1
|
Li Y, Chen J, Sun Z. N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions. Virology 2024; 603:110373. [PMID: 39729962 DOI: 10.1016/j.virol.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections. So far, while the significance of m6A in regulating virus-host interactions has been well-established in animal viruses, research on its involvement in plant viruses remains in its early stages. In this review, we summarize the current knowledge regarding the functions and molecular mechanisms of m6A in plant-virus interactions. A better understanding of these complex interactions may provide valuable insights for developing novel antiviral strategies, potentially leading to more effective control of plant viral diseases in the field.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Reichel M, Tankmar MD, Rennie S, Arribas-Hernández L, Lewinski M, Köster T, Wang N, Millar AA, Staiger D, Brodersen P. ALBA proteins facilitate cytoplasmic YTHDF-mediated reading of m6A in Arabidopsis. EMBO J 2024; 43:6626-6655. [PMID: 39613967 DOI: 10.1038/s44318-024-00312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/01/2024] Open
Abstract
N6-methyladenosine (m6A) exerts many of its regulatory effects on eukaryotic mRNAs by recruiting cytoplasmic YT521-B homology-domain family (YTHDF) proteins. Here, we show that in Arabidopsis thaliana, the interaction between m6A and the major YTHDF protein ECT2 also involves the mRNA-binding ALBA protein family. ALBA and YTHDF proteins physically associate via a deeply conserved short linear motif in the intrinsically disordered region of YTHDF proteins and their mRNA target sets overlap, with ALBA4 binding sites being juxtaposed to m6A sites. These binding sites correspond to pyrimidine-rich elements previously found to be important for m6A binding to ECT2. Accordingly, both the biological functions of ECT2, and its binding to m6A targets in vivo, require ALBA association. Our results introduce the YTHDF-ALBA complex as the functional cytoplasmic m6A-reader in Arabidopsis, and define a molecular foundation for the concept of facilitated m6A reading, which increases the potential for combinatorial control of biological m6A effects.
Collapse
Affiliation(s)
- Marlene Reichel
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Copenhagen N, Denmark
- Department of RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Mathias Due Tankmar
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Copenhagen N, Denmark
| | - Sarah Rennie
- Department of Biology, Copenhagen University, Copenhagen N, Denmark.
| | - Laura Arribas-Hernández
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Copenhagen N, Denmark
- Consejo Superior de Investigaciones Científicas, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Málaga, Spain
| | - Martin Lewinski
- Department of RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Tino Köster
- Department of RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Naiqi Wang
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Dorothee Staiger
- Department of RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, D-33615, Bielefeld, Germany.
| | - Peter Brodersen
- University of Copenhagen, Copenhagen Plant Science Center, Department of Biology, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Bian H, Song P, Gao Y, Deng Z, Huang C, Yu L, Wang H, Ye B, Cai Z, Pan Y, Wang F, Liu J, Gao X, Chen K, Jia G, Klee HJ, Zhang B. The m 6A reader SlYTH2 negatively regulates tomato fruit aroma by impeding the translation process. Proc Natl Acad Sci U S A 2024; 121:e2405100121. [PMID: 38950372 PMCID: PMC11253005 DOI: 10.1073/pnas.2405100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
N6-methyladenosine (m6A) is a fundamentally important RNA modification for gene regulation, whose function is achieved through m6A readers. However, whether and how m6A readers play regulatory roles during fruit ripening and quality formation remains unclear. Here, we characterized SlYTH2 as a tomato m6A reader protein and profiled the binding sites of SlYTH2 at the transcriptome-wide level. SlYTH2 undergoes liquid-liquid phase separation and promotes RNA-protein condensate formation. The target mRNAs of SlYTH2, namely m6A-modified SlHPL and SlCCD1B associated with volatile synthesis, are enriched in SlYTH2-induced condensates. Through polysome profiling assays and proteomic analysis, we demonstrate that knockout of SlYTH2 expedites the translation process of SlHPL and SlCCD1B, resulting in augmented production of aroma-associated volatiles. This aroma enrichment significantly increased consumer preferences for CRISPR-edited fruit over wild type. These findings shed light on the underlying mechanisms of m6A in plant RNA metabolism and provided a promising strategy to generate fruits that are more attractive to consumers.
Collapse
Affiliation(s)
- Hanxiao Bian
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Ying Gao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing401331, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou310021, China
| | - Chenyang Huang
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310058, China
| | - Lei Yu
- School of Public Health, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Hanqing Wang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
| | - Bingbing Ye
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing400715, China
| | - Fengqin Wang
- College of Animal Sciences, Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang University, Hangzhou310058, China
| | - Jianzhao Liu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310058, China
| | - Xiangwei Gao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing100871, China
| | - Harry J. Klee
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan572000, China
| |
Collapse
|
4
|
Govindan G, Sunkar R. MeRIP-Seq for Identifying Stress-Responsive Transcriptome-Wide m 6A Profiles in Plants. Methods Mol Biol 2024; 2832:47-55. [PMID: 38869786 DOI: 10.1007/978-1-0716-3973-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Recent advancements in detection and mapping methods have enabled researchers to uncover the biological importance of RNA chemical modifications, which play a vital role in post-transcriptional gene regulation. Although numerous types of RNA modifications have been identified in higher eukaryotes, only a few have been extensively studied for their biological functions. Of these, N6-methyladenosine (m6A) is the most prevalent and important mRNA modification that influences various aspects of RNA metabolism, including mRNA stability, degradation, splicing, alternative polyadenylation, export, and localization, as well as translation. Thus, they have implications for a variety of biological processes, including growth, development, and stress responses. The m6A deposition or removal on transcripts is dynamic and is altered in response to internal and external cues. Because this mark can alter gene expression under stress conditions, it is essential to identify the transcripts that can acquire or lose this epitranscriptomic mark upon exposure to stress conditions. Here we describe a step-by-step protocol for identifying stress-responsive transcriptome-wide m6A changes using RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq).
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
5
|
Due Tankmar M, Reichel M, Arribas‐Hernández L, Brodersen P. A YTHDF-PABP interaction is required for m 6 A-mediated organogenesis in plants. EMBO Rep 2023; 24:e57741. [PMID: 38009565 PMCID: PMC10702811 DOI: 10.15252/embr.202357741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
N6-methyladenosine (m6 A) in mRNA is key to eukaryotic gene regulation. Many m6 A functions involve RNA-binding proteins that recognize m6 A via a YT521-B Homology (YTH) domain. YTH domain proteins contain long intrinsically disordered regions (IDRs) that may mediate phase separation and interaction with protein partners, but whose precise biochemical functions remain largely unknown. The Arabidopsis thaliana YTH domain proteins ECT2, ECT3, and ECT4 accelerate organogenesis through stimulation of cell division in organ primordia. Here, we use ECT2 to reveal molecular underpinnings of this function. We show that stimulation of leaf formation requires the long N-terminal IDR, and we identify two short IDR elements required for ECT2-mediated organogenesis. Of these two, a 19-amino acid region containing a tyrosine-rich motif conserved in both plant and metazoan YTHDF proteins is necessary for binding to the major cytoplasmic poly(A)-binding proteins PAB2, PAB4, and PAB8. Remarkably, overexpression of PAB4 in leaf primordia partially rescues the delayed leaf formation in ect2 ect3 ect4 mutants, suggesting that the ECT2-PAB2/4/8 interaction on target mRNAs of organogenesis-related genes may overcome limiting PAB concentrations in primordial cells.
Collapse
Affiliation(s)
| | - Marlene Reichel
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Flores-Téllez D, Tankmar MD, von Bülow S, Chen J, Lindorff-Larsen K, Brodersen P, Arribas-Hernández L. Insights into the conservation and diversification of the molecular functions of YTHDF proteins. PLoS Genet 2023; 19:e1010980. [PMID: 37816028 PMCID: PMC10617740 DOI: 10.1371/journal.pgen.1010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/31/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
YT521-B homology (YTH) domain proteins act as readers of N6-methyladenosine (m6A) in mRNA. Members of the YTHDF clade determine properties of m6A-containing mRNAs in the cytoplasm. Vertebrates encode three YTHDF proteins whose possible functional specialization is debated. In land plants, the YTHDF clade has expanded from one member in basal lineages to eleven so-called EVOLUTIONARILY CONSERVED C-TERMINAL REGION1-11 (ECT1-11) proteins in Arabidopsis thaliana, named after the conserved YTH domain placed behind a long N-terminal intrinsically disordered region (IDR). ECT2, ECT3 and ECT4 show genetic redundancy in stimulation of primed stem cell division, but the origin and implications of YTHDF expansion in higher plants are unknown, as it is unclear whether it involves acquisition of fundamentally different molecular properties, in particular of their divergent IDRs. Here, we use functional complementation of ect2/ect3/ect4 mutants to test whether different YTHDF proteins can perform the same function when similarly expressed in leaf primordia. We show that stimulation of primordial cell division relies on an ancestral molecular function of the m6A-YTHDF axis in land plants that is present in bryophytes and is conserved over YTHDF diversification, as it appears in all major clades of YTHDF proteins in flowering plants. Importantly, although our results indicate that the YTH domains of all arabidopsis ECT proteins have m6A-binding capacity, lineage-specific neo-functionalization of ECT1, ECT9 and ECT11 happened after late duplication events, and involves altered properties of both the YTH domains, and, especially, of the IDRs. We also identify two biophysical properties recurrent in IDRs of YTHDF proteins able to complement ect2 ect3 ect4 mutants, a clear phase separation propensity and a charge distribution that creates electric dipoles. Human and fly YTHDFs do not have IDRs with this combination of properties and cannot replace ECT2/3/4 function in arabidopsis, perhaps suggesting different molecular activities of YTHDF proteins between major taxa.
Collapse
Affiliation(s)
- Daniel Flores-Téllez
- University of Copenhagen, Biology Department. Copenhagen, Denmark
- Universidad Francisco de Vitoria, Facultad de Ciencias Experimentales. Pozuelo de Alarcón (Madrid), Spain
| | | | - Sören von Bülow
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | - Junyu Chen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | | - Peter Brodersen
- University of Copenhagen, Biology Department. Copenhagen, Denmark
| | | |
Collapse
|
7
|
Martínez‐Pérez M, Aparicio F, Arribas‐Hernández L, Tankmar MD, Rennie S, von Bülow S, Lindorff‐Larsen K, Brodersen P, Pallas V. Plant YTHDF proteins are direct effectors of antiviral immunity against an N6-methyladenosine-containing RNA virus. EMBO J 2023; 42:e113378. [PMID: 37431920 PMCID: PMC10505913 DOI: 10.15252/embj.2022113378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023] Open
Abstract
In virus-host interactions, nucleic acid-directed first lines of defense that allow viral clearance without compromising growth are of paramount importance. Plants use the RNA interference pathway as a basal antiviral immune system, but additional RNA-based mechanisms of defense also exist. The infectivity of a plant positive-strand RNA virus, alfalfa mosaic virus (AMV), relies on the demethylation of viral RNA by the recruitment of the cellular N6-methyladenosine (m6 A) demethylase ALKBH9B, but how demethylation of viral RNA promotes AMV infection remains unknown. Here, we show that inactivation of the Arabidopsis cytoplasmic YT521-B homology domain (YTH)-containing m6 A-binding proteins ECT2, ECT3, and ECT5 is sufficient to restore AMV infectivity in partially resistant alkbh9b mutants. We further show that the antiviral function of ECT2 is distinct from its previously demonstrated function in the promotion of primordial cell proliferation: an ect2 mutant carrying a small deletion in its intrinsically disordered region is partially compromised for antiviral defense but not for developmental functions. These results indicate that the m6 A-YTHDF axis constitutes a novel branch of basal antiviral immunity in plants.
Collapse
Affiliation(s)
- Mireya Martínez‐Pérez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValenciaSpain
| | - Frederic Aparicio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValenciaSpain
| | | | | | - Sarah Rennie
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sören von Bülow
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
8
|
Prall W, Ganguly DR, Gregory BD. The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future. THE PLANT CELL 2023; 35:1801-1816. [PMID: 36794718 PMCID: PMC10226571 DOI: 10.1093/plcell/koad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 05/30/2023]
Abstract
Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Diep R Ganguly
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Lothion-Roy J, Haigh DB, Harris AE, Metzler VM, Alsaleem M, Toss MS, Kariri Y, Ntekim A, Robinson BD, Khani F, Gudas LJ, Allegrucci C, James VH, Madhusudan S, Mather M, Emes RD, Archer N, Fray RG, Rakha E, Jeyapalan JN, Rutland CS, Mongan NP, Woodcock CL. Clinical and molecular significance of the RNA m 6A methyltransferase complex in prostate cancer. Front Genet 2023; 13:1096071. [PMID: 36733939 PMCID: PMC9887525 DOI: 10.3389/fgene.2022.1096071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are involved in the regulation of gene expression, RNA stability, splicing and translation. Given its role in these crucial processes, m6A has been implicated in many diseases, including in cancer development and progression. Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men and recent studies support a role for m6A in PCa. Despite this, the literature currently lacks an integrated analysis of the expression of key components of the m6A RNA methyltransferase complex, both in PCa patients and in well-established cell line models. For this reason, this study used immunohistochemistry and functional studies to investigate the mechanistic and clinical significance of the METTL3, METTL14, WTAP and CBLL1 components of the m6A methyltransferase complex in PCa specimens and cell lines. Expression of METTL3 and CBLL1, but not METTL14 and WTAP, was associated with poorer PCa patient outcomes. Expression of METTL3, METTL14, WTAP and CBLL1 was higher in PCa cells compared with non-malignant prostate cells, with the highest expression seen in castrate-sensitive, androgen-responsive PCa cells. Moreover, in PCa cell lines, expression of METTL3 and WTAP was found to be androgen-regulated. To investigate the mechanistic role(s) of the m6A methyltransferase complex in PCa cells, short hairpin RNA (shRNA)-mediated knockdown coupled with next generation sequencing was used to determine the transcriptome-wide roles of METTL3, the catalytic subunit of the m6A methyltransferase complex. Functional depletion of METTL3 resulted in upregulation of the androgen receptor (AR), together with 134 AR-regulated genes. METTL3 knockdown also resulted in altered splicing, and enrichment of cell cycle, DNA repair and metabolic pathways. Collectively, this study identified the functional and clinical significance of four essential m6A complex components in PCa patient specimens and cell lines for the first time. Further studies are now warranted to determine the potential therapeutic relevance of METTL3 inhibitors in development to treat leukaemia to benefit patients with PCa.
Collapse
Affiliation(s)
- Jennifer Lothion-Roy
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Veronika M. Metzler
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Mansour Alsaleem
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom,Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Yousif Kariri
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom,Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Atara Ntekim
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,Department of Radiation Oncology, University Hospital Ibadan, University of Ibadan, Ibadan, Nigeria
| | - Brian D. Robinson
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Cinzia Allegrucci
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Victoria H. James
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Srinivasan Madhusudan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Melissa Mather
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Richard D. Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nathan Archer
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Emad Rakha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Catrin S. Rutland
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Nigel P. Mongan, , ; Corinne L. Woodcock,
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom,School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom,*Correspondence: Nigel P. Mongan, , ; Corinne L. Woodcock,
| |
Collapse
|
10
|
Ortigosa F, Lobato-Fernández C, Pérez-Claros JA, Cantón FR, Ávila C, Cánovas FM, Cañas RA. Epitranscriptome changes triggered by ammonium nutrition regulate the proteome response of maritime pine roots. FRONTIERS IN PLANT SCIENCE 2022; 13:1102044. [PMID: 36618661 PMCID: PMC9815506 DOI: 10.3389/fpls.2022.1102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Epitranscriptome constitutes a gene expression checkpoint in all living organisms. Nitrogen is an essential element for plant growth and development that influences gene expression at different levels such as epigenome, transcriptome, proteome, and metabolome. Therefore, our hypothesis is that changes in the epitranscriptome may regulate nitrogen metabolism. In this study, epitranscriptomic modifications caused by ammonium nutrition were monitored in maritime pine roots using Oxford Nanopore Technology. Transcriptomic responses mainly affected transcripts involved in nitrogen and carbon metabolism, defense, hormone synthesis/signaling, and translation. Global detection of epitranscriptomic marks was performed to evaluate this posttranscriptional mechanism in un/treated seedlings. Increased N6-methyladenosine (m6A) deposition in the 3'-UTR was observed in response to ammonium, which seems to be correlated with poly(A) lengths and changes in the relative abundance of the corresponding proteins. The results showed that m6A deposition and its dynamics seem to be important regulators of translation under ammonium nutrition. These findings suggest that protein translation is finely regulated through epitranscriptomic marks likely by changes in mRNA poly(A) length, transcript abundance and ribosome protein composition. An integration of multiomics data suggests that the epitranscriptome modulates responses to nutritional, developmental and environmental changes through buffering, filtering, and focusing the final products of gene expression.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Rafael A. Cañas
- Integrative Molecular Biology Lab, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
11
|
Yin S, Ao Q, Qiu T, Tan C, Tu Y, Kuang T, Yang Y. Tomato SlYTH1 encoding a putative RNA m 6A reader affects plant growth and fruit shape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111417. [PMID: 35973580 DOI: 10.1016/j.plantsci.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A), the most abundant and common modification on eukaryotic mRNA, plays crucial roles in multiple biological processes through controlling endogenous gene activity in organisms. The m6A reader specifically recognizes the m6A mark to mediate the regulation of m6A on mRNA, and determines the fate of its target mRNA. In plants, the currently confirmed m6A readers are YTH (YT521B homology) domain-containing proteins. We previously reported that tomato contains 9 YTH genes, of which SlYTH1 has the strongest expression. The present study reports the functional characterization of SlYTH1 in tomato. SlYTH1 mutants generated via CRISPR/Cas9 technology exhibited pleiotropic phenotypes, including low seed germination rate, shortened seedling root, retarded plant growth and development during vegetative development, and elongated and longitudinally flattened fruit with reduced the locule number. SlYTH1 knockout reduced GA3 content and downregulated the expression of related genes in gibberellin biosynthesis pathway. Moreover, exogenous GA3 application could partially restore the phenotypic defects caused by SlYTH1 mutations. SlYTH1 knockout could alleviate the inhibition of seedling root elongation by exogenous GA3 application at relatively low concentration. These facts indicated SlYTH1 is involved in regulating gibberellin biosynthesis and plays important roles in multiple physiological processes in tomato.
Collapse
Affiliation(s)
- Shuangqin Yin
- Bioengineering College, Chongqing University, Chongqing 400044, China; State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qiujing Ao
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tiaoshuang Qiu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Caiyun Tan
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yun Tu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
12
|
Bhatia G, Prall W, Sharma B, Gregory BD. Covalent RNA modifications and their budding crosstalk with plant epigenetic processes. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102287. [PMID: 35988352 DOI: 10.1016/j.pbi.2022.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Our recent cognizance of diverse RNA classes undergoing dynamic covalent chemical modifications (or epitranscriptomic marks) in plants has provided fresh insight into the underlying molecular mechanisms of gene expression regulation. Comparatively, epigenetic marks comprising heritable modifications of DNA and histones have been extensively studied in plants and their impact on plant gene expression is quite established. Based on our growing knowledge of the plant epitranscriptome and epigenome, it is logical to explore how the two regulatory layers intermingle to intricately determine gene expression levels underlying key biological processes such as development and response to stress. Herein, we focus on the emerging evidence of crosstalk between the plant epitranscriptome with epigenetic regulation involving DNA modification, histone modification, and non-coding RNAs.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Bishwas Sharma
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Han X, Shi Q, He Z, Song W, Chen Q, Qi Z. Transcriptome-wide N 6-methyladenosine (m 6A) methylation in soybean under Meloidogyne incognita infection. ABIOTECH 2022; 3:197-211. [PMID: 36313932 PMCID: PMC9590533 DOI: 10.1007/s42994-022-00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/30/2022] [Indexed: 02/02/2023]
Abstract
N6-methyladenosine (m6A) is a reversible epigenetic modification of mRNA and other RNAs that plays a significant role in regulating gene expression and biological processes. However, m6A abundance, dynamics, and transcriptional regulatory mechanisms remain unexplored in the context of soybean resistance to Meloidogyne incognita. In this study, we performed a comparative analysis of transcriptome-wide m6A and metabolome profiles of soybean root tissues with and without M. incognita infection. Global m6A hypermethylation was widely induced in response to M. incognita infection and was enriched around the 3' end of coding sequences and in 3' UTR regions. There were 2069 significantly modified m6A sites, 594 differentially expressed genes, and 103 differentially accumulated metabolites between infected and uninfected roots, including coumestrol, psoralidin, and 2-hydroxyethylphosphonate. Among 101 m6A-modified DEGs, 34 genes were hypomethylated and upregulated, and 39 genes were hypermethylated and downregulated, indicating a highly negative correlation between m6A methylation and gene transcript abundance. A number of these m6A-modified DEGs, including WRKY70, ERF60, POD47 and LRR receptor-like serine/threonine-protein kinases, were involved in plant defense responses. Our study provides new insights into the critical role of m6A modification in early soybean responses to M. incognita. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00077-2.
Collapse
Affiliation(s)
- Xue Han
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Qianqian Shi
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 China
| | - Ziyi He
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 China
| | - Wenwen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
14
|
Bataglia L, Simões ZLP, Nunes FMF. Transcriptional expression of m6A and m5C RNA methyltransferase genes in the brain and fat body of honey bee adult workers. Front Cell Dev Biol 2022; 10:921503. [PMID: 36105348 PMCID: PMC9467440 DOI: 10.3389/fcell.2022.921503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Honey bee (Apis mellifera) adult workers change behaviors and nutrition according to age progression. Young workers, such as nurses, perform in-hive tasks and consume protein-rich pollen, while older workers (foragers) leave the colony to search for food, and consume carbohydrate-rich nectar. These environmentally stimulated events involve transcriptional and DNA epigenetic marks alterations in worker tissues. However, post-transcriptional RNA modifications (epitranscriptomics) are still poorly explored in bees. We investigated the transcriptional profiles of m6A and m5C RNA methyltransferases in the brain and fat body of adult workers of 1) different ages and performing different tasks [nurses of 8 days-old (N-8D) and foragers of 29 days-old (F-29D), sampled from wild-type colonies], and 2) same-aged young workers caged in an incubator and treated with a pollen-rich [PR] or a pollen-deprived [PD] diet for 8 days. In the brain, METTL3, DNMT2, NOP2, NSUN2, NSUN5, and NSUN7 genes increased expression during adulthood (from N-8D to F-29D), while the opposite pattern was observed in the fat body for METTL3, DNMT2, and NSUN2 genes. Regarding diet treatments, high expression levels were observed in the brains of the pollen-deprived group (DNMT2, NOP2, and NSUN2 genes) and the fat bodies of the pollen-rich group (NOP2, NSUN4, and NSUN5 genes) compared to the brains of the PR group and the fat bodies of the PD group, respectively. Our data indicate that RNA epigenetics may be an important regulatory layer in the development of adult workers, presenting tissue-specific signatures of RNA methyltransferases expression in response to age, behavior, and diet content.
Collapse
Affiliation(s)
- Luana Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Francis Morais Franco Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
- *Correspondence: Francis Morais Franco Nunes,
| |
Collapse
|
15
|
Govindan G, Sharma B, Li Y, Armstrong CD, Merum P, Rohila JS, Gregory BD, Sunkar R. mRNA N 6 -methyladenosine is critical for cold tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1052-1068. [PMID: 35710867 PMCID: PMC9543165 DOI: 10.1111/tpj.15872] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 05/16/2023]
Abstract
Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post-transcriptional level, these cold stress-responsive transcripts undergo alternative splicing, microRNA-mediated regulation and alternative polyadenylation, amongst others. Recently, m6 A, m5 C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post-transcriptional regulation that plays an important role in modulating gene expression. The importance of m6 A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6 A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome-wide m6 A analysis revealed large-scale shifts in this modification in response to low temperature stress. Because m6 A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold-enriched m6 A-containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6 A epitranscriptome on plant cold tolerance was further assessed using the mta mutant in which the major m6 A methyltransferase gene was mutated. Compared to the wild-type, along with the differences in CBFs and COR gene expression levels, the mta mutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non-acclimated and cold-acclimated mta mutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Bishwas Sharma
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yong‐Fang Li
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | | | - Pandrangaiah Merum
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Jai S. Rohila
- Dale Bumpers National Rice Research CenterUnited States Department of Agriculture‐Agricultural Research ServicesStuttgartAR72160USA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| |
Collapse
|
16
|
Bataglia L, Simões ZLP, Nunes FMF. Active genic machinery for epigenetic RNA modifications in bees. INSECT MOLECULAR BIOLOGY 2021; 30:566-579. [PMID: 34291855 DOI: 10.1111/imb.12726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Epitranscriptomics is an emerging field of investigation dedicated to the study of post-transcriptional RNA modifications. RNA methylations regulate RNA metabolism and processing, including changes in response to environmental cues. Although RNA modifications are conserved from bacteria to eukaryotes, there is little evidence of an epitranscriptomic pathway in insects. Here we identified genes related to RNA m6 A (N6-methyladenine) and m5 C (5-methylcytosine) methylation machinery in seven bee genomes (Apis mellifera, Melipona quadrifasciata, Frieseomelitta varia, Eufriesea mexicana, Bombus terrestris, Megachile rotundata and Dufourea novaeangliae). In A. mellifera, we validated the expression of methyltransferase genes and found that the global levels of m6 A and m5 C measured in the fat body and brain of adult workers differ significantly. Also, m6 A levels were differed significantly mainly between the fourth larval instar of queens and workers. Moreover, we found a conserved m5 C site in the honeybee 28S rRNA. Taken together, we confirm the existence of epitranscriptomic machinery acting in bees and open avenues for future investigations on RNA epigenetics in a wide spectrum of hymenopteran species.
Collapse
Affiliation(s)
- L Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - F M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
17
|
Yin S, Ao Q, Tan C, Yang Y. Genome-wide identification and characterization of YTH domain-containing genes, encoding the m 6A readers, and their expression in tomato. PLANT CELL REPORTS 2021; 40:1229-1245. [PMID: 34081180 DOI: 10.1007/s00299-021-02716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
9 YTH genes in tomato were identified and cloned, and their expression patterns were comprehensively analyzed, which reveal potential multiple roles in development and fruit ripening. N6-methyladenosine (m6A) is an abundant and pervasive post-transcriptional modification in eukaryotic mRNAs. The YTH domain-containing proteins act as m6A readers to read m6A marks and transduce their downstream regulatory effects by altering m6A-mRNA metabolism processes. Identification of YTH proteins is essential for understanding the regulatory mechanisms of m6A in physiological processes, but little is known about YTH proteins in tomato, a model system for fruit development. Here, we report that tomato genomes contain a total of 9 SlYTH genes. While YTH proteins of both tomato and Arabidopsis can be classified into two subfamilies, the member distributions in subfamilies are very different between the two species. Homology modeling exhibited the similar three-dimensional structures of SlYTH proteins to human YTHDF1 or YTHDC1. Multiple hormone-response elements locating on the promoters of SlYTH genes indicate that they are involved in the physiological processes related to phytohormone. SlYTH genes are ubiquitous and spatiotemporal dynamic expression in tomato. Eight SlTYH genes have the strongest expression in stamens among the parts of flowers. Throughout fruit ontogeny, most of the SlYTH genes display obvious high mRNA levels during the developmental phases (4 dpa to mature green); moreover, SlYTH1 and SlYTH2 have absolute predominant expressions demonstrated by RNA-seq. The results lay a foundation for future characterizations on the functions of YTH proteins and m6A regulatory mechanism in tomato.
Collapse
Affiliation(s)
- Shuangqin Yin
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qiujing Ao
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Caiyun Tan
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing, 400044, China.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
18
|
R-loop resolution promotes co-transcriptional chromatin silencing. Nat Commun 2021; 12:1790. [PMID: 33741984 PMCID: PMC7979926 DOI: 10.1038/s41467-021-22083-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
RNA-mediated chromatin silencing is central to genome regulation in many organisms. However, how nascent non-coding transcripts regulate chromatin is poorly understood. Here, through analysis of Arabidopsis FLC, we show that resolution of a nascent-transcript-induced R-loop promotes chromatin silencing. Stabilization of an antisense-induced R-loop at the 3' end of FLC enables an RNA binding protein FCA, with its direct partner FY/WDR33 and other 3'-end processing factors, to polyadenylate the nascent antisense transcript. This clears the R-loop and recruits the chromatin modifiers demethylating H3K4me1. FCA immunoprecipitates with components of the m6A writer complex, and m6A modification affects dynamics of FCA nuclear condensates, and promotes FLC chromatin silencing. This mechanism also targets other loci in the Arabidopsis genome, and consistent with this fca and fy are hypersensitive to a DNA damage-inducing drug. These results show how modulation of R-loop stability by co-transcriptional RNA processing can trigger chromatin silencing.
Collapse
|
19
|
Wang LC, Chen SH, Shen XL, Li DC, Liu HY, Ji YL, Li M, Yu K, Yang H, Chen JJ, Qin CZ, Luo MM, Lin QX, Lv QL. M6A RNA Methylation Regulator HNRNPC Contributes to Tumorigenesis and Predicts Prognosis in Glioblastoma Multiforme. Front Oncol 2020; 10:536875. [PMID: 33134160 PMCID: PMC7578363 DOI: 10.3389/fonc.2020.536875] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma with a high death rate. N6-methyladenosine (m6A) RNA methylation plays an increasingly important role in tumors. The current study aimed to determine the function of the regulators of m6A RNA methylation in GBM. We evaluated the difference, interaction, and correlation of these regulators with TCGA database. HNRNPC, WTAP, YTHDF2 and, YTHDF1 were significantly upregulated in GBM. To explore the expression characteristics of regulators in GBM, we defined two subgroups through consensus cluster. HNRNPC, WTAP, and YTHDF2 were significantly upregulated in the cluster2 which had a good overall survival (OS). To investigate the prognostic value of regulators, we used lasso cox regression algorithm to screen an independent prognostic risk characteristic based on the expression of HNRNPC, ZC3H13, and YTHDF2. The prognostic feature between the low and high-risk groups was significantly different (P < 0.05), which could predict significance of prognosis (area under the curve (AUC) = 0.819). Moreover, we used western blot, RT-PCR, and immunohistochemical staining to verify the expression of HNRNPC was associated with malignancy and development of gliomas. Similarly, the high expression of HNRNPC had a good prognosis. In conclusion, HNRNPC is a vital participant in the malignant progression of GBM and might be valuable for prognosis.
Collapse
Affiliation(s)
- Li-Chong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dang-Chi Li
- Jiangxi University of Technology High School, Nanchang, China
| | - Hai-Yun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yu-Long Ji
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Min Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Kai Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Jun Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Chong-Zhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming-Ming Luo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Qian-Xia Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
20
|
Arribas-Hernández L, Simonini S, Hansen MH, Paredes EB, Bressendorff S, Dong Y, Østergaard L, Brodersen P. Recurrent requirement for the m 6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis. Development 2020; 147:dev189134. [PMID: 32611605 PMCID: PMC7390628 DOI: 10.1242/dev.189134] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation.
Collapse
Affiliation(s)
- Laura Arribas-Hernández
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | - Mathias Henning Hansen
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Esther Botterweg Paredes
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Simon Bressendorff
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yang Dong
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Peter Brodersen
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Reichel M, Köster T, Staiger D. Marking RNA: m6A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 2020; 11:899-910. [PMID: 31336387 PMCID: PMC6884701 DOI: 10.1093/jmcb/mjz085] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) emerges as an important modification in eukaryotic mRNAs. m6A has first been reported in 1974, and its functional significance in mammalian gene regulation and importance for proper development have been well established. An arsenal of writer, eraser, and reader proteins accomplish deposition, removal, and interpretation of the m6A mark, resulting in dynamic function. This led to the concept of an epitranscriptome, the compendium of RNA species with chemical modification of the nucleobases in the cell, in analogy to the epigenome. While m6A has long been known to also exist in plant mRNAs, proteins involved in m6A metabolism have only recently been detected by mutant analysis, homology search, and mRNA interactome capture in the reference plant Arabidopsis thaliana. Dysregulation of the m6A modification causes severe developmental abnormalities of leaves and roots and altered timing of reproductive development. Furthermore, m6A modification affects viral infection. Here, we discuss recent progress in identifying m6A sites transcriptome-wide, in identifying the molecular players involved in writing, removing, and reading the mark, and in assigning functions to this RNA modification in A. thaliana. We highlight similarities and differences to m6A modification in mammals and provide an outlook on important questions that remain to be addressed.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
22
|
Katsuya-Gaviria K, Caro E, Carrillo-Barral N, Iglesias-Fernández R. Reactive Oxygen Species (ROS) and Nucleic Acid Modifications During Seed Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E679. [PMID: 32471221 PMCID: PMC7356579 DOI: 10.3390/plants9060679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
The seed is the propagule of higher plants and allows its dissemination and the survival of the species. Seed dormancy prevents premature germination under favourable conditions. Dormant seeds are only able to germinate in a narrow range of conditions. During after-ripening (AR), a mechanism of dormancy release, seeds gradually lose dormancy through a period of dry storage. This review is mainly focused on how chemical modifications of mRNA and genomic DNA, such as oxidation and methylation, affect gene expression during late stages of seed development, especially during dormancy. The oxidation of specific nucleotides produced by reactive oxygen species (ROS) alters the stability of the seed stored mRNAs, being finally degraded or translated into non-functional proteins. DNA methylation is a well-known epigenetic mechanism of controlling gene expression. In Arabidopsis thaliana, while there is a global increase in CHH-context methylation through embryogenesis, global DNA methylation levels remain stable during seed dormancy, decreasing when germination occurs. The biological significance of nucleic acid oxidation and methylation upon seed development is discussed.
Collapse
Affiliation(s)
- Kai Katsuya-Gaviria
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223-Pozuelo de Alarcón, Spain; (K.K.-G.); (E.C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223-Pozuelo de Alarcón, Spain; (K.K.-G.); (E.C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Néstor Carrillo-Barral
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad da Coruña (UdC), 15008-A Coruña, Spain;
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas-Severo Ochoa (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223-Pozuelo de Alarcón, Spain; (K.K.-G.); (E.C.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| |
Collapse
|
23
|
Schumann U, Zhang HN, Sibbritt T, Pan A, Horvath A, Gross S, Clark SJ, Yang L, Preiss T. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol 2020; 18:40. [PMID: 32293435 PMCID: PMC7158060 DOI: 10.1186/s12915-020-00769-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 5-Methylcytosine (m5C) is a prevalent base modification in tRNA and rRNA but it also occurs more broadly in the transcriptome, including in mRNA, where it serves incompletely understood molecular functions. In pursuit of potential links of m5C with mRNA translation, we performed polysome profiling of human HeLa cell lysates and subjected RNA from resultant fractions to efficient bisulfite conversion followed by RNA sequencing (bsRNA-seq). Bioinformatic filters for rigorous site calling were devised to reduce technical noise. RESULTS We obtained ~ 1000 candidate m5C sites in the wider transcriptome, most of which were found in mRNA. Multiple novel sites were validated by amplicon-specific bsRNA-seq in independent samples of either human HeLa, LNCaP and PrEC cells. Furthermore, RNAi-mediated depletion of either the NSUN2 or TRDMT1 m5C:RNA methyltransferases showed a clear dependence on NSUN2 for the majority of tested sites in both mRNAs and noncoding RNAs. Candidate m5C sites in mRNAs are enriched in 5'UTRs and near start codons and are embedded in a local context reminiscent of the NSUN2-dependent m5C sites found in the variable loop of tRNA. Analysing mRNA sites across the polysome profile revealed that modification levels, at bulk and for many individual sites, were inversely correlated with ribosome association. CONCLUSIONS Our findings emphasise the major role of NSUN2 in placing the m5C mark transcriptome-wide. We further present evidence that substantiates a functional interdependence of cytosine methylation level with mRNA translation. Additionally, we identify several compelling candidate sites for future mechanistic analysis.
Collapse
Affiliation(s)
- Ulrike Schumann
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australian Captial Territory, Australia
| | - He-Na Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tennille Sibbritt
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australian Captial Territory, Australia
| | - Anyu Pan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australian Captial Territory, Australia
| | - Attila Horvath
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australian Captial Territory, Australia
| | - Simon Gross
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australian Captial Territory, Australia
| | - Susan J Clark
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, 2010, Australia
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australian Captial Territory, Australia.
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, 2010, Australia.
| |
Collapse
|
24
|
Liang Z, Riaz A, Chachar S, Ding Y, Du H, Gu X. Epigenetic Modifications of mRNA and DNA in Plants. MOLECULAR PLANT 2020; 13:14-30. [PMID: 31863849 DOI: 10.1016/j.molp.2019.12.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
Advances in the detection and mapping of messenger RNA (mRNA) N6-methyladenosine (m6A) and 5-methylcytosine (m5C), and DNA N6-methyldeoxyadenosine (6mA) redefined our understanding of these modifications as additional tiers of epigenetic regulation. In plants, the most prevalent internal mRNA modifications, m6A and m5C, play crucial and dynamic roles in many processes, including embryo development, stem cell fate determination, trichome branching, leaf morphogenesis, floral transition, stress responses, fruit ripening, and root development. The newly identified and widespread epigenetic marker 6mA DNA methylation is associated with gene expression, plant development, and stress responses. Here, we review the latest research progress on mRNA and DNA epigenetic modifications, including the detection, dynamics, distribution, functions, regulatory proteins, and evolution, with a focus on m6A, m5C, and 6mA. We also provide some perspectives on future research of the newly identified and unknown epigenetic modifications of mRNA and DNA in plants.
Collapse
Affiliation(s)
- Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yike Ding
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
25
|
Li Z, Zhao P, Xia Q. Epigenetic Methylations on N6-Adenine and N6-Adenosine with the same Input but Different Output. Int J Mol Sci 2019; 20:ijms20122931. [PMID: 31208067 PMCID: PMC6627651 DOI: 10.3390/ijms20122931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modifications on individual bases in DNA and RNA can encode inheritable genetic information beyond the canonical bases. Among the nucleic acid modifications, DNA N6-methadenine (6mA) and RNA N6-methyladenosine (m6A) have recently been well-studied due to the technological development of detection strategies and the functional identification of modification enzymes. The current findings demonstrate a wide spectrum of 6mA and m6A distributions from prokaryotes to eukaryotes and critical roles in multiple cellular processes. It is interesting that the processes of modification in which the methyl group is added to adenine and adenosine are the same, but the outcomes of these modifications in terms of their physiological impacts in organisms are quite different. In this review, we summarize the latest progress in the study of enzymes involved in the 6mA and m6A methylation machinery, including methyltransferases and demethylases, and their functions in various biological pathways. In particular, we focus on the mechanisms by which 6mA and m6A regulate the expression of target genes, and we highlight the future challenges in epigenetic regulation.
Collapse
Affiliation(s)
- Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Zhao L, Zhang H, Kohnen MV, Prasad KVSK, Gu L, Reddy ASN. Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing. Front Genet 2019; 10:253. [PMID: 30949200 PMCID: PMC6438080 DOI: 10.3389/fgene.2019.00253] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing (Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer many advantages over most widely used high-throughput short-read RNA sequencing (RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in identifying full-length splice isoforms and several other post-transcriptional events. In addition, direct RNA-Seq provides valuable information about RNA modifications, which are lost during the PCR amplification step in other methods. Here, we present a comprehensive summary of important applications of these technologies in plants, including identification of complex alternative splicing (AS), full-length splice variants, fusion transcripts, and alternative polyadenylation (APA) events. Furthermore, we discuss the impact of the newly developed nanopore direct RNA-Seq in advancing epitranscriptome research in plants. Additionally, we summarize computational tools for identifying and quantifying full-length isoforms and other co/post-transcriptional events and discussed some of the limitations with these methods. Sequencing of transcriptomes using these new single-molecule long-read methods will unravel many aspects of transcriptome complexity in unprecedented ways as compared to previous short-read sequencing approaches. Analysis of plant transcriptomes with these new powerful methods that require minimum sample processing is likely to become the norm and is expected to uncover novel co/post-transcriptional gene regulatory mechanisms that control biological outcomes during plant development and in response to various stresses.
Collapse
Affiliation(s)
- Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V. Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kasavajhala V. S. K. Prasad
- Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S. N. Reddy
- Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
27
|
Abstract
Investigations over the past eight years of chemical modifications on messenger RNA (mRNA) have revealed a new level of posttranscriptional gene regulation in eukaryotes. Rapid progress in our understanding of these modifications, particularly, N6-methyladenosine (m6A), has revealed their roles throughout the life cycle of an mRNA transcript. m6A methylation provides a rapid mechanism for coordinated transcriptome processing and turnover that is important in embryonic development and cell differentiation. In response to cellular signals, m6A can also regulate the translation of specific pools of transcripts. These mechanisms can be hijacked in human diseases, including numerous cancers and viral infection. Beyond m6A, many other mRNA modifications have been mapped in the transcriptome, but much less is known about their biological functions. As methods continue to be developed, we will be able to study these modifications both more broadly and in greater depth, which will likely reveal a wealth of new RNA biology.
Collapse
Affiliation(s)
- Sigrid Nachtergaele
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA; ,
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA; ,
| |
Collapse
|
28
|
Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, Saleh M, Eeckhout D, El‐Showk S, Li H, Zhong S, De Jaeger G, Mongan NP, Hejátko J, Helariutta Y, Fray RG. Identification of factors required for m 6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. THE NEW PHYTOLOGIST 2017; 215:157-172. [PMID: 28503769 PMCID: PMC5488176 DOI: 10.1111/nph.14586] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/19/2017] [Indexed: 05/04/2023]
Abstract
N6-adenosine methylation (m6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m6 A writer proteins in Arabidopsis thaliana. The components required for m6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences.
Collapse
Affiliation(s)
- Kamil Růžička
- Functional Genomics and Proteomics of PlantsCentral European Institute of Technology and National Centre for Biomolecular ResearchMasaryk University62500BrnoCzech Republic
- Institute of BiotechnologyUniversity of Helsinki00014HelsinkiFinland
| | - Mi Zhang
- Plant Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Ana Campilho
- Institute of BiotechnologyUniversity of Helsinki00014HelsinkiFinland
- Research Center in Biodiversity and Genetic ResourcesUniversity of Porto4485‐661 VairãoPortugal
| | - Zsuzsanna Bodi
- Plant Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Muhammad Kashif
- Institute of BiotechnologyUniversity of Helsinki00014HelsinkiFinland
| | - Mária Saleh
- Functional Genomics and Proteomics of PlantsCentral European Institute of Technology and National Centre for Biomolecular ResearchMasaryk University62500BrnoCzech Republic
| | - Dominique Eeckhout
- Department of Plant Systems BiologyVIB9052GentBelgium
- Department of Plant Biotechnology and BioinformaticsGhent University9052GentBelgium
| | - Sedeer El‐Showk
- Institute of BiotechnologyUniversity of Helsinki00014HelsinkiFinland
| | - Hongying Li
- Plant Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess PlateauMinistry of AgricultureTaiyuanShanxi030031China
| | - Silin Zhong
- Plant Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
- The State Key Laboratory of AgrobiotechnologyThe School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Geert De Jaeger
- Department of Plant Systems BiologyVIB9052GentBelgium
- Department of Plant Biotechnology and BioinformaticsGhent University9052GentBelgium
| | - Nigel P. Mongan
- School of Veterinary Medicine and SciencesUniversity of NottinghamSutton BoningtonLoughboroughLE12 5RDUK
| | - Jan Hejátko
- Functional Genomics and Proteomics of PlantsCentral European Institute of Technology and National Centre for Biomolecular ResearchMasaryk University62500BrnoCzech Republic
| | - Ykä Helariutta
- Institute of BiotechnologyUniversity of Helsinki00014HelsinkiFinland
- Sainsbury LaboratoryUniversity of CambridgeCambridgeCB2 1LRUK
| | - Rupert G. Fray
- Plant Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| |
Collapse
|
29
|
Köster T, Marondedze C, Meyer K, Staiger D. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome. TRENDS IN PLANT SCIENCE 2017; 22:512-526. [PMID: 28412036 DOI: 10.1016/j.tplants.2017.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katja Meyer
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
30
|
Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Sci Rep 2017; 7:2489. [PMID: 28559568 PMCID: PMC5449405 DOI: 10.1038/s41598-017-02476-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Auxin plays a pivotal role in virtually every aspect of plant morphogenesis. It simultaneously orchestrates a diverse variety of processes such as cell wall biogenesis, transition through the cell cycle, or metabolism of a wide range of chemical substances. The coordination principles for such a complex orchestration are poorly understood at the systems level. Here, we perform an RNA-seq experiment to study the transcriptional response to auxin treatment within gene groups of different biological processes, molecular functions, or cell components in a quantitative fold-change-specific manner. We find for Arabidopsis thaliana roots treated with auxin for 6 h that (i) there are functional groups within which genes respond to auxin with a surprisingly similar fold changes and that (ii) these fold changes vary from one group to another. These findings make it tempting to conjecture the existence of some transcriptional logic orchestrating the coordinated expression of genes within functional groups in a fold-change-specific manner. To obtain some initial insight about this coordinated expression, we performed a motif enrichment analysis and found cis-regulatory elements TBX1-3, SBX, REG, and TCP/site2 as the candidates conferring fold-change-specific responses to auxin in Arabidopsis thaliana.
Collapse
|
31
|
Pazhamala LT, Purohit S, Saxena RK, Garg V, Krishnamurthy L, Verdier J, Varshney RK. Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2037-2054. [PMID: 28338822 PMCID: PMC5429002 DOI: 10.1093/jxb/erx010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pigeonpea (Cajanus cajan) is an important grain legume of the semi-arid tropics, mainly used for its protein rich seeds. To link the genome sequence information with agronomic traits resulting from specific developmental processes, a Cajanus cajan gene expression atlas (CcGEA) was developed using the Asha genotype. Thirty tissues/organs representing developmental stages from germination to senescence were used to generate 590.84 million paired-end RNA-Seq data. The CcGEA revealed a compendium of 28 793 genes with differential, specific, spatio-temporal and constitutive expression during various stages of development in different tissues. As an example to demonstrate the application of the CcGEA, a network of 28 flower-related genes analysed for cis-regulatory elements and splicing variants has been identified. In addition, expression analysis of these candidate genes in male sterile and male fertile genotypes suggested their critical role in normal pollen development leading to seed formation. Gene network analysis also identified two regulatory genes, a pollen-specific SF3 and a sucrose-proton symporter, that could have implications for improvement of agronomic traits such as seed production and yield. In conclusion, the CcGEA provides a valuable resource for pigeonpea to identify candidate genes involved in specific developmental processes and to understand the well-orchestrated growth and developmental process in this resilient crop.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India
| | - Shilp Purohit
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India
| | - L Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India
| | - Jerome Verdier
- INRA - Research Institute in Horticulture and Seeds (IRHS), 49071 Beaucouze, France
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, India
- School of Plant Biology and Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
32
|
Epitranscriptomic regulation of viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:460-471. [PMID: 28219769 DOI: 10.1016/j.bbagrm.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
RNA plays central roles in biology and novel functions and regulation mechanisms are constantly emerging. To accomplish some of their functions within the cell, RNA molecules undergo hundreds of chemical modifications from which N6-methyladenosine (m6A), inosine (I), pseudouridine (ψ) and 5-methylcytosine (5mC) have been described in eukaryotic mRNA. Interestingly, the m6A modification was shown to be reversible, adding novel layers of regulation of gene expression through what is now recognized as epitranscriptomics. The development of molecular mapping strategies coupled to next generation sequencing allowed the identification of thousand of modified transcripts in different tissues and under different physiological conditions such as viral infections. As intracellular parasites, viruses are confronted to cellular RNA modifying enzymes and, as a consequence, viral RNA can be chemically modified at some stages of the replication cycle. This review focuses on the chemical modifications of viral RNA and the impact that these modifications have on viral gene expression and the output of infection. A special emphasis is given to m6A, which was recently shown to play important yet controversial roles in different steps of the HIV-1, HCV and ZIKV replication cycles.
Collapse
|
33
|
Burgess A, David R, Searle IR. Deciphering the epitranscriptome: A green perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:822-835. [PMID: 27172004 PMCID: PMC5094531 DOI: 10.1111/jipb.12483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/10/2016] [Indexed: 05/13/2023]
Abstract
The advent of high-throughput sequencing technologies coupled with new detection methods of RNA modifications has enabled investigation of a new layer of gene regulation - the epitranscriptome. With over 100 known RNA modifications, understanding the repertoire of RNA modifications is a huge undertaking. This review summarizes what is known about RNA modifications with an emphasis on discoveries in plants. RNA ribose modifications, base methylations and pseudouridylation are required for normal development in Arabidopsis, as mutations in the enzymes modifying them have diverse effects on plant development and stress responses. These modifications can regulate RNA structure, turnover and translation. Transfer RNA and ribosomal RNA modifications have been mapped extensively and their functions investigated in many organisms, including plants. Recent work exploring the locations, functions and targeting of N6 -methyladenosine (m6 A), 5-methylcytosine (m5 C), pseudouridine (Ψ), and additional modifications in mRNAs and ncRNAs are highlighted, as well as those previously known on tRNAs and rRNAs. Many questions remain as to the exact mechanisms of targeting and functions of specific modified sites and whether these modifications have distinct functions in the different classes of RNAs.
Collapse
Affiliation(s)
- Alice Burgess
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, Adelaide, Australia.
| |
Collapse
|
34
|
Shen L, Liang Z, Gu X, Chen Y, Teo ZWN, Hou X, Cai WM, Dedon PC, Liu L, Yu H. N(6)-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. Dev Cell 2016; 38:186-200. [PMID: 27396363 DOI: 10.1016/j.devcel.2016.06.008] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/28/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023]
Abstract
N(6)-Methyladenosine (m(6)A) represents the most prevalent internal modification on mRNA and requires a multicomponent m(6)A methyltransferase complex in mammals. How their plant counterparts determine the global m(6)A modification landscape and its molecular link to plant development remain unknown. Here we show that FKBP12 INTERACTING PROTEIN 37 KD (FIP37) is a core component of the m(6)A methyltransferase complex, which underlies control of shoot stem cell fate in Arabidopsis. The mutants lacking FIP37 exhibit massive overproliferation of shoot meristems and a transcriptome-wide loss of m(6)A RNA modifications. We further demonstrate that FIP37 mediates m(6)A RNA modification on key shoot meristem genes inversely correlated with their mRNA stability, thus confining their transcript levels to prevent shoot meristem overproliferation. Our results suggest an indispensable role of FIP37 in mediating m(6)A mRNA modification, which is required for maintaining the shoot meristem as a renewable source for continuously producing all aerial organs in plants.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Zhe Liang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Chen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Zhi Wei Norman Teo
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Xingliang Hou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weiling Maggie Cai
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise (CREATE), Singapore 138602, Singapore
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise (CREATE), Singapore 138602, Singapore
| | - Lu Liu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|