenation are also summarized. We further propose possible mechanisms for plant rejuvenation, methods for reversing plant development and problems that should be avoided. Overall, this study highlights the physiological and molecular events involved in plant rejuvenation.
Collapse
Affiliation(s)
- Zijie Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
11
|
Fang JC, Liu HY, Tsai YC, Chou WL, Chang CC, Lu CA. A CCR4 Association Factor 1, OsCAF1B, Participates in the αAmy3 mRNA Poly(A) Tail Shortening and Plays a Role in Germination and Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:554-564. [PMID: 31782784 DOI: 10.1093/pcp/pcz221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Taoyuan City, 320, Taiwan, ROC
| |
Collapse
|
12
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
13
|
The Recovery from Sulfur Starvation Is Independent from the mRNA Degradation Initiation Enzyme PARN in Arabidopsis. PLANTS 2019; 8:plants8100380. [PMID: 31569782 PMCID: PMC6843384 DOI: 10.3390/plants8100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
Abstract
When plants are exposed to sulfur limitation, they upregulate the sulfate assimilation pathway at the expense of growth-promoting measures. Upon cessation of the stress, however, protective measures are deactivated, and growth is restored. In accordance with these findings, transcripts of sulfur-deficiency marker genes are rapidly degraded when starved plants are resupplied with sulfur. Yet it remains unclear which enzymes are responsible for the degradation of transcripts during the recovery from starvation. In eukaryotes, mRNA decay is often initiated by the cleavage of poly(A) tails via deadenylases. As mutations in the poly(A) ribonuclease PARN have been linked to altered abiotic stress responses in Arabidopsis thaliana, we investigated the role of PARN in the recovery from sulfur starvation. Despite the presence of putative PARN-recruiting AU-rich elements in sulfur-responsive transcripts, sulfur-depleted PARN hypomorphic mutants were able to reset their transcriptome to pre-starvation conditions just as readily as wildtype plants. Currently, the subcellular localization of PARN is disputed, with studies reporting both nuclear and cytosolic localization. We detected PARN in cytoplasmic speckles and reconciled the diverging views in literature by identifying two PARN splice variants whose predicted localization is in agreement with those observations.
Collapse
|
14
|
Matsui A, Nakaminami K, Seki M. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2019; 60:1897-1905. [PMID: 31093678 DOI: 10.1093/pcp/pcz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA-RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Yu X, Wang Y, Kohnen MV, Piao M, Tu M, Gao Y, Lin C, Zuo Z, Gu L. Large Scale Profiling of Protein Isoforms Using Label-Free Quantitative Proteomics Revealed the Regulation of Nonsense-Mediated Decay in Moso Bamboo ( Phyllostachys edulis). Cells 2019; 8:E744. [PMID: 31330982 PMCID: PMC6678154 DOI: 10.3390/cells8070744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Moso bamboo is an important forest species with a variety of ecological, economic, and cultural values. However, the gene annotation information of moso bamboo is only based on the transcriptome sequencing, lacking the evidence of proteome. The lignification and fiber in moso bamboo leads to a difficulty in the extraction of protein using conventional methods, which seriously hinders research on the proteomics of moso bamboo. The purpose of this study is to establish efficient methods for extracting the total proteins from moso bamboo for following mass spectrometry-based quantitative proteome identification. Here, we have successfully established a set of efficient methods for extracting total proteins of moso bamboo followed by mass spectrometry-based label-free quantitative proteome identification, which further improved the protein annotation of moso bamboo genes. In this study, 10,376 predicted coding genes were confirmed by quantitative proteomics, accounting for 35.8% of all annotated protein-coding genes. Proteome analysis also revealed the protein-coding potential of 1015 predicted long noncoding RNA (lncRNA), accounting for 51.03% of annotated lncRNAs. Thus, mass spectrometry-based proteomics provides a reliable method for gene annotation. Especially, quantitative proteomics revealed the translation patterns of proteins in moso bamboo. In addition, the 3284 transcript isoforms from 2663 genes identified by Pacific BioSciences (PacBio) single-molecule real-time long-read isoform sequencing (Iso-Seq) was confirmed on the protein level by mass spectrometry. Furthermore, domain analysis of mass spectrometry-identified proteins encoded in the same genomic locus revealed variations in domain composition pointing towards a functional diversification of protein isoform. Finally, we found that part transcripts targeted by nonsense-mediated mRNA decay (NMD) could also be translated into proteins. In summary, proteomic analysis in this study improves the proteomics-assisted genome annotation of moso bamboo and is valuable to the large-scale research of functional genomics in moso bamboo. In summary, this study provided a theoretical basis and technical support for directional gene function analysis at the proteomics level in moso bamboo.
Collapse
Affiliation(s)
- Xiaolan Yu
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingxin Piao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Min Tu
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Sajeev N, Bai B, Bentsink L. Seeds: A Unique System to Study Translational Regulation. TRENDS IN PLANT SCIENCE 2019; 24:487-495. [PMID: 31003894 DOI: 10.1016/j.tplants.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 05/18/2023]
Abstract
Seeds accumulate mRNA during their development and have the ability to store these mRNAs over extended periods of time. On imbibition, seeds transform from a quiescent dry state (no translation) to a fully active metabolic state, and selectively translate subsets of these stored mRNA. Thus, seeds provide a unique developmentally regulated 'on/off' switch for translation. Additionally, there is extensive translational control during seed germination. Here we discuss new findings and hypotheses linked to mRNA fate and the role of translational regulation in seeds. Translation is an understated yet important mode of gene regulation. We propose seeds as a novel system to study developmentally and physiologically regulated translation.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands; Laboratory website: www.pph.wur.nl.
| |
Collapse
|
17
|
Sheng Y, Yang L, Li C, Wang Y, Guo H. Transcriptomic changes in Nicotiana tabacum leaves during mosaic virus infection. 3 Biotech 2019; 9:220. [PMID: 31114744 DOI: 10.1007/s13205-019-1740-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/08/2019] [Indexed: 02/04/2023] Open
Abstract
To provide a detailed insight into the early biological process of tobacco mosaic disease, transcriptomic changes in tobacco leaves were surveyed at 1, 3 and 5 days after mono-infected by Tobacco mosaic virus (TMV) and co-infected by Cucumber mosaic virus (CMV) and TMV. At the three different stages, there were 2372, 3168 and 2045 differentially expressed genes (DEGs) in mono-infected leaves, and 2388, 3281 and 3417 DEGs were identified in co-infected leaves. There were 836, 1538 and 1185 common DEGs between the mono-infection and co-infection at the three time points, respectively. These common DEGs were enriched in the pathways, such as photosynthesis, biosynthesis of secondary metabolites, plant-pathogen interaction, porphyrin and chlorophyll metabolism, phenylalanine metabolism and phenylpropanoid biosynthesis. Photosynthesis pathway was observably down-regulated, and defense response pathways were markedly up-regulated. These pathways have been found to be related to tobacco mosaic disease. Of these common DEGs, the changes in expression of argonaute proteins, thioredoxins and peroxidases showed that the activation of RNA silencing and the destruction of redox balance can be induced by tobacco mosaic virus infection, resulting in the reset of biology process and damage in tobacco plants. Additionally, the occurrence of symptoms in co-infected tobacco plants was more early and serious than mono-infection, indicating that there is synergy between TMV and CMV in co-infected tobacco plants. The timely usage of antiviral agents and plant resistance inducers can decrease the incidence of tobacco mosaic disease through changing the expression of some DEGs, indicating that these genes can be used to screen novel plant resistance inducers and antiviral agents. Overall, our results were helpful in clarifying the mechanism of tobacco mosaic disease and provided novel strategies for the prevention of tobacco mosaic disease.
Collapse
Affiliation(s)
- Yangyang Sheng
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Lijun Yang
- Zhumadian Branch of Henan Province Tobacco Company, Zhumadian, 463000 Henan China
| | - Chunfu Li
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yuping Wang
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Hongxiang Guo
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|
18
|
Dietz KJ, Wesemann C, Wegener M, Seidel T. Toward an Integrated Understanding of Retrograde Control of Photosynthesis. Antioxid Redox Signal 2019; 30:1186-1205. [PMID: 29463103 DOI: 10.1089/ars.2018.7519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Photosynthesis takes place in the chloroplast of eukaryotes, which occupies a large portion of the photosynthetic cell. The chloroplast function and integrity depend on intensive material and signal exchange between all genetic compartments and conditionally secure efficient photosynthesis and high fitness. Recent Advances: During the last two decades, the concept of mutual control of plastid performance by extraplastidic anterograde signals acting on the chloroplast and the feedback from the chloroplast to the extraplastidic space by retrograde signals has been profoundly revised and expanded. It has become clear that a complex set of diverse signals is released from the chloroplast and exceeds the historically proposed small number of information signals. Thus, it is also recognized that redox compounds and reactive oxygen species play a decisive role in retrograde signaling. CRITICAL ISSUES The diversity of processes controlled or modulated by the retrograde network covers all molecular levels, including RNA fate and translation, and also includes subcellular heterogeneity, indirect gating of other organelles' metabolism, and specific signaling routes and pathways, previously not considered. All these processes must be integrated for optimal adjustment of the chloroplast processes. Thus, evidence is presented suggesting that retrograde signaling affects translation, stress granule, and processing body (P-body) dynamics. FUTURE DIRECTIONS Redundancy of signal transduction elements, parallelisms of pathways, and conditionally alternative mechanisms generate a robust network and system that only tentatively can be assessed by use of single-site mutants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Corinna Wesemann
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Melanie Wegener
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
19
|
Nakaminami K, Seki M. RNA Regulation in Plant Cold Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:23-44. [PMID: 30288702 DOI: 10.1007/978-981-13-1244-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
20
|
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved mechanisms which allow them to adapt to abiotic stresses through alterations in gene expression and metabolism. In recent years, studies have investigated the role of long noncoding RNA (lncRNA) in regulating gene expression in plants and characterized their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications, and RNA-RNA interactions. Genome-wide transcriptome analyses have identified various types of noncoding RNAs (ncRNAs) that respond to abiotic stress. These ncRNAs are in addition to the well-known housekeeping ncRNAs, such as rRNAs, tRNAs, snoRNAs, and snRNAs. In this review, recent research pertaining to the role of lncRNAs in the response of plants to abiotic stress is summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Saitama, Japan.
| |
Collapse
|
21
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|
22
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
23
|
Polydore S, Axtell MJ. Analysis of RDR1/RDR2/RDR6-independent small RNAs in Arabidopsis thaliana improves MIRNA annotations and reveals unexplained types of short interfering RNA loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1051-1063. [PMID: 29654642 DOI: 10.1111/tpj.13919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 05/21/2023]
Abstract
Plant small RNAs (sRNAs) modulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. Small RNAs fall into two major categories: those are reliant on RNA-dependent RNA polymerases (RDRs) for biogenesis and those that are not. Known RDR1/2/6-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR1/2/6-independent sRNAs are primarily microRNAs (miRNA) and other hairpin-derived sRNAs. In this study we produced and analyzed sRNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. We found 58 previously annotated miRNA loci that were reliant on RDR1, -2, or -6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent sRNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for sRNA biogenesis. These 38 sRNA-producing loci have as-yet-undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types of sRNA in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Seth Polydore
- Genetics PhD Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael J Axtell
- Genetics PhD Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
24
|
Shanmugam T, Abbasi N, Kim HS, Kim HB, Park NI, Park GT, Oh SA, Park SK, Muench DG, Choi Y, Park YI, Choi SB. An Arabidopsis divergent pumilio protein, APUM24, is essential for embryogenesis and required for faithful pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1092-1105. [PMID: 29031033 DOI: 10.1111/tpj.13745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 05/06/2023]
Abstract
Pumilio RNA-binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre-rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T-DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro-embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA-protein interaction assay showed that the histidine-tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nazia Abbasi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Hyung-Sae Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Ho Bang Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nam-Il Park
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, South Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| |
Collapse
|
25
|
Koguchi M, Yamasaki K, Hirano T, Sato MH. Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1295907. [PMID: 28277968 PMCID: PMC5399895 DOI: 10.1080/15592324.2017.1295907] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
VASCULAR PLANT ONE-ZINC FINGER (VOZ)1/and VOZ2 have an ability to bind to the specific cis-element in the AVP1 promoter of Arabidopsis, which function on the PhyB-dependent flowering and possibly in various stress responses as potential transcription factors, although nuclear localization of VOZ proteins is still unclear. In this study, we found that VOZ2 is dispersed throughout the cytoplasm under normal growth conditions, whereas VOZ2 is transferred not only to the nucleus but also to the cytoplasmic foci under heat stress conditions. The VOZ2 foci predominantly co-localized with a marker of stress granules (SGs), which were cytoplasmic granular structures for mRNA storage and decay under abiotic stress conditions. We also demonstrated that GFP-VOZ2 with a nuclear localization signal was rapidly degraded via the ubiquitin/proteasome pathway under the heat stress conditions. Also, stress-related expression of DREB2A in the voz1voz2 mutant was significantly upregulated by heat stress as compared with that in the wild-type Arabidopsis. Our results suggest that VOZ2 is localized to SGs and nucleus under heat stress conditions, and functions as a transcriptional repressor of DREB2A in Arabidopsis.
Collapse
Affiliation(s)
- Misaki Koguchi
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
| | - Kanako Yamasaki
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
| | - Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
| | - Masa H. Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto, Japan
- CONTACT Masa H. Sato Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
26
|
Conti G, Zavallo D, Venturuzzi AL, Rodriguez MC, Crespi M, Asurmendi S. TMV induces RNA decay pathways to modulate gene silencing and disease symptoms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:73-84. [PMID: 27599263 DOI: 10.1111/tpj.13323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
RNA decay pathways comprise a combination of RNA degradation mechanisms that are implicated in gene expression, development and defense responses in eukaryotes. These mechanisms are known as the RNA Quality Control or RQC pathways. In plants, another important RNA degradation mechanism is the post-transcriptional gene silencing (PTGS) mediated by small RNAs (siRNAs). Notably, the RQC pathway antagonizes PTGS by preventing the entry of dysfunctional mRNAs into the silencing pathway to avoid global degradation of mRNA by siRNAs. Viral transcripts must evade RNA degrading mechanisms, thus viruses encode PTGS suppressor proteins to counteract viral RNA silencing. Here, we demonstrate that tobacco plants infected with TMV and transgenic lines expressing TMV MP and CP (coat protein) proteins (which are not linked to the suppression of silencing) display increased transcriptional levels of RNA decay genes. These plants also showed accumulation of cytoplasmic RNA granules with altered structure, increased rates of RNA decay for transgenes and defective transgene PTGS amplification. Furthermore, knockdown of RRP41 or RRP43 RNA exosome components led to lower levels of TMV accumulation with milder symptoms after infection, several developmental defects and miRNA deregulation. Thus, we propose that TMV proteins induce RNA decay pathways (in particular exosome components) to impair antiviral PTGS and this defensive mechanism would constitute an additional counter-defense strategy that lead to disease symptoms.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
| | - Andrea L Venturuzzi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| | | | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, CNRS, INRA, University Paris-Sud, Orsay, France
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| |
Collapse
|
27
|
Chou WL, Chung YL, Fang JC, Lu CA. Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. PLANT MOLECULAR BIOLOGY 2017; 93:79-96. [PMID: 27714489 DOI: 10.1007/s11103-016-0548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Yue-Lin Chung
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
| |
Collapse
|
28
|
Kawa D, Testerink C. Regulation of mRNA decay in plant responses to salt and osmotic stress. Cell Mol Life Sci 2016; 74:1165-1176. [PMID: 27677492 PMCID: PMC5346435 DOI: 10.1007/s00018-016-2376-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
Plant acclimation to environmental stresses requires fast signaling to initiate changes in developmental and metabolic responses. Regulation of gene expression by transcription factors and protein kinases acting upstream are important elements of responses to salt and drought. Gene expression can be also controlled at the post-transcriptional level. Recent analyses on mutants in mRNA metabolism factors suggest their contribution to stress signaling. Here we highlight the components of mRNA decay pathways that contribute to responses to osmotic and salt stress. We hypothesize that phosphorylation state of proteins involved in mRNA decapping affect their substrate specificity.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Meteignier LV, Zhou J, Cohen M, Bhattacharjee S, Brosseau C, Chan MGC, Robatzek S, Moffett P. NB-LRR signaling induces translational repression of viral transcripts and the formation of RNA processing bodies through mechanisms differing from those activated by UV stress and RNAi. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2353-66. [PMID: 26889008 DOI: 10.1093/jxb/erw042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant NB-LRR proteins confer resistance to multiple pathogens, including viruses. Although the recognition of viruses by NB-LRR proteins is highly specific, previous studies have suggested that NB-LRR activation results in a response that targets all viruses in the infected cell. Using an inducible system to activate NB-LRR defenses, we find that NB-LRR signaling does not result in the degradation of viral transcripts, but rather prevents them from associating with ribosomes and translating their genetic material. This indicates that defense against viruses involves the repression of viral RNA translation. This repression is specific to viral transcripts and does not involve a global shutdown of host cell translation. As a consequence of the repression of viral RNA translation, NB-LRR responses induce a dramatic increase in the biogenesis of RNA processing bodies (PBs). We demonstrate that other pathways that induce translational repression, such as UV irradiation and RNAi, also induce PBs. However, by investigating the phosphorylation status of eIF2α and by using suppressors of RNAi we show that the mechanisms leading to PB induction by NB-LRR signaling are different from these stimuli, thus defining a distinct type of translational control and anti-viral mechanism in plants.
Collapse
Affiliation(s)
- Louis-Valentin Meteignier
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Ji Zhou
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK The Genome Analysis Centre & John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mathias Cohen
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Saikat Bhattacharjee
- Regional Centre for Biotechnology, 180, Udyog Vihar Phase I, Gurgaon-122016, India
| | - Chantal Brosseau
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Maria Goretty Caamal Chan
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| |
Collapse
|
30
|
Li J, Sen GL. Post-Transcriptional Mechanisms Regulating Epidermal Stem and Progenitor Cell Self-Renewal and Differentiation. J Invest Dermatol 2016; 136:746-752. [DOI: 10.1016/j.jid.2015.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023]
|
31
|
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. SCIENCE ADVANCES 2016; 2:e1501340. [PMID: 26989783 PMCID: PMC4788475 DOI: 10.1126/sciadv.1501340] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.
Collapse
|
32
|
Shaul O. Unique Aspects of Plant Nonsense-Mediated mRNA Decay. TRENDS IN PLANT SCIENCE 2015; 20:767-779. [PMID: 26442679 DOI: 10.1016/j.tplants.2015.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Nonsense-mediated mRNA Decay (NMD) is a eukaryotic quality-control mechanism that governs the stability of both aberrant and normal transcripts. Although plant and mammalian NMD share great similarity, they differ in certain mechanistic and regulatory aspects. Whereas SMG6 (from Caenorhabditis elegans 'suppressor with morphogenetic effect on genitalia')-catalyzed endonucleolytic cleavage is a prominent step in mammalian NMD, plant NMD targets are degraded by an SMG7-induced exonucleolytic pathway. Both mammalian and plant NMD are downregulated by stress, thereby enhancing the expression of defense response genes. However, the target genes and processes affected differ. Several plant and mammalian NMD factors are regulated by negative feedback-loops. However, while the loop regulating UPF3 (up-frameshift 3) expression in not vital for mammalian NMD, the sensitivity of UPF3 to NMD is crucial for the overall regulation of plant NMD.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
33
|
Zhang H, Zhu J. Protecting genes from RNA silencing by destroying aberrant transcripts. SCIENCE CHINA. LIFE SCIENCES 2015; 58:613-615. [PMID: 25994414 DOI: 10.1007/s11427-015-4871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Heng Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China,
| | | |
Collapse
|
34
|
Merret R, Nagarajan VK, Carpentier MC, Park S, Favory JJ, Descombin J, Picart C, Charng YY, Green PJ, Deragon JM, Bousquet-Antonelli C. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Res 2015; 43:4121-32. [PMID: 25845591 PMCID: PMC4417158 DOI: 10.1093/nar/gkv234] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022] Open
Abstract
The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5′-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5′-ribosome pausing leading to the XRN4-mediated 5′-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of ‘non-aberrant’ mRNAs.
Collapse
Affiliation(s)
- Rémy Merret
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Vinay K Nagarajan
- University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Sunhee Park
- University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Jean-Jacques Favory
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Julie Descombin
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Claire Picart
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road Section 2, Taipei, Taiwan 11529, ROC
| | - Pamela J Green
- University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Jean-Marc Deragon
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 av. Paul Alduy 66860 Perpignan, France Université de Perpignan Via Domitia, LGDP-UMR5096, 58 av. Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
35
|
Gutierrez-Beltran E, Moschou PN, Smertenko AP, Bozhkov PV. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis. THE PLANT CELL 2015; 27:926-43. [PMID: 25736060 PMCID: PMC4558657 DOI: 10.1105/tpc.114.134494] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 05/18/2023]
Abstract
Tudor Staphylococcal Nuclease (TSN or Tudor-SN; also known as SND1) is an evolutionarily conserved protein involved in the transcriptional and posttranscriptional regulation of gene expression in animals. Although TSN was found to be indispensable for normal plant development and stress tolerance, the molecular mechanisms underlying these functions remain elusive. Here, we show that Arabidopsis thaliana TSN is essential for the integrity and function of cytoplasmic messenger ribonucleoprotein (mRNP) complexes called stress granules (SGs) and processing bodies (PBs), sites of posttranscriptional gene regulation during stress. TSN associates with SGs following their microtubule-dependent assembly and plays a scaffolding role in both SGs and PBs. The enzymatically active tandem repeat of four SN domains is crucial for targeting TSN to the cytoplasmic mRNA complexes and is sufficient for the cytoprotective function of TSN during stress. Furthermore, our work connects the cytoprotective function of TSN with its positive role in stress-induced mRNA decapping. While stress led to a pronounced increase in the accumulation of uncapped mRNAs in wild-type plants, this increase was abrogated in TSN knockout plants. Taken together, our results establish TSN as a key enzymatic component of the catabolic machinery responsible for the processing of mRNAs in the cytoplasmic mRNP complexes during stress.
Collapse
Affiliation(s)
- Emilio Gutierrez-Beltran
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Andrei P Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5BN, United Kingdom
| | - Peter V Bozhkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
36
|
Romanowski A, Yanovsky MJ. Circadian rhythms and post-transcriptional regulation in higher plants. FRONTIERS IN PLANT SCIENCE 2015; 6:437. [PMID: 26124767 PMCID: PMC4464108 DOI: 10.3389/fpls.2015.00437] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/28/2015] [Indexed: 05/06/2023]
Abstract
The circadian clock of plants allows them to cope with daily changes in their environment. This is accomplished by the rhythmic regulation of gene expression, in a process that involves many regulatory steps. One of the key steps involved at the RNA level is post-transcriptional regulation, which ensures a correct control on the different amounts and types of mRNA that will ultimately define the current physiological state of the plant cell. Recent advances in the study of the processes of regulation of pre-mRNA processing, RNA turn-over and surveillance, regulation of translation, function of lncRNAs, biogenesis and function of small RNAs, and the development of bioinformatics tools have helped to vastly expand our understanding of how this regulatory step performs its role. In this work we review the current progress in circadian regulation at the post-transcriptional level research in plants. It is the continuous interaction of all the information flow control post-transcriptional processes that allow a plant to precisely time and predict daily environmental changes.
Collapse
Affiliation(s)
| | - Marcelo J. Yanovsky
- *Correspondence: Marcelo J. Yanovsky, Laboratorio de Genómica Comparativa del Desarrollo Vegetal, Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina,
| |
Collapse
|
37
|
Layat E, Leymarie J, El-Maarouf-Bouteau H, Caius J, Langlade N, Bailly C. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination. THE NEW PHYTOLOGIST 2014; 204:864-72. [PMID: 25157915 DOI: 10.1111/nph.13002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/27/2014] [Indexed: 05/19/2023]
Abstract
Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process.
Collapse
Affiliation(s)
- Elodie Layat
- UMR 7622, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France; UMR 7622, CNRS, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Shin JH, Chekanova JA. Arabidopsis RRP6L1 and RRP6L2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet 2014; 10:e1004612. [PMID: 25211139 PMCID: PMC4161302 DOI: 10.1371/journal.pgen.1004612] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023] Open
Abstract
The exosome complex functions in RNA metabolism and transcriptional gene silencing. Here, we report that mutations of two Arabidopsis genes encoding nuclear exosome components AtRRP6L1 and AtRRP6L2, cause de-repression of the main flowering repressor FLOWERING LOCUS C (FLC) and thus delay flowering in early-flowering Arabidopsis ecotypes. AtRRP6L mutations affect the expression of known FLC regulatory antisense (AS) RNAs AS I and II, and cause an increase in Histone3 K4 trimethylation (H3K4me3) at FLC. AtRRP6L1 and AtRRP6L2 function redundantly in regulation of FLC and also act independently of the exosome core complex. Moreover, we discovered a novel, long non-coding, non-polyadenylated antisense transcript (ASL, for Antisense Long) originating from the FLC locus in wild type plants. The AtRRP6L proteins function as the main regulators of ASL synthesis, as these mutants show little or no ASL transcript. Unlike ASI/II, ASL associates with H3K27me3 regions of FLC, suggesting that it could function in the maintenance of H3K27 trimethylation during vegetative growth. AtRRP6L mutations also affect H3K27me3 levels and nucleosome density at the FLC locus. Furthermore, AtRRP6L1 physically associates with the ASL transcript and directly interacts with the FLC locus. We propose that AtRRP6L proteins participate in the maintenance of H3K27me3 at FLC via regulating ASL. Furthermore, AtRRP6Ls might participate in multiple FLC silencing pathways by regulating diverse antisense RNAs derived from the FLC locus.
Collapse
Affiliation(s)
- Jun-Hye Shin
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Julia A. Chekanova
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bogamuwa SP, Jang JC. Tandem CCCH zinc finger proteins in plant growth, development and stress response. PLANT & CELL PHYSIOLOGY 2014; 55:1367-75. [PMID: 24850834 DOI: 10.1093/pcp/pcu074] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cysteine3Histidine (CCCH)-type zinc finger proteins comprise a large family that is well conserved across eukaryotes. Among them, tandem CCCH zinc finger proteins (TZFs) play critical roles in mRNA metabolism in animals and yeast. While there are only three TZF members in humans, a much higher number of TZFs has been found in many plant species. Notably, plant TZFs are over-represented by a class of proteins containing a unique TZF domain preceded by an arginine (R)-rich (RR) motif, hereafter called RR-TZF. Recently, there have been a large number of reports indicating that RR-TZF proteins can localize to processing bodies (P-bodies) and stress granules (SG), two novel cytoplasmic aggregations of messenger ribonucleoprotein complexes (mRNPs), and play critical roles in plant growth, development and stress response, probably via RNA regulation. This review focuses on the classification and most recent development of molecular, cellular and genetic analyses of plant RR-TZF proteins.
Collapse
Affiliation(s)
- Srimathi P Bogamuwa
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USADepartment of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USACenter for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Chou WL, Huang LF, Fang JC, Yeh CH, Hong CY, Wu SJ, Lu CA. Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. PLANT MOLECULAR BIOLOGY 2014; 85:443-58. [PMID: 24805883 DOI: 10.1007/s11103-014-0196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/25/2014] [Indexed: 05/27/2023]
Abstract
Deadenylation, also called poly(A) tail shortening, is the first, rate-limiting step in the general cytoplasmic mRNA degradation in eukaryotic cells. The CCR4-NOT complex, containing the two key components carbon catabolite repressor 4 (CCR4) and CCR4-associated factor 1 (CAF1), is a major player in deadenylation. CAF1 belongs to the RNase D group in the DEDD superfamily, and is a protein conserved through evolution from yeast to humans and plants. Every higher plant, including Arabidopsis and rice, contains a CAF1 multigene family. In this study, we identified and cloned four OsCAF1 genes (OsCAF1A, OsCAF1B, OsCAF1G, and OsCAF1H) from rice. Four recombinant OsCAF1 proteins, rOsCAF1A, rOsCAF1B, rOsCAF1G, and rOsCAF1H, all exhibited 3'-5' exonuclease activity in vitro. Point mutations in the catalytic residues of each analyzed recombinant OsCAF1 proteins were shown to disrupt deadenylase activity. OsCAF1A and OsCAF1G mRNA were found to be abundant in the leaves of mature plants. Two types of OsCAF1B mRNA transcript were detected in an inverse expression pattern in various tissues. OsCAF1B was transient, induced by drought, cold, abscisic acid, and wounding treatments. OsCAF1H mRNA was not detected either under normal conditions or during most stress treatments, but only accumulated during heat stress. Four OsCAF1-reporter fusion proteins were localized in both the cytoplasm and nucleus. In addition, when green fluorescent protein fused with OsCAF1B, OsCAF1G, and OsCAF1H, respectively, fluorescent spots were observed in the nucleolus. OsCAF1B fluorescent fusion proteins were located in discrete cytoplasmic foci and fibers. We present evidences that OsCAF1B colocalizes with AtXRN4, a processing body marker, and AtKSS12, a microtubules maker, indicating that OsCAF1B is a component of the plant P-body and associate with microtubules. Our findings provide biochemical evidence that OsCAF1 proteins may be involved in the deadenylation in rice. The unique expression patterns of each OsCAF1 were observed in various tissues when undergoing abiotic stress treatments, implying that each CAF1 gene in rice plays a specific role in the development and stress response of a plant.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
41
|
Willmann MR, Berkowitz ND, Gregory BD. Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes—GMUCT 2.0. Methods 2014; 67:64-73. [DOI: 10.1016/j.ymeth.2013.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/30/2013] [Accepted: 07/07/2013] [Indexed: 12/13/2022] Open
|
42
|
Lloyd JPB, Davies B. SMG1 is an ancient nonsense-mediated mRNA decay effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:800-10. [PMID: 24103012 DOI: 10.1111/tpj.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 05/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic process that targets selected mRNAs for destruction, for both quality control and gene regulatory purposes. SMG1, the core kinase of the NMD machinery in animals, phosphorylates the highly conserved UPF1 effector protein to activate NMD. However, SMG1 is missing from the genomes of fungi and the model flowering plant Arabidopsis thaliana, leading to the conclusion that SMG1 is animal-specific and questioning the mechanistic conservation of the pathway. Here we show that SMG1 is not animal-specific, by identifying SMG1 in a range of eukaryotes, including all examined green plants with the exception of A. thaliana. Knockout of SMG1 by homologous recombination in the basal land plant Physcomitrella patens reveals that SMG1 has a conserved role in the NMD pathway across kingdoms. SMG1 has been lost at various points during the evolution of eukaryotes from multiple lineages, including an early loss in the fungal lineage and a very recent observable gene loss in A. thaliana. These findings suggest that the SMG1 kinase functioned in the NMD pathway of the last common eukaryotic ancestor.
Collapse
Affiliation(s)
- James P B Lloyd
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
43
|
Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, Charng YY, Deragon JM, Bousquet-Antonelli C. XRN4 and LARP1 Are Required for a Heat-Triggered mRNA Decay Pathway Involved in Plant Acclimation and Survival during Thermal Stress. Cell Rep 2013; 5:1279-93. [DOI: 10.1016/j.celrep.2013.11.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 10/08/2013] [Accepted: 11/09/2013] [Indexed: 01/22/2023] Open
|
44
|
Zhang J, Mao Z, Chong K. A global profiling of uncapped mRNAs under cold stress reveals specific decay patterns and endonucleolytic cleavages in Brachypodium distachyon. Genome Biol 2013; 14:R92. [PMID: 24000894 PMCID: PMC4054888 DOI: 10.1186/gb-2013-14-8-r92] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 08/30/2013] [Indexed: 01/15/2023] Open
Abstract
Background mRNA degradation is a critical factor in determining mRNA abundance and enables rapid adjustment of gene expression in response to environmental stress. The involvement of processing bodies in stress response suggests a role for decapping-mediated mRNA degradation. However, little is known about the role of mRNA degradation under stressful environmental conditions. Results Here, we perform a global study of uncapped mRNAs, via parallel analysis of RNA ends (PARE), under cold stress in Brachypodium distachyon. Enrichment analysis indicates that degradation products detected by PARE are mainly generated by the decapping pathway. Endonucleolytic cleavages are detected, uncovering another way of modulating gene expression. PARE and RNA-Seq analyses identify four types of mRNA decay patterns. Type II genes, for which light-harvesting processes are over-represented in gene ontology analyses, show unchanged transcript abundance and altered uncapped transcript abundance. Uncapping-mediated transcript stability of light harvesting-related genes changes significantly in response to cold stress, which may allow rapid adjustments in photosynthetic activity in response to cold stress. Transcript abundance and uncapped transcript abundance for type III genes changes in opposite directions in response to cold stress, indicating that uncapping-mediated mRNA degradation plays a role in regulating gene expression. Conclusion To our knowledge, this is the first global analysis of mRNA degradation under environmental stress conditions in Brachypodium distachyon. We uncover specific degradation and endonucleolytic cleavage patterns under cold stress, which will deepen our understanding of mRNA degradation under stressful environmental conditions, as well as the cold stress response mechanism in monocots.
Collapse
|
45
|
Bogamuwa S, Jang JC. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. PLANT, CELL & ENVIRONMENT 2013; 36:1507-19. [PMID: 23421766 DOI: 10.1111/pce.12084] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 05/19/2023]
Abstract
Tandem CCCH zinc finger proteins (TZFs) are post-transcriptional regulators of gene expression in animals and yeast. Genetic studies indicate that plant TZFs are involved in hormone-mediated developmental and environmental responses. We have demonstrated previously that Arabidopsis AtTZF1 can localize to processing bodies (PBs) and stress granules (SGs), and affects abscisic acid (ABA)- and gibberellic acid (GA)-mediated growth, stress and gene expression responses. Here we show that AtTZF4, 5 and 6 are specifically expressed in seeds. Consistent with the observation that their expression levels decline during seed imbibition, AtTZF4, 5 and 6 are up-regulated by ABA and down-regulated by GA. Mutant analyses indicate that AtTZF4, 5 and 6 act as positive regulators for ABA- and negative regulators for light- and GA-mediated seed germination responses. Results of gene expression analysis indicate that AtTZF4, 5 and 6 affect seed germination by controlling genes critical for ABA and GA response. Furthermore, AtTZF4, 5 and 6 can co-localize with both PB and SG markers in Arabidopsis cells. Specifically, AtTZF6 can be assembled into PBs and SGs in embryos with the induction of stress hormone methyl jasmonate under the control of native AtTZF6 promoter.
Collapse
Affiliation(s)
- Srimathi Bogamuwa
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
46
|
Studham ME, MacIntosh GC. Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:116-29. [PMID: 22992001 DOI: 10.1094/mpmi-05-12-0124-fi] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The soybean aphid (Aphis glycines) is a major phloem-feeding pest of soybean (Glycine max). A. glycines feeding can cause the diversion of photosynthates and transmission of plant viruses, resulting in significant yield losses. In this study, we used oligonucleotide microarrays to characterize the long-term transcriptional response to soybean aphid colonization of two related soybean cultivars, one with the Rag1 aphid-resistance gene and one aphid-susceptible cultivar (without Rag1). Transcriptome profiles were determined after 1 and 7 days of aphid infestation. Our results revealed a susceptible response involving hundreds of transcripts, whereas only one transcript changed in the resistant response to aphids. This nonexistent resistance response might be explained by the fact that many defense-related transcripts are constitutively expressed in resistant plants, whereas these same genes are activated in susceptible plants only during aphid infestation. Analysis of phytohormone-related transcripts in the susceptible response showed different hormone profiles for the two time points, and suggest that aphids are able to suppress hormone signals in susceptible plants. A significant activation of abscissic acid, normally associated with abiotic stress responses, at day 7, might be a decoy strategy implemented by the aphid to suppress effective salicylic acid- and jasmonate-related defenses.
Collapse
|
47
|
Perea-Resa C, Hernández-Verdeja T, López-Cobollo R, Castellano MDM, Salinas J. LSM proteins provide accurate splicing and decay of selected transcripts to ensure normal Arabidopsis development. THE PLANT CELL 2012; 24:4930-47. [PMID: 23221597 PMCID: PMC3556967 DOI: 10.1105/tpc.112.103697] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 05/20/2023]
Abstract
In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay.
Collapse
|
48
|
Mistry DS, Chen Y, Sen GL. Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell 2012; 11:127-35. [PMID: 22770246 DOI: 10.1016/j.stem.2012.04.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/22/2012] [Accepted: 04/24/2012] [Indexed: 01/25/2023]
Abstract
Stem and progenitor cells maintain the tissue they reside in for life by regulating the balance between proliferation and differentiation. How this is done is not well understood. Here, we report that the human exosome maintains progenitor cell function. The expression of several subunits of the exosome were found to be enriched in epidermal progenitor cells, which were required to retain proliferative capacity and to prevent premature differentiation. Loss of PM/Scl-75 also known as EXOSC9, a key subunit of the exosome complex, resulted in loss of cells from the progenitor cell compartment, premature differentiation, and loss of epidermal tissue. EXOSC9 promotes self-renewal and prevents premature differentiation by maintaining transcript levels of a transcription factor necessary for epidermal differentiation, GRHL3, at low levels through mRNA degradation. These data demonstrate that control of differentiation specific transcription factors through mRNA degradation is required for progenitor cell maintenance in mammalian tissue.
Collapse
Affiliation(s)
- Devendra S Mistry
- Division of Dermatology, Department of Medicine, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | | | | |
Collapse
|
49
|
Mlalazi B, Welsch R, Namanya P, Khanna H, Geijskes RJ, Harrison MD, Harding R, Dale JL, Bateson M. Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes. PLANTA 2012; 236:1585-1598. [PMID: 22843244 DOI: 10.1007/s00425-012-1717-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Banana is a major commercial crop and serves as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrates that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.
Collapse
Affiliation(s)
- Bulukani Mlalazi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Park SH, Chung PJ, Juntawong P, Bailey-Serres J, Kim YS, Jung H, Bang SW, Kim YK, Do Choi Y, Kim JK. Posttranscriptional control of photosynthetic mRNA decay under stress conditions requires 3' and 5' untranslated regions and correlates with differential polysome association in rice. PLANT PHYSIOLOGY 2012; 159:1111-24. [PMID: 22566494 PMCID: PMC3387698 DOI: 10.1104/pp.112.194928] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/02/2012] [Indexed: 05/18/2023]
Abstract
Abiotic stress, including drought, salinity, and temperature extremes, regulates gene expression at the transcriptional and posttranscriptional levels. Expression profiling of total messenger RNAs (mRNAs) from rice (Oryza sativa) leaves grown under stress conditions revealed that the transcript levels of photosynthetic genes are reduced more rapidly than others, a phenomenon referred to as stress-induced mRNA decay (SMD). By comparing RNA polymerase II engagement with the steady-state mRNA level, we show here that SMD is a posttranscriptional event. The SMD of photosynthetic genes was further verified by measuring the half-lives of the small subunit of Rubisco (RbcS1) and Chlorophyll a/b-Binding Protein1 (Cab1) mRNAs during stress conditions in the presence of the transcription inhibitor cordycepin. To discern any correlation between SMD and the process of translation, changes in total and polysome-associated mRNA levels after stress were measured. Total and polysome-associated mRNA levels of two photosynthetic (RbcS1 and Cab1) and two stress-inducible (Dehydration Stress-Inducible Protein1 and Salt-Induced Protein) genes were found to be markedly similar. This demonstrated the importance of polysome association for transcript stability under stress conditions. Microarray experiments performed on total and polysomal mRNAs indicate that approximately half of all mRNAs that undergo SMD remain polysome associated during stress treatments. To delineate the functional determinant(s) of mRNAs responsible for SMD, the RbcS1 and Cab1 transcripts were dissected into several components. The expressions of different combinations of the mRNA components were analyzed under stress conditions, revealing that both 3' and 5' untranslated regions are necessary for SMD. Our results, therefore, suggest that the posttranscriptional control of photosynthetic mRNA decay under stress conditions requires both 3' and 5' untranslated regions and correlates with differential polysome association.
Collapse
Affiliation(s)
- Su-Hyun Park
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Pil Joong Chung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Piyada Juntawong
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Julia Bailey-Serres
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Youn Shic Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Harin Jung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Seung Woon Bang
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Yeon-Ki Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Yang Do Choi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| | - Ju-Kon Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449–728, Korea (S.-H.P., P.J.C., Y.S.K., H.J., S.W.B., J.-K.K.); Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065 (P.J.C.); Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521 (P.J., J.B.-S.); GreenGene Biotech, Inc., Myongji University, Yongin 449–728, Korea (Y.-K.K.); and School of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea (Y.D.C.)
| |
Collapse
|