1
|
Comita LS, Jones FA, Manzané-Pinzón EJ, Álvarez-Casino L, Cerón-Souza I, Contreras B, Jaén-Barrios N, Ferro N, Engelbrecht BMJ. Limited intraspecific variation in drought resistance along a pronounced tropical rainfall gradient. Proc Natl Acad Sci U S A 2024; 121:e2316971121. [PMID: 38809703 PMCID: PMC11161779 DOI: 10.1073/pnas.2316971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.
Collapse
Affiliation(s)
- Liza S. Comita
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT06511
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - F. Andrew Jones
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Eric J. Manzané-Pinzón
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Panama City, Panamá
| | - Leonor Álvarez-Casino
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
- Department of Plant Ecology, Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Ivania Cerón-Souza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
- Centro de Investigación Tibaitatá, Mosquera Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Cundinamarca250047, Colombia
| | - Blexein Contreras
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - Nelson Jaén-Barrios
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Plant Biology, Institute of Biology, University of Campinas, CampinasCEP 13083-970, SP, Brazil
| | - Natalie Ferro
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - Bettina M. J. Engelbrecht
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Plant Ecology, Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Olazcuaga L, Foucaud J, Deschamps C, Loiseau A, Claret J, Vedovato R, Guilhot R, Sévely C, Gautier M, Hufbauer RA, Rode NO, Estoup A. Rapid and transient evolution of local adaptation to seasonal host fruits in an invasive pest fly. Evol Lett 2022; 6:490-505. [PMID: 36579160 PMCID: PMC9783429 DOI: 10.1002/evl3.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Both local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear. Here, we used Drosophila suzukii as a model system to evaluate the relative influence of genetic and plastic effects on the match of populations to environments with periods of stability from three to four generations. This invasive pest insect can develop within different fruits, and persists throughout the year in a given location on a succession of distinct host fruits, each one being available for only a few generations. Using reciprocal common environment experiments of natural D. suzukii populations collected from cherry, strawberry, and blackberry, we found that both oviposition preference and offspring performance were higher on medium made with the fruit from which the population originated than on media made with alternative fruits. This pattern, which remained after two generations in the laboratory, was analyzed using a statistical method we developed to quantify the contributions of local adaptation and adaptive plasticity in determining fitness. Altogether, we found that genetic effects (local adaptation) dominate over plastic effects (adaptive phenotypic plasticity). Our study demonstrates that spatially and temporally variable selection does not prevent the rapid evolution of local adaptation in natural populations. The speed and strength of adaptation may be facilitated by several mechanisms including a large effective population size and strong selective pressures imposed by host plants.
Collapse
Affiliation(s)
- Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France,Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Julien Foucaud
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Candice Deschamps
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Jean‐Loup Claret
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Romain Vedovato
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Cyril Sévely
- Chambre d'agriculture de l'HéraultLattes34875France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Ruth A. Hufbauer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA,Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80523USA
| | - Nicolas O. Rode
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Arnaud Estoup
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| |
Collapse
|
3
|
Kalske A, Luntamo N, Salminen JP, Ramula S. Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractIntraspecific variation in growth and defence among plant populations can be driven by differences in (a)biotic conditions, such as herbivory and resources. Introduction of species to novel environments affects simultaneously herbivory encountered by a plant and resource availability both directly and via altered competitive environment. Here, we address the question of how growth (leaf mass per area (LMA), plant size) and resistance traits (leaf alkaloids, leaf trichomes, resistance to a generalist snail) vary and covary between native and introduced populations of the garden lupine, Lupinus polyphyllus. We focused specifically on evolved differences among populations by measuring traits from plants grown from seed in a common environment. Plants from the introduced populations were more resistant against the generalist snail, Arianta arbustorum, and they had more leaf trichomes and higher LMA than plants from the native populations. The composition of alkaloids differed between native and introduced populations, with the native populations having more diversity in alkaloids among them. Resistance was positively associated with plant size and LMA across all populations. Other trait associations differed between native and introduced areas, implying that certain trade-offs may be fundamentally different between native and introduced populations. Our results suggest that, for the introduced populations, the loss of native herbivores and the alterations in resource availability have led to a lower diversity in leaf alkaloids among populations and may facilitate the evolution of novel trait optima without compensatory trade-offs. Such phytochemical similarity among introduced populations provides novel insights into mechanisms promoting successful plant invasions.
Collapse
|
4
|
Ren J, Peng ZK, Yang ZZ, Tian LX, Liu SN, Wang SL, Wu QJ, Xie W, Zhang YJ. Genome-wide identification and analysis of sulfatase and sulfatase modifying factor genes in Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT SCIENCE 2021; 28:1541-1552. [PMID: 33399267 DOI: 10.1111/1744-7917.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.
Collapse
Affiliation(s)
- Jun Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng-Ke Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze-Zhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li-Xia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Nan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Li Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-Jun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant-herbivore interactions. THE NEW PHYTOLOGIST 2021; 229:1894-1910. [PMID: 33111316 DOI: 10.1111/nph.17036] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Plant-herbivore interactions have evolved in response to coevolutionary dynamics, along with selection driven by abiotic conditions. We examine how abiotic factors influence trait expression in both plants and herbivores to evaluate how climate change will alter this long-standing interaction. The paleontological record documents increased herbivory during periods of global warming in the deep past. In phylogenetically corrected meta-analyses, we find that elevated temperatures, CO2 concentrations, drought stress and nutrient conditions directly and indirectly induce greater food consumption by herbivores. Additionally, elevated CO2 delays herbivore development, but increased temperatures accelerate development. For annual plants, higher temperatures, CO2 and drought stress increase foliar herbivory. Our meta-analysis also suggests that greater temperatures and drought may heighten florivory in perennials. Human actions are causing concurrent shifts in CO2 , temperature, precipitation regimes and nitrogen deposition, yet few studies evaluate interactions among these changing conditions. We call for additional multifactorial studies that simultaneously manipulate multiple climatic factors, which will enable us to generate more robust predictions of how climate change could disrupt plant-herbivore interactions. Finally, we consider how shifts in insect and plant phenology and distribution patterns could lead to ecological mismatches, and how these changes may drive future adaptation and coevolution between interacting species.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Cameron Blevins
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
Vidal MC, Quinn TW, Stireman JO, Tinghitella RM, Murphy SM. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol Ecol 2019; 28:4317-4334. [PMID: 31483075 DOI: 10.1111/mec.15218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Population divergence can occur due to mechanisms associated with geographic isolation and/or due to selection associated with different ecological niches. Much of the evidence for selection-driven speciation has come from studies of specialist insect herbivores that use different host plant species; however, the influence of host plant use on population divergence of generalist herbivores remains poorly understood. We tested how diet breadth, host plant species and geographic distance influence population divergence of the fall webworm (Hyphantria cunea; FW). FW is a broadly distributed, extreme generalist herbivore consisting of two morphotypes that have been argued to represent two different species: black-headed and red-headed. We characterized the differentiation of FW populations at two geographic scales. We first analysed the influence of host plant and geographic distance on genetic divergence across a broad continental scale for both colour types. We further analysed the influence of host plant, diet breadth and geographic distance on divergence at a finer geographic scale focusing on red-headed FW in Colorado. We found clear genetic and morphological distinction between red- and black-headed FW, and Colorado FW formed a genetic cluster distinct from other locations. Although both geographic distance and host plant use were correlated with genetic distance, geographic distance accounted for up to 3× more variation in genetic distance than did host plant use. As a rare study investigating the genetic structure of a widespread generalist herbivore over a broad geographic range (up to 3,000 km), our study supports a strong role for geographic isolation in divergence in this system.
Collapse
Affiliation(s)
- Mayra C Vidal
- Department of Biological Sciences, University of Denver, Denver, CO, USA.,Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Tom W Quinn
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - John O Stireman
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | | | - Shannon M Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
7
|
Serra G, Maestrale GB, Tore S, Casula S, Baratti M. Host plant budburst and male-biased dispersal affect the genetic structure of the green oak leaf roller moth, Tortrix viridana (Lepidoptera: Tortricidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Giuseppe Serra
- CNR – Institute of Biometeorology, UOS Sassari – Sassari-Li Punti (SS), Italy
| | | | - Silvia Tore
- CNR – Institute of Genetics and Biomedical Research, UOS Sassari – Sassari-Li Punti (SS), Italy
| | - Stefania Casula
- CNR – Institute of Genetics and Biomedical Research, UOS Sassari – Sassari-Li Punti (SS), Italy
| | - Mariella Baratti
- CNR – Institute of Biosciences and Bioresources, UOS Firenze – Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Ma XL, He WY, Chen W, Xu XJ, Qi WP, Zou MM, You YC, Baxter SW, Wang P, You MS. Structure and expression of sulfatase and sulfatase modifying factor genes in the diamondback moth, Plutella xylostella. INSECT SCIENCE 2018; 25:946-958. [PMID: 28569426 DOI: 10.1111/1744-7917.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), uses sulfatases (SULF) to counteract the glucosinolate-myrosinase defensive system that cruciferous plants have evolved to deter insect feeding. Sulfatase activity is regulated by post-translational modification of a cysteine residue by sulfatase modifying factor 1 (SUMF1). We identified 12 SULF genes (PxylSulfs) and two SUMF1 genes (PxylSumf1s) in the P. xylostella genome. Phylogenetic analysis of SULFs and SUMFs from P. xylostella, Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens showed that the SULFs were clustered into five groups, and the SUMFs could be divided into two groups. Profiling of the expression of PxylSulfs and PxylSumfs by RNA-seq and by quantitative real-time polymerase chain reaction showed that two glucosinolate sulfatase genes (GSS), PxylSulf2 and PxylSulf3, were primarily expressed in the midgut of 3rd- and 4th-instar larvae. Moreover, expression of sulfatases PxylSulf2, PxylSulf3 and PxylSulf4 were correlated with expression of the sulfatases modifying factor PxylSumf1a. The findings from this study provide new insights into the structure and expression of SUMF1 and PxylSulf genes that are considered to be key factors for the evolutionary success of P. xylostella as a specialist herbivore of cruciferous plants.
Collapse
Affiliation(s)
- Xiao-Li Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Wei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xue-Jiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Wei-Ping Qi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Yan-Chun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Simon W Baxter
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Ping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, USA
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
9
|
Haney CH, Wiesmann CL, Shapiro LR, Melnyk RA, O'Sullivan LR, Khorasani S, Xiao L, Han J, Bush J, Carrillo J, Pierce NE, Ausubel FM. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Mol Ecol 2017; 27:1833-1847. [PMID: 29087012 DOI: 10.1111/mec.14400] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/02/2023]
Abstract
Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture.
Collapse
Affiliation(s)
- Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Lori R Shapiro
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Ryan A Melnyk
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Lucy R O'Sullivan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sophie Khorasani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Li Xiao
- Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jiatong Han
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Jenifer Bush
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Juli Carrillo
- Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wu Q, Han TS, Chen X, Chen JF, Zou YP, Li ZW, Xu YC, Guo YL. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol 2017; 18:217. [PMID: 29141655 PMCID: PMC5686891 DOI: 10.1186/s13059-017-1342-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In contrast to positive selection, which reduces genetic variation by fixing beneficial alleles, balancing selection maintains genetic variation within a population or species and plays crucial roles in adaptation in diverse organisms. However, which genes, genome-wide, are under balancing selection and the extent to which these genes are involved in adaptation are largely unknown. RESULTS We performed a genome-wide scan for genes under balancing selection across two plant species, Arabidopsis thaliana and its relative Capsella rubella, which diverged about 8 million generations ago. Among hundreds of genes with shared coding-region polymorphisms, we find evidence for long-term balancing selection in five genes: AT1G35220, AT2G16570, AT4G29360, AT5G38460, and AT5G44000. These genes are involved in the response to biotic and abiotic stress and other fundamental biochemical processes. More intriguingly, for these genes, we detected significant ecological diversification between the two haplotype groups, suggesting that balancing selection has been very important for adaptation. CONCLUSIONS Our results indicate that beyond the well-known S-locus genes and resistance genes, many loci are under balancing selection. These genes are mostly correlated with resistance to stress or other fundamental functions and likely play a more important role in adaptation to diverse habitats than previously thought.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Wen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Gloss AD, Groen SC, Whiteman NK. A genomic perspective on the generation and maintenance of genetic diversity in herbivorous insects. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016; 47:165-187. [PMID: 28736510 DOI: 10.1146/annurev-ecolsys-121415-032220] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales-from variation within populations to divergence among populations-to form a comprehensive view of adaptation in herbivorous insects.
Collapse
Affiliation(s)
- Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, California
| |
Collapse
|
12
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Abstract
Plants collectively produce hundreds of thousands of specialized metabolites that are not required for growth or development. Each species has a qualitatively unique profile, with variation among individuals, growth stages, and tissues. By the 1950s, entomologists began to recognize the supreme importance of these metabolites in shaping insect herbivore communities. Plant defense theories arose to address observed patterns of variation, but provided few testable hypotheses because they did not distinguish clearly among proximate and ultimate causes. Molecular plant-insect interaction research has since revealed the sophistication of plant metabolic, developmental, and signaling networks. This understanding at the molecular level, rather than theoretical predictions, has driven the development of new hypotheses and tools and pushed the field forward. We reflect on the utility of the functional perspective provided by the optimal defense theory, and propose a conceptual model of plant defense as a series of layers each at a different level of analysis, illustrated by advances in the molecular ecology of plant-insect interactions.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; ,
| |
Collapse
|
14
|
Chakraborty M, Fry JD. Evidence that Environmental Heterogeneity Maintains a Detoxifying Enzyme Polymorphism in Drosophila melanogaster. Curr Biol 2015; 26:219-223. [PMID: 26748852 DOI: 10.1016/j.cub.2015.11.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022]
Abstract
Environmental heterogeneity is thought to be an important process maintaining genetic variation in populations [1-4]: if alternative alleles are favored in different environments, a stable polymorphism can be maintained [1, 5, 6]. This situation has been hypothesized to occur in genes encoding multi-substrate enzymes [7], in which changes that increase activity with one substrate typically decrease activity with others [8-10], but examples of polymorphisms maintained by this mechanism are rare. Here, we present evidence that a polymorphism in an enzyme gene in Drosophila melanogaster is maintained by such a trade-off. The mitochondrially localized aldehyde dehydrogenase in D. melanogaster has two important functions: detoxifying acetaldehyde derived from dietary ethanol [11] and detoxifying larger aldehydes produced as byproducts of oxidative phosphorylation [12]. A derived variant of the enzyme, Leu479Phe, is present in moderate frequencies in most temperate populations but is rare in more ethanol-averse tropical populations. Using purified recombinant protein, we show that the Leu-Phe substitution increases turnover rate of acetaldehyde but decreases turnover rate of larger aldehydes. Furthermore, using transgenic fly lines, we show that the substitution increases lifetime fitness on medium supplemented with an ecologically relevant ethanol concentration but decreases fitness on medium lacking ethanol. The strong, opposing selection pressures, coupled with documented highly variable ethanol concentrations in breeding sites of temperate populations, implicate an essential role for environmental heterogeneity in maintaining the polymorphism.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - James D Fry
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
15
|
Züst T, Agrawal AA. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed
Asclepias syriaca. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12523] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tobias Züst
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY14853 USA
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY14853 USA
| |
Collapse
|
16
|
Lanzavecchia SB, Juri M, Bonomi A, Gomulski L, Scannapieco AC, Segura DF, Malacrida A, Cladera JL, Gasperi G. Microsatellite markers from the 'South American fruit fly' Anastrepha fraterculus: a valuable tool for population genetic analysis and SIT applications. BMC Genet 2014; 15 Suppl 2:S13. [PMID: 25471285 PMCID: PMC4255783 DOI: 10.1186/1471-2156-15-s2-s13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Anastrepha fraterculus Wiedemann is a horticultural pest which causes significant economic losses in the fruit-producing areas of the American continent and limits the access of products to international markets. The use of environmentally friendly control strategies against this pest is constrained due to the limited knowledge of its population structure. Results We developed microsatellite markers for A. fraterculus from four genomic libraries, which were enriched in CA, CAA, GA and CAT microsatellite motifs. Fifty microsatellite regions were evaluated and 14 loci were selected for population genetics studies. Genotypes of 122 individuals sampled from four A. fraterculus populations were analyzed. The level of polymorphism ranged from three to 13 alleles per locus and the mean expected heterozygosity ranged from 0.60 to 0.64. Comparison between allelic and genotypic frequencies showed significant differences among all pairs of populations. Conclusions This novel set of microsatellite markers provides valuable information for the description of genetic variability and population structure of wild populations and laboratory strains of A. fraterculus. This information will be used to identify and characterize candidate strains suitable to implement effective pest control strategies and might represent a first step towards having a more comprehensive knowledge about the genetics of this pest.
Collapse
|