1
|
Tsuda K. Evolution of the sporophyte shoot axis and functions of TALE HD transcription factors in stem development. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102594. [PMID: 38943830 DOI: 10.1016/j.pbi.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
The stem is one of the major organs in seed plants and is important for plant survival as well as in agriculture. However, due to the lack of clear external landmarks in many species, its developmental and evolutionary processes are understudied compared to other organs. Recent approaches tackling these problems, especially those focused on KNOX1 and BLH transcription factors belonging to the TALE homeodomain superfamily have started unveiling the patterning process of nodes and internodes by connecting previously accumulated knowledge on lateral organ regulators. Fossil records played crucial roles in understanding the evolutionary process of the stem. The aim of this review is to introduce how the stem evolved from ancestorial sporophyte axes and to provide frameworks for future efforts in understanding the developmental process of this elusive but pivotal organ.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
2
|
Wegner L, Ehlers K. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. PLANTA 2024; 260:45. [PMID: 38965075 PMCID: PMC11224097 DOI: 10.1007/s00425-024-04476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
MAIN CONCLUSION Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Kean-Galeno T, Lopez-Arredondo D, Herrera-Estrella L. The Shoot Apical Meristem: An Evolutionary Molding of Higher Plants. Int J Mol Sci 2024; 25:1519. [PMID: 38338798 PMCID: PMC10855264 DOI: 10.3390/ijms25031519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The shoot apical meristem (SAM) gives rise to the aerial structure of plants by producing lateral organs and other meristems. The SAM is responsible for plant developmental patterns, thus determining plant morphology and, consequently, many agronomic traits such as the number and size of fruits and flowers and kernel yield. Our current understanding of SAM morphology and regulation is based on studies conducted mainly on some angiosperms, including economically important crops such as maize (Zea mays) and rice (Oryza sativa), and the model species Arabidopsis (Arabidopsis thaliana). However, studies in other plant species from the gymnosperms are scant, making difficult comparative analyses that help us understand SAM regulation in diverse plant species. This limitation prevents deciphering the mechanisms by which evolution gave rise to the multiple plant structures within the plant kingdom and determines the conserved mechanisms involved in SAM maintenance and operation. This review aims to integrate and analyze the current knowledge of SAM evolution by combining the morphological and molecular information recently reported from the plant kingdom.
Collapse
Affiliation(s)
- Tania Kean-Galeno
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico
| |
Collapse
|
4
|
D'Ario M, Lane B, Fioratti Junod M, Leslie A, Mosca G, Smith RS. Hidden functional complexity in the flora of an early land ecosystem. THE NEW PHYTOLOGIST 2024; 241:937-949. [PMID: 37644727 PMCID: PMC10952896 DOI: 10.1111/nph.19228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
The first land ecosystems were composed of organisms considered simple in nature, yet the morphological diversity of their flora was extraordinary. The biological significance of this diversity remains a mystery largely due to the absence of feasible study approaches. To study the functional biology of Early Devonian flora, we have reconstructed extinct plants from fossilised remains in silico. We explored the morphological diversity of sporangia in relation to their mechanical properties using finite element method. Our approach highlights the impact of sporangia morphology on spore dispersal and adaptation. We discovered previously unidentified innovations among early land plants, discussing how different species might have opted for different spore dispersal strategies. We present examples of convergent evolution for turgor pressure resistance, achieved by homogenisation of stress in spherical sporangia and by torquing force in Tortilicaulis-like specimens. In addition, we show a potential mechanism for stress-assisted sporangium rupture. Our study reveals the deceptive complexity of this seemingly simple group of organisms. We leveraged the quantitative nature of our approach and constructed a fitness landscape to understand the different ecological niches present in the Early Devonian Welsh Borderland flora. By connecting morphology to functional biology, these findings facilitate a deeper understanding of the diversity of early land plants and their place within their ecosystem.
Collapse
Affiliation(s)
| | | | | | | | - Gabriella Mosca
- Technical University of Munich80333MunichGermany
- Center for Plant Molecular Biology‐ZMBPUniversity of Tübingen72076TübingenGermany
| | | |
Collapse
|
5
|
Niklas KJ. Deciphering the hidden complexity of early land plant reproduction. THE NEW PHYTOLOGIST 2024; 241:523-524. [PMID: 37817379 DOI: 10.1111/nph.19309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
This article is a Commentary on D'Ario et al. (2024), 241: 937–949.
Collapse
Affiliation(s)
- Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Kapoor B, Kumar P, Verma V, Irfan M, Sharma R, Bhargava B. How plants conquered land: evolution of terrestrial adaptation. J Evol Biol 2023; 36:5-14. [PMID: 36083189 DOI: 10.1111/jeb.14062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
The transition of plants from water to land is considered one of the most significant events in the evolution of life on Earth. The colonization of land by plants, accompanied by their morphological, physiological and developmental changes, resulted in plant biodiversity. Besides significantly influencing oxygen levels in the air and on land, plants manufacture organic matter from CO2 and water with the help of sunlight, paving the way for the diversification of nonplant lineages ranging from microscopic organisms to animals. Land plants regulate the climate by adjusting total biomass and energy flow. At the genetic level, these innovations are achieved through the rearrangement of pre-existing genetic information. Advances in genome sequencing technology are revamping our understanding of plant evolution. This study highlights the morphological and genomic innovations that allow plants to integrate life on Earth.
Collapse
Affiliation(s)
- Bhuvnesh Kapoor
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, USA
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
7
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Tomescu AMF, Rothwell GW. Fossils and plant evolution: structural fingerprints and modularity in the evo-devo paradigm. EvoDevo 2022; 13:8. [PMID: 35236418 PMCID: PMC8892741 DOI: 10.1186/s13227-022-00192-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/29/2022] [Indexed: 11/30/2022] Open
Abstract
Fossils constitute the principal repository of data that allow for independent tests of hypotheses of biological evolution derived from observations of the extant biota. Traditionally, transformational series of structure, consisting of sequences of fossils of the same lineage through time, have been employed to reconstruct and interpret morphological evolution. More recently, a move toward an updated paradigm was fueled by the deliberate integration of developmental thinking in the inclusion of fossils in reconstruction of morphological evolution. The vehicle for this is provided by structural fingerprints-recognizable morphological and anatomical structures generated by (and reflective of) the deployment of specific genes and regulatory pathways during development. Furthermore, because the regulation of plant development is both modular and hierarchical in nature, combining structural fingerprints recognized in the fossil record with our understanding of the developmental regulation of those structures produces a powerful tool for understanding plant evolution. This is particularly true when the systematic distribution of specific developmental regulatory mechanisms and modules is viewed within an evolutionary (paleo-evo-devo) framework. Here, we discuss several advances in understanding the processes and patterns of evolution, achieved by tracking structural fingerprints with their underlying regulatory modules across lineages, living and fossil: the role of polar auxin regulation in the cellular patterning of secondary xylem and the parallel evolution of arborescence in lycophytes and seed plants; the morphology and life history of early polysporangiophytes and tracheophytes; the role of modularity in the parallel evolution of leaves in euphyllophytes; leaf meristematic activity and the parallel evolution of venation patterns among euphyllophytes; mosaic deployment of regulatory modules and the diverse modes of secondary growth of euphyllophytes; modularity and hierarchy in developmental regulation and the evolution of equisetalean reproductive morphology. More generally, inclusion of plant fossils in the evo-devo paradigm has informed discussions on the evolution of growth patterns and growth responses, sporophyte body plans and their homology, sequences of character evolution, and the evolution of reproductive systems.
Collapse
Affiliation(s)
- Alexandru M. F. Tomescu
- Department of Biological Sciences, California Polytechnic State University Humboldt, Arcata, CA 95521 USA
| | - Gar W. Rothwell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 USA
| |
Collapse
|
9
|
Tomescu AMF. Mysteries of the bryophyte-tracheophyte transition revealed: enter the eophytes. THE NEW PHYTOLOGIST 2022; 233:1018-1021. [PMID: 34863044 DOI: 10.1111/nph.17876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| |
Collapse
|
10
|
Edwards D, Morris JL, Axe L, Taylor WA, Duckett JG, Kenrick P, Pressel S. Earliest record of transfer cells in Lower Devonian plants. THE NEW PHYTOLOGIST 2022; 233:1456-1465. [PMID: 34806776 DOI: 10.1111/nph.17704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Key sources of information on the nature of early terrestrial ecosystems are the fossilized remains of plants and associated organic encrustations, which are interpreted as either biofilms, biological soil crusts or lichens. The hypothesis that some of these encrustations might be the remains of the thalloid gametophytes of embryophytes provided the stimulus for this investigation. Fossils preserved in charcoal were extracted from Devonian Period (Lochkovian Stage, c. 410-419 Myr old) sediments at a geological site in Shropshire (UK). Scanning electron micrographs (SEMs) of the fossils were compared with new and published SEMs of extant bryophytes and tracheophytes, respectively. One specimen was further prepared and imaged by transmission electron microscopy. Fossils of thalloid morphology were composed almost entirely of cells with labyrinthine ingrowths; these also were present in fossils of axial morphology where they were associated with putative food-conducting cells. Comparison with modern embryophytes demonstrates that these distinctive cells are transfer cells (TCs). Our fossils provide by far the earliest geological evidence of TCs. They also show that some organic encrustations are the remains of thalloid land plants and that these are possibly part of the life cycle of a newly recognized group of plants called the eophytes.
Collapse
Affiliation(s)
- Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Jennifer L Morris
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Lindsey Axe
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Wilson A Taylor
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI, 54701-4004, USA
| | - Jeffrey G Duckett
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Paul Kenrick
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
11
|
Edwards D, Morris JL, Axe L, Duckett JG, Pressel S, Kenrick P. Piecing together the eophytes - a new group of ancient plants containing cryptospores. THE NEW PHYTOLOGIST 2022; 233:1440-1455. [PMID: 34806774 DOI: 10.1111/nph.17703] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The earliest evidence for land plants comes from dispersed cryptospores from the Ordovician, which dominated assemblages for 60 million years. Direct evidence of their parent plants comes from minute fossils in Welsh Borderland Upper Silurian to Lower Devonian rocks. We recognize a group that had forking, striated axes with rare stomata terminating in valvate sporangia containing permanent cryptospores, but their anatomy was unknown especially regarding conducting tissues. Charcoalified fossils extracted from the rock using HF were selected from macerates and observed using scanning electron microscopy. Promising examples were split for further examination and compared with electron micrographs of the anatomy of extant bryophytes. Fertile fossil axes possess central elongate cells with thick walls bearing globules, occasional strands and plasmodesmata-sized pores. The anatomy of these cells best matches desiccation-tolerant food-conducting cells (leptoids) of bryophytes. Together with thick-walled epidermal cells and extremely small size, these features suggest that these plants were poikilohydric. Our new data on conducting cells confirms a combination of characters that distinguish the permanent cryptospore-producers from bryophytes and tracheophytes. We therefore propose the erection of a new group, here named the Eophytidae (eophytes).
Collapse
Affiliation(s)
- Dianne Edwards
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Jennifer L Morris
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Lindsey Axe
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Jeffrey G Duckett
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Paul Kenrick
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
12
|
Lei Y, Xu Y, Zhang J, Song J, Wu J. Herbivory-induced systemic signals are likely to be evolutionarily conserved in euphyllophytes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7274-7284. [PMID: 34293107 PMCID: PMC8547156 DOI: 10.1093/jxb/erab349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Herbivory-induced systemic signaling has been demonstrated in monocots and dicots, and is essential for plant defense against insects. However, the nature and evolution of herbivory-induced systemic signals remain unclear. Grafting is widely used for studying systemic signaling; however, grafting between dicot plants from different families is difficult, and grafting is impossible for monocots. In this study, we took advantage of dodder's extraordinary capability of parasitizing various plant species. Field dodder (Cuscuta campestris) was employed to connect pairs of species that are phylogenetically very distant, ranging from fern to monocot and dicot plants, and so determine whether interplant signaling occurs after simulated herbivory. It was found that simulated herbivory-induced systemic signals can be transferred by dodder between a monocot and a dicot plant and even between a fern and a dicot plant, and the plants that received the systemic signals all exhibited elevated defenses. Thus, we inferred that the herbivory-induced systemic signals are likely to be evolutionarily well conserved among vascular plants. Importantly, we also demonstrate that the jasmonate pathway is probably an ancient regulator of the biosynthesis and/or transport of systemic signals in vascular plants. These findings provide new insight into the nature and evolution of systemic signaling.
Collapse
Affiliation(s)
- Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Rep 2021; 32:108127. [PMID: 32905770 DOI: 10.1016/j.celrep.2020.108127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shoot formation is accompanied by active cell proliferation and expansion, requiring that metabolic state adapts to developmental control. Despite the importance of such metabolic reprogramming, it remains unclear how development and metabolism are integrated. Here, we show that disruption of ANGUSTIFOLIA3 orthologs (PpAN3s) compromises gametophore shoot formation in the moss Physcomitrium patens due to defective cell proliferation and expansion. Trans-omics analysis reveals that the downstream activity of PpAN3 is linked to arginine metabolism. Elevating arginine level by chemical treatment leads to stunted gametophores and causes Ppan3 mutant-like transcriptional changes in the wild-type plant. Furthermore, ectopic expression of AtAN3 from Arabidopsis thaliana ameliorates the defective arginine metabolism and promotes gametophore formation in Ppan3 mutants. Together, these findings indicate that arginine metabolism is a key pathway associated with gametophore formation and provide evolutionary insights into the establishment of the shoot system in land plants through the integration of developmental and metabolic processes.
Collapse
|
14
|
Romanova MA, Maksimova AI, Pawlowski K, Voitsekhovskaja OV. YABBY Genes in the Development and Evolution of Land Plants. Int J Mol Sci 2021; 22:4139. [PMID: 33923657 PMCID: PMC8074164 DOI: 10.3390/ijms22084139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
Mounting evidence from genomic and transcriptomic studies suggests that most genetic networks regulating the morphogenesis of land plant sporophytes were co-opted and modified from those already present in streptophyte algae and gametophytes of bryophytes sensu lato. However, thus far, no candidate genes have been identified that could be responsible for "planation", a conversion from a three-dimensional to a two-dimensional growth pattern. According to the telome theory, "planation" was required for the genesis of the leaf blade in the course of leaf evolution. The key transcription factors responsible for leaf blade development in angiosperms are YABBY proteins, which until recently were thought to be unique for seed plants. Yet, identification of a YABBY homologue in a green alga and the recent findings of YABBY homologues in lycophytes and hornworts suggest that YABBY proteins were already present in the last common ancestor of land plants. Thus, these transcriptional factors could have been involved in "planation", which fosters our understanding of the origin of leaves. Here, we summarise the current data on functions of YABBY proteins in the vegetative and reproductive development of diverse angiosperms and gymnosperms as well as in the development of lycophytes. Furthermore, we discuss a putative role of YABBY proteins in the genesis of multicellular shoot apical meristems and in the evolution of leaves in early divergent terrestrial plants.
Collapse
Affiliation(s)
- Marina A. Romanova
- Department of Botany, St. Petersburg State University, Universitetskaya Nab. 7/9, 190034 Saint Petersburg, Russia
| | - Anastasiia I. Maksimova
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia;
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia;
- Saint Petersburg Electrotechnical University “LETI”, ul. Professora Popova 5, 197022 Saint Petersburg, Russia
| |
Collapse
|
15
|
Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha. Curr Biol 2020; 30:3833-3840.e4. [DOI: 10.1016/j.cub.2020.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/31/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
|
16
|
A mycorrhizae-like gene regulates stem cell and gametophore development in mosses. Nat Commun 2020; 11:2030. [PMID: 32332755 PMCID: PMC7181705 DOI: 10.1038/s41467-020-15967-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae-like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings provide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants.
Collapse
|
17
|
An Experimental System for Examining Phototropic Response of Gametophytic Shoots in the Moss Physcomitrella patens. Methods Mol Biol 2019. [PMID: 30694466 DOI: 10.1007/978-1-4939-9015-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Shoot phototropism benefits growth and metabolism in land plants by enabling them to position their photosynthetic organs in favorable light conditions. Nonvascular land plants, like the ancestors of modern mosses, are believed to have been among the first plants to occupy the land. To understand the evolutional history of shoot phototropism in land plants, we have established a system for experimentally studying phototropism in gametophores of the moss Physcomitrella patens. Here we will describe the key points in our system, including obtaining etiolated gametophores, the light sources used for inducing bending, and the methods for evaluation of phototropic responses.
Collapse
|
18
|
|
19
|
Abstract
Land plants evolved from an ancestral alga from which they inherited developmental and physiological characters. A key innovation of land plants is a life cycle with an alternation of generations, with both haploid gametophyte and diploid sporophyte generations having complex multicellular bodies. The origins of the developmental genetic programs patterning these bodies, whether inherited from an algal ancestor or evolved de novo, and whether programs were co-opted between generations, are largely open questions. We first provide a framework for land plant evolution and co-option of developmental regulatory pathways and then examine two cases in more detail.
Collapse
|
20
|
Serrano-Mislata A, Sablowski R. The pillars of land plants: new insights into stem development. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:11-17. [PMID: 29763857 PMCID: PMC6250904 DOI: 10.1016/j.pbi.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
In spite of its central importance in evolution, plant architecture and crop improvement, stem development remains poorly understood relative to other plant organs. Here, we summarise current knowledge of stem ontogenesis and its regulation, including insights from new image analysis and biophysical approaches. The stem initiates in the rib zone (RZ) of the shoot apical meristem, under transcriptional control by DELLA and BLH proteins. Links have emerged between these regulators and cell proliferation, patterning and oriented growth in the RZ. During subsequent internode elongation, cell wall properties and mechanics have been analysed in detail, revealing pectin modification as a prominent control point. Recent work has also highlighted signalling to coordinate growth of stem tissues with different mechanical properties.
Collapse
Affiliation(s)
| | - Robert Sablowski
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
21
|
Imaichi R, Moritoki N, Solvang HK. Evolution of root apical meristem structures in vascular plants: plasmodesmatal networks. AMERICAN JOURNAL OF BOTANY 2018; 105:1453-1468. [PMID: 30179250 DOI: 10.1002/ajb2.1153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The apical meristem generates indeterminate apical growth of the stem and root of vascular plants. Our previous examination showed that shoot apical meristems (SAMs) can be classified into two types based on plasmodesmatal networks (PNs), which are important elements in symplasmic signaling pathways within the apical meristem. Here, we examined the PNs of root apical meristems (RAMs) in comparison with those of SAMs. METHODS Root apical meristems of 18 families and 22 species of lycophytes and euphyllophytes were analyzed. Plasmodesmata (PD) in cell walls in median longitudinal sections of RAMs were enumerated using transmission electron micrographs, and the PD density per 1 μm2 of each cell wall was calculated. KEY RESULTS Root apical meristems with prominent apical cells of monilophytes (euphyllophytes) and Selaginellaceae (lycophytes) had high PD densities, while RAMs with plural initial cells of gymnosperms and angiosperms (euphyllophytes), and of Lycopodiaceae and Isoetaceae (lycophytes) had low PD densities. This correlation between structures of apical meristems and PD densities is identical to that in SAMs already described. CONCLUSIONS Irrespective of their diversified structures, the RAMs of vascular plants can be classified into two types with respect to PNs: the fern (monilophyte) type, which has a lineage-specific PN with only primary PD, and the seed-plant type, which has an interspecific PN with secondary PD in addition to primary PD. PNs may have played a key role in the evolution of apical meristems in vascular plants.
Collapse
Affiliation(s)
- Ryoko Imaichi
- Department of Chemical and Biological Sciences, Japan Women's University, 8-1, Mejirodai 2-chome, Tokyo, 112-8681, Japan
| | - Nobuko Moritoki
- Laboratory of Electron Microscopy, Japan Women's University, 8-1, Mejirodai 2-chome, Tokyo, 112-8681, Japan
| | - Hiroko Kato Solvang
- Marine Mammals Research Group, Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817, Bergen, Norway
| |
Collapse
|
22
|
Harrison CJ, Morris JL. The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160496. [PMID: 29254961 PMCID: PMC5745332 DOI: 10.1098/rstb.2016.0496] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo-devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in 'telome theory' hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer L Morris
- School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
23
|
Kenrick P. Changing expressions: a hypothesis for the origin of the vascular plant life cycle. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170149. [PMID: 29254970 PMCID: PMC5745341 DOI: 10.1098/rstb.2017.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Plant life cycles underwent fundamental changes during the initial colonization of the land in the Early Palaeozoic, shaping the direction of evolution. Fossils reveal unanticipated diversity, including new variants of meiotic cell division and leafless gametophytes with mycorrhizal-like symbioses, rhizoids, vascular tissues and stomata. Exceptional fossils from the 407-Ma Rhynie chert (Scotland) play a key role in unlocking this diversity. These fossils are reviewed against progress in our understanding of the plant tree of life and recent advances in developmental genetics. Combining data from different sources sheds light on a switch in life cycle that gave rise to the vascular plants. One crucial step was the establishment of a free-living sporophyte from one that was an obligate matrotroph borne on the gametophyte. It is proposed that this difficult evolutionary transition was achieved through expansion of gene expression primarily from the gametophyte to the sporophyte, establishing a now extinct life cycle variant that was more isomorphic than heteromorphic. These changes also linked for the first time in one developmental system rhizoids, vascular tissues and stomata, putting in place the critical components that regulate transpiration and forming a physiological platform of primary importance to the diversification of vascular plants.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
24
|
Buendía-Monreal M, Gillmor CS. The Times They Are A-Changin': Heterochrony in Plant Development and Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:1349. [PMID: 30283473 PMCID: PMC6157392 DOI: 10.3389/fpls.2018.01349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 05/16/2023]
Abstract
Alterations in the timing of developmental programs during evolution, that lead to changes in the shape, or size of organs, are known as heterochrony. Heterochrony has been widely studied in animals, but has often been neglected in plants. During plant evolution, heterochronic shifts have played a key role in the origin and diversification of leaves, roots, flowers, and fruits. Heterochrony that results in a juvenile or simpler outcome is known as paedomorphosis, while an adult or more complex outcome is called peramorphosis. Mechanisms that alter developmental timing at the cellular level affect cell proliferation or differentiation, while those acting at the tissue or organismal level change endogenous aging pathways, morphogen signaling, and metabolism. We believe that wider consideration of heterochrony in the context of evolution will contribute to a better understanding of plant development.
Collapse
|
25
|
Chomicki G, Coiro M, Renner SS. Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. ANNALS OF BOTANY 2017; 120:855-891. [PMID: 29165551 PMCID: PMC5710528 DOI: 10.1093/aob/mcx113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/03/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND In contrast to most animals, plants have an indeterminate body plan, which allows them to add new body parts during their lifetime. A plant's realized modular construction is the result of exogenous constraints and endogenous processes. This review focuses on endogenous processes that shape plant architectures and their evolution. SCOPE The phylogenetic distribution of plant growth forms across the phylogeny implies that body architectures have originated and been lost repeatedly, being shaped by a limited set of genetic pathways. We (1) synthesize concepts of plant architecture, so far captured in 23 models; (2) extend them to the fossil record; (3) summarize what is known about their developmental genetics; (4) use a phylogenetic approach in several groups to infer how plant architecture has changed and by which intermediate steps; and (5) discuss which macroecological factors may constrain the geographic and ecological distribution of plant architectures. CONCLUSIONS Dichotomously branching Paleozoic plants already encompassed a considerable diversity of growth forms, here captured in 12 new architectural models. Plotting the frequency of branching types through time based on an analysis of 58 927 land plant fossils revealed a decrease in dichotomous branching throughout the Devonian and Carboniferous, mirrored by an increase in other branching types including axillary branching. We suggest that the evolution of seed plant megaphyllous leaves enabling axillary branching contributed to the demise of dichotomous architectures. The developmental-genetic bases for key architectural traits underlying sympodial vs. monopodial branching, rhythmic vs. continuous growth, and axillary branching and its localization are becoming well understood, while the molecular basis of dichotomous branching and plagiotropy remains elusive. Three phylogenetic case studies of architecture evolution in conifers, Aloe and monocaulous arborescent vascular plants reveal relationships between architectural models and show that some are labile in given groups, whereas others are widely conserved, apparently shaped by ecological factors, such as intercepted sunlight, temperature, humidity and seasonality.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, Germany
| | - Mario Coiro
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
26
|
Appleby L. Highlight: Secrets of an Ancient Plant Revealed by Modern Genetics. Genome Biol Evol 2017. [DOI: 10.1093/gbe/evx234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Tomescu AMF, Escapa IH, Rothwell GW, Elgorriaga A, Cúneo NR. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis. ANNALS OF BOTANY 2017; 119:489-505. [PMID: 28365757 PMCID: PMC5458719 DOI: 10.1093/aob/mcw273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/19/2016] [Accepted: 11/29/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND The origin of the Equisetum strobilus has long been debated and the fossil record has played an important role in these discussions. The paradigm underlying these debates has been the perspective of the shoot as node-internode alternation, with sporangiophores attached at nodes. However, fossils historically excluded from these discussions (e.g. Cruciaetheca and Peltotheca ) exhibit reproductive morphologies that suggest attachment of sporangiophores along internodes, challenging traditional views. This has rekindled discussions around the evolution of the Equisetum strobilus, but lack of mechanistic explanations has led discussions to a stalemate. SCOPE A shift of focus from the node-internode view to a perspective emphasizing the phytomer as a modular unit of the shoot, frees the debate of homology constraints on the nature of the sporangiophore and inspires a mechanism-based hypothesis for the evolution of the strobilus. The hypothesis, drawing on data from developmental anatomy, regulatory mechanisms and the fossil record, rests on two tenets: (1) the equisetalean shoot grows by combined activity of the apical meristem, laying down the phytomer pattern, and intercalary meristems responsible for internode elongation; and (2) activation of reproductive growth programmes in the intercalary meristem produces sporangiophore whorls along internodes. CONCLUSIONS Hierarchical expression of regulatory modules responsible for (1) transition to reproductive growth; (2) determinacy of apical growth; and (3) node-internode differentiation within phytomers, can explain reproductive morphologies illustrated by Cruciaetheca (module 1 only), Peltotheca (modules 1 and 2) and Equisetum (all three modules). This model has implications - testable by studies of the fossil record, phylogeny and development - for directionality in the evolution of reproductive morphology ( Cruciaetheca - Peltotheca - Equisetum ) and for the homology of the Equisetum stobilus. Furthermore, this model implies that sporangiophore development is independent of node-internode identity, suggesting that the sporangiophore represents the expression of an ancestral euphyllophyte developmental module that pre-dates the evolution of leaves.
Collapse
Key Words
- Cruciaetheca, development, Equisetum, Equisetales, evolution, fossil, hierarchy, modularity, Peltotheca, phytomer, sphenopsid, strobilus
Collapse
Affiliation(s)
| | - Ignacio H. Escapa
- CONICET, Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100 Trelew, Chubut, Argentina
| | - Gar W. Rothwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Andrés Elgorriaga
- Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100 Trelew, Chubut, Argentina
| | - N. Rubén Cúneo
- Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100 Trelew, Chubut, Argentina
| |
Collapse
|
28
|
Jill Harrison C. Development and genetics in the evolution of land plant body plans. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150490. [PMID: 27994131 PMCID: PMC5182422 DOI: 10.1098/rstb.2015.0490] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
The colonization of land by plants shaped the terrestrial biosphere, the geosphere and global climates. The nature of morphological and molecular innovation driving land plant evolution has been an enigma for over 200 years. Recent phylogenetic and palaeobotanical advances jointly demonstrate that land plants evolved from freshwater algae and pinpoint key morphological innovations in plant evolution. In the haploid gametophyte phase of the plant life cycle, these include the innovation of mulitcellular forms with apical growth and multiple growth axes. In the diploid phase of the life cycle, multicellular axial sporophytes were an early innovation priming subsequent diversification of indeterminate branched forms with leaves and roots. Reverse and forward genetic approaches in newly emerging model systems are starting to identify the genetic basis of such innovations. The data place plant evo-devo research at the cusp of discovering the developmental and genetic changes driving the radiation of land plant body plans.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
29
|
Considine MJ, Considine JA. On the language and physiology of dormancy and quiescence in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3189-203. [PMID: 27053719 DOI: 10.1093/jxb/erw138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being of great ecological value. However, for context and hypotheses, we draw on knowledge from annuals and other specialized plant conditions, from a perspective of the major physical, metabolic, and molecular cues that regulate cellular activity.
Collapse
Affiliation(s)
- Michael J Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia Department of Agriculture and Food Western Australia, South Perth, WA 6151 Australia Centre for Plant Sciences, University of Leeds, Leeds, Yorkshire LS2 9JT, UK
| | - John A Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
30
|
Rose JP, Kriebel R, Sytsma KJ. Shape analysis of moss (Bryophyta) sporophytes: Insights into land plant evolution. AMERICAN JOURNAL OF BOTANY 2016; 103:652-62. [PMID: 26944353 DOI: 10.3732/ajb.1500394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/08/2016] [Indexed: 05/05/2023]
Abstract
PREMISE OF THE STUDY The alternation of generations life cycle represents a key feature of land-plant evolution and has resulted in a diverse array of sporophyte forms and modifications in all groups of land plants. We test the hypothesis that evolution of sporangium (capsule) shape of the mosses-the second most diverse land-plant lineage-has been driven by differing physiological demands of life in diverse habitats. This study provides an important conceptual framework for analyzing the evolution of a single, homologous character in a continuous framework across a deep expanse of time, across all branches of the tree of life. METHODS We reconstruct ancestral sporangium shape and ancestral habitat on the largest phylogeny of mosses to date, and use phylogenetic generalized least squares regression to test the association between habitat and sporangium shape. In addition, we examine the association between shifts in sporangium shape and species diversification. RESULTS We demonstrate that sporangium shape is convergent, under natural selection, and associated with habitat type, and that many shifts in speciation rate are associated with shifts in sporangium shape. CONCLUSIONS Our results suggest that natural selection in different microhabitats results in the diversity of sporangium shape found in mosses, and that many increasing shifts in speciation rate result in changes in sporangium shape across their 480 million year history. Our framework provides a way to examine if diversification shifts in other land plants are also associated with massive changes in sporophyte form, among other morphological traits.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53706.
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53706
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53706
| |
Collapse
|
31
|
Huang L, Schiefelbein J. Conserved Gene Expression Programs in Developing Roots from Diverse Plants. THE PLANT CELL 2015; 27:2119-32. [PMID: 26265761 PMCID: PMC4568505 DOI: 10.1105/tpc.15.00328] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Abstract
The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.
Collapse
Affiliation(s)
- Ling Huang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
32
|
Kawashima T, Lorković ZJ, Nishihama R, Ishizaki K, Axelsson E, Yelagandula R, Kohchi T, Berger F. Diversification of histone H2A variants during plant evolution. TRENDS IN PLANT SCIENCE 2015; 20:419-25. [PMID: 25983206 DOI: 10.1016/j.tplants.2015.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 05/19/2023]
Abstract
Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Frederic Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria.
| |
Collapse
|
33
|
Edwards D, Kenrick P. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) 'On the plant-remains from the Downtonian of England and Wales'. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140343. [PMID: 25750238 PMCID: PMC4360123 DOI: 10.1098/rstb.2014.0343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the 1920s, the botanist W. H. Lang set out to collect and investigate some very unpromising fossils of uncertain affinity, which predated the known geological record of life on land. His discoveries led to a landmark publication in 1937, 'On the plant-remains from the Downtonian of England and Wales', in which he revealed a diversity of small fossil organisms of great simplicity that shed light on the nature of the earliest known land plants. These and subsequent discoveries have taken on new relevance as botanists seek to understand the plant genome and the early evolution of fundamental organ systems. Also, our developing knowledge of the composition of early land-based ecosystems and the interactions among their various components is contributing to our understanding of how life on land affects key Earth Systems (e.g. carbon cycle). The emerging paradigm is one of early life on land dominated by microbes, small bryophyte-like organisms and lichens. Collectively called cryptogamic covers, these are comparable with those that dominate certain ecosystems today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
34
|
Szövényi P, Frangedakis E, Ricca M, Quandt D, Wicke S, Langdale JA. Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC PLANT BIOLOGY 2015; 15:98. [PMID: 25886741 PMCID: PMC4393856 DOI: 10.1186/s12870-015-0481-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants colonized terrestrial environments approximately 480 million years ago and have contributed significantly to the diversification of life on Earth. Phylogenetic analyses position a subset of charophyte algae as the sister group to land plants, and distinguish two land plant groups that diverged around 450 million years ago - the bryophytes and the vascular plants. Relationships between liverworts, mosses hornworts and vascular plants have proven difficult to resolve, and as such it is not clear which bryophyte lineage is the sister group to all other land plants and which is the sister to vascular plants. The lack of comparative molecular studies in representatives of all three lineages exacerbates this uncertainty. Such comparisons can be made between mosses and liverworts because representative model organisms are well established in these two bryophyte lineages. To date, however, a model hornwort species has not been available. RESULTS Here we report the establishment of Anthoceros agrestis as a model hornwort species for laboratory experiments. Axenic culture conditions for maintenance and vegetative propagation have been determined, and treatments for the induction of sexual reproduction and sporophyte development have been established. In addition, protocols have been developed for the extraction of DNA and RNA that is of a quality suitable for molecular analyses. Analysis of haploid-derived genome sequence data of two A. agrestis isolates revealed single nucleotide polymorphisms at multiple loci, and thus these two strains are suitable starting material for classical genetic and mapping experiments. CONCLUSIONS Methods and resources have been developed to enable A. agrestis to be used as a model species for developmental, molecular, genomic, and genetic studies. This advance provides an unprecedented opportunity to investigate the biology of hornworts.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
- MTA-ELTE-MTM Ecology Research Group, ELTE, Biological Institute, Budapest, Hungary.
| | - Eftychios Frangedakis
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, UK.
- Current Address: Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 0033, Japan.
| | - Mariana Ricca
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
| | - Dietmar Quandt
- Nees-Institut für Biodiversität der Pflanzen, University of Bonn, Meckenheimer Allee 170, D - 53115, Bonn, Germany.
| | - Susann Wicke
- Nees-Institut für Biodiversität der Pflanzen, University of Bonn, Meckenheimer Allee 170, D - 53115, Bonn, Germany.
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149, Muenster, Germany.
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, UK.
| |
Collapse
|
35
|
Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ. Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife 2015; 4. [PMID: 25806686 PMCID: PMC4391503 DOI: 10.7554/elife.06808] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI:http://dx.doi.org/10.7554/eLife.06808.001 Most land plants have shoots that form branches and plants can regulate when and where they grow these branches to best exploit their environment. Plants with flowers and the more ancient mosses both have branching shoots, but these two groups of plants evolved to grow in this way independently of each other. Most studies on shoot branching have focused on flowering plants and so it is less clear how branching works in mosses. Three plant hormones—called auxin, cytokinin and strigolactone—control shoot branching in flowering plants. Auxin moves down the main shoot of the plant to prevent new branches from forming. This movement is controlled by the PIN proteins and several other families of proteins. On the other hand, cytokinin promotes the growth of new branches; and strigolactone can either promote or inhibit shoot branching depending on how the auxin is travelling around the plant. Coudert, Palubicki et al. studied shoot branching in a species of moss called Physcomitrella patens. The experiments show that cells on the outer surface of the main shoot are essentially reprogrammed to become so-called ‘branch initials’, which will then develop into new branches. Next, Coudert, Palubicki et al. made a computational model that was able to simulate the pattern of shoot branching in the moss. Further experiments supported the predictions made by the model. Coudert, Palubicki et al. found that, as in flowering plants, auxin from the tip of the main shoot suppresses branching in the moss, and cytokinin promotes branching. The experiments also showed that strigolactone inhibits shoot branching, but its role is restricted to the base of the shoots. The model predicts that, unlike in flowering plants, auxin must flow in both directions in moss shoots to produce the observed patterns of shoot branching. Also, the experiments suggest that the PIN proteins and another group of proteins that control the movement of auxin do not regulate shoot branching in moss. Instead, it appears that auxin may move through microscopic channels that link one moss cell to the next. Coudert, Palubicki et al.'s findings suggest that both flowering plants and mosses have evolved to use the same three hormones to control shoot branching, but that these hormones interact in different ways. One key next step will be to find out how auxin is transported during shoot branching in moss by manipulating the opening of the channels between the cells. A further challenge will be to find out the precise details of how the hormones control the activity of the branch initial cells. DOI:http://dx.doi.org/10.7554/eLife.06808.002
Collapse
Affiliation(s)
- Yoan Coudert
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wojtek Palubicki
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Olomouc, Czech Republic
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ. Three ancient hormonal cues co-ordinate shoot branching in a moss. eLife 2015; 4. [PMID: 25806686 DOI: 10.7554/elife.06808.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 05/18/2023] Open
Abstract
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
Collapse
Affiliation(s)
- Yoan Coudert
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Wojtek Palubicki
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Olomouc, Czech Republic
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Plackett ARG, Di Stilio VS, Langdale JA. Ferns: the missing link in shoot evolution and development. FRONTIERS IN PLANT SCIENCE 2015; 6:972. [PMID: 26594222 PMCID: PMC4635223 DOI: 10.3389/fpls.2015.00972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/23/2015] [Indexed: 05/02/2023]
Abstract
Shoot development in land plants is a remarkably complex process that gives rise to an extreme diversity of forms. Our current understanding of shoot developmental mechanisms comes almost entirely from studies of angiosperms (flowering plants), the most recently diverged plant lineage. Shoot development in angiosperms is based around a layered multicellular apical meristem that produces lateral organs and/or secondary meristems from populations of founder cells at its periphery. In contrast, non-seed plant shoots develop from either single apical initials or from a small population of morphologically distinct apical cells. Although developmental and molecular information is becoming available for non-flowering plants, such as the model moss Physcomitrella patens, making valid comparisons between highly divergent lineages is extremely challenging. As sister group to the seed plants, the monilophytes (ferns and relatives) represent an excellent phylogenetic midpoint of comparison for unlocking the evolution of shoot developmental mechanisms, and recent technical advances have finally made transgenic analysis possible in the emerging model fern Ceratopteris richardii. This review compares and contrasts our current understanding of shoot development in different land plant lineages with the aim of highlighting the potential role that the fern C. richardii could play in shedding light on the evolution of underlying genetic regulatory mechanisms.
Collapse
Affiliation(s)
- Andrew R. G. Plackett
- Department of Plant Sciences, University of OxfordOxford, UK
- *Correspondence: Andrew R. G. Plackett,
| | | | | |
Collapse
|
38
|
Rothwell GW, Wyatt SE, Tomescu AMF. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. AMERICAN JOURNAL OF BOTANY 2014; 101:899-913. [PMID: 24879296 DOI: 10.3732/ajb.1300451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants.
Collapse
Affiliation(s)
- Gar W Rothwell
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 USA Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701 USA
| | - Sarah E Wyatt
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701 USA Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701 USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, California 95521 USA
| |
Collapse
|