1
|
Zhang J, Zhang W, Ding C, Zhao J, Su X, Yuan Z, Chu Y, Huang Q, Su X. Non-Additive Gene Expression in Carbon and Nitrogen Metabolism Drives Growth Heterosis in Populus deltoides. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39789702 DOI: 10.1111/pce.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Growth heterosis is crucial for Populus deltoides breeding, a key industrial-timber and ecological-construction tree species in temperate regions. However, the molecular mechanisms underlying carbon (C)-nitrogen (N) metabolism coordination in regulating growth heterosis remain unclear. Herein high-hybrids of P. deltoides exhibited high-parent heterosis and mid-parent heterosis in growth traits and key enzymes of C-N metabolism. In hybrids, gene expression patterns were mainly biased toward female parent. Parental contribution to growth heterosis in P. deltoides is differentiation, rather than absolute maternal or paternal dominance contributions. Parental genes were predominantly and dynamically inherited in a non-additive manner, mainly with dominant expression patterns. A total of 44 non-additive genes associated with photosynthetic C fixation, starch and sucrose metabolism, sucrose transport, photorespiration, and nitrogen metabolism coregulated growth heterosis by coordinating C-N metabolism. Growth-regulating factors 4 interacted with DELLA genes to promote growth by enhancing this coordination. Additionally, five critical genes were identified. Briefly, the above genes in high-hybrids improved photosynthesis and N utilisation by regulating carbohydrate accumulation and enzyme activity, while reducing respiratory energy consumption, thereby providing more energy for growth and promoting growth heterosis. Our findings offer new insights and theoretical basis for deep understanding genetic and molecular regulation mechanisms of tree heterosis and its application in precision hybrid breeding.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jun Zhao
- Jiaozuo University, Jiaozuo, China
| | - Xuehui Su
- Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo, China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Pan T, Jin H, Zhou C, Yan M. Rice Serine Hydroxymethyltransferases: Evolution, Subcellular Localization, Function and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1116. [PMID: 38674525 PMCID: PMC11053755 DOI: 10.3390/plants13081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
In rice, there is a lack of comprehensive research on the functional aspects of the members of the serine hydroxymethyltransferase (SHMT) gene family. This study provides a comprehensive investigation of the SHMT gene family, covering phylogeny, gene structure, promoter analysis, expression analysis, subcellular localization, and protein interaction. Remarkably, we discovered a specific gene loss event occurred in the chloroplast-localized group IIa SHMTs in monocotyledons. However, OsSHMT3, which originally classified within cytoplasmic-localized group Ib, was found to be situated within chloroplasts in rice protoplasts. All five OsSHMTs are capable of forming homodimers, with OsSHMT3 being the only one able to form dimers with other OsSHMTs, except for OsSHMT1. It is proposed that OsSHMT3 functions as a mobile protein, collaborating with other OsSHMT proteins. Furthermore, the results of cis-acting element prediction and expression analysis suggested that members of the OsSHMT family could be involved in diverse stress responses and hormone regulation. Our study aims to provide novel insights for the future exploration of SHMTs.
Collapse
Affiliation(s)
| | | | | | - Mengyuan Yan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (H.J.); (C.Z.)
| |
Collapse
|
3
|
Triesch S, Denton AK, Bouvier JW, Buchmann JP, Reichel-Deland V, Guerreiro RNFM, Busch N, Schlüter U, Stich B, Kelly S, Weber APM. Transposable elements contribute to the establishment of the glycine shuttle in Brassicaceae species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:270-281. [PMID: 38168881 DOI: 10.1111/plb.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.
Collapse
Affiliation(s)
- S Triesch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - A K Denton
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - J W Bouvier
- Department of Biology, University of Oxford, Oxford, UK
| | - J P Buchmann
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Biological Data Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - V Reichel-Deland
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - R N F M Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N Busch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Schlüter
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - B Stich
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - S Kelly
- Department of Biology, University of Oxford, Oxford, UK
| | - A P M Weber
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
4
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
5
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
6
|
Scandola S, Mehta D, Castillo B, Boyce N, Uhrig RG. Systems-level proteomics and metabolomics reveals the diel molecular landscape of diverse kale cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1170448. [PMID: 37575922 PMCID: PMC10421703 DOI: 10.3389/fpls.2023.1170448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Kale is a group of diverse Brassicaceae species that are nutritious leafy greens consumed for their abundance of vitamins and micronutrients. Typified by their curly, serrated and/or wavy leaves, kale varieties have been primarily defined based on their leaf morphology and geographic origin, despite having complex genetic backgrounds. Kale is a very promising crop for vertical farming due to its high nutritional content; however, being a non-model organism, foundational, systems-level analyses of kale are lacking. Previous studies in kale have shown that time-of-day harvesting can affect its nutritional composition. Therefore, to gain a systems-level diel understanding of kale across its wide-ranging and diverse genetic landscape, we selected nine publicly available and commercially grown kale cultivars for growth under near-sunlight LED light conditions ideal for vertical farming. We then analyzed changes in morphology, growth and nutrition using a combination of plant phenotyping, proteomics and metabolomics. As the diel molecular activities of plants drive their daily growth and development, ultimately determining their productivity as a crop, we harvested kale leaf tissue at both end-of-day (ED) and end-of-night (EN) time-points for all molecular analyses. Our results reveal that diel proteome and metabolome signatures divide the selected kale cultivars into two groups defined by their amino acid and sugar content, along with significant proteome differences involving carbon and nitrogen metabolism, mRNA splicing, protein translation and light harvesting. Together, our multi-cultivar, multi-omic analysis provides new insights into the molecular underpinnings of the diel growth and development landscape of kale, advancing our fundamental understanding of this nutritious leafy green super-food for horticulture/vertical farming applications.
Collapse
Affiliation(s)
| | | | | | | | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Gao R, Luo Y, Pan X, Wang C, Liao W. Genome-wide identification of SHMT family genes in cucumber ( Cucumis sativus L.) and functional analyses of CsSHMTs in response to hormones and abiotic stresses. 3 Biotech 2022; 12:305. [PMID: 36276449 PMCID: PMC9526767 DOI: 10.1007/s13205-022-03378-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate-dependent enzyme that plays crucial roles in the photorespiration and one-carbon metabolism of plants. In the present research, we conducted a systematic analysis of the SHMT gene family in cucumber (Cucumis sativus L). Results show that a total of 6 SHMT members were identified from the cucumber genome database. CsSHMT1 and CsSHMT2 participate in a fragment duplication event, indicating that CsSHMTs may complete the expansion of family members through fragment duplication. Gene structure analysis found that the number of exons of CsSHMTs ranges from 4 to 15. Members with the same number of exons are classified into the same class in the phylogenetic analysis. Each class reflects its subcellular distribution. Expression and function analysis reveals that CsSHMTs express in a variety of plant tissues, indicating that SHMT gene expression pattern is not organ-specific. qRT-PCR analysis found that CsSHMT3 and CsSHMT5 positively respond to abscisic acid (ABA), and CsSHMT2-6 are induced by indole-3-acetic acid (IAA) and methyl jasmonate (MeJA). Abiotic stress analysis shows that CsSHMT3 is significantly induced by drought and salt stress. These results may provide useful information for further function and evolution analysis of cucumber SHMT genes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03378-x.
Collapse
Affiliation(s)
- Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Yanyan Luo
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
8
|
Munekage YN, Taniguchi YY. A scheme for C 4 evolution derived from a comparative analysis of the closely related C 3, C 3-C 4 intermediate, C 4-like, and C 4 species in the genus Flaveria. PLANT MOLECULAR BIOLOGY 2022; 110:445-454. [PMID: 35119574 DOI: 10.1007/s11103-022-01246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of the genus Flaveria showed a C4 evolutionary process in which the anatomical and metabolic features of C4 photosynthesis were gradually acquired through C3-C4 intermediate stages. C4 photosynthesis has been acquired in multiple lineages of angiosperms during evolution to suppress photorespiration. Crops that perform C4 photosynthesis exhibit high rates of CO2 assimilation and high grain production even under high-temperature in semiarid environments; therefore, engineering C4 photosynthesis in C3 plants is of great importance in the application field. The genus Flaveria contains a large number of C3, C3-C4 intermediate, C4-like, and C4 species, making it a good model genus to study the evolution of C4 photosynthesis, and these studies indicate the direction for C4 engineering. C4 photosynthesis was acquired gradually through the C3-C4 intermediate stage. First, a two-celled C2 cycle called C2 photosynthesis was acquired by localizing glycine decarboxylase activity in the mitochondria of bundle sheath cells. With the development of two-cell metabolism, anatomical features also changed. Next, the replacement of the two-celled C2 cycle by the two-celled C4 cycle was induced by the acquisition of cell-selective expression in addition to the upregulation of enzymes in the C4 cycle during the C3-C4 intermediate stage. This was supported by an increase in cyclic electron transport activity in response to an increase in the ATP/NADPH demand for metabolism. Suppression of the C3 cycle in mesophyll cells was induced after the functional establishment of the C4 cycle, and optimization of electron transport by suppressing the activity of photosystem II also occurred during the final phase of C4 evolution.
Collapse
Affiliation(s)
- Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
9
|
Combined Hybridization and Evaluation of High-Lysine Rice: Nutritional and Physicochemical Qualities and Field Performance. Int J Mol Sci 2022; 23:ijms232012166. [PMID: 36293019 PMCID: PMC9603072 DOI: 10.3390/ijms232012166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Rice, as a major food crop, provides necessary energy and nutrition for humans and livestock. However, its nutritional value is affected by lysine. Using point mutation, we previously obtained AK2 (aspartokinase) and DHDPS1 (dihydrodipicolinate synthase) genes insensitive to lysine feedback inhibition and constructed transgenic lines AK2-52 and DHDPS1-22, which show increased lysine synthesis, as well as Ri-12, which shows decreased lysine degradation by inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) activity. In this study, further transgenic lines were hybridized and evaluated. The lysine content of mature seeds from pyramid lines PRD and PRA increased 32.5- and 29.8-fold, respectively, compared with the wild-type, while the three-gene pyramiding line PRDA had a moderate lysine content. The total lysine, total free lysine, and total protein contents of PRD and PRA also increased and had no obvious impact on the physical and chemical quality, seed appearance, and main agronomic traits. Meanwhile, comparative analysis with polygenic polymeric lines GR containing bacterial AK (lysC) and DHDPS (dapA) genes revealed differences in the way bacterial and endogenous rice AK and DHDPS regulate lysine biosynthesis. These results provide a reference for further evaluation and commercialization of high-lysine transgenic rice.
Collapse
|
10
|
Billakurthi K, Schulze S, Schulz ELM, Sage TL, Schreier TB, Hibberd JM, Ludwig M, Westhoff P. Shedding light on AT1G29480 of Arabidopsis thaliana-An enigmatic locus restricted to Brassicacean genomes. PLANT DIRECT 2022; 6:e455. [PMID: 36263108 PMCID: PMC9576117 DOI: 10.1002/pld3.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A key feature of C4 Kranz anatomy is the presence of an enlarged, photosynthetically highly active bundle sheath whose cells contain large numbers of chloroplasts. With the aim to identify novel candidate regulators of C4 bundle sheath development, we performed an activation tagging screen with Arabidopsis thaliana. The reporter gene used encoded a chloroplast-targeted GFP protein preferentially expressed in the bundle sheath, and the promoter of the C4 phosphoenolpyruvate carboxylase gene from Flaveria trinervia served as activation tag because of its activity in all chlorenchymatous tissues of A. thaliana. Primary mutants were selected based on their GFP signal intensity, and one stable mutant named kb-1 with a significant increase in GFP fluorescence intensity was obtained. Despite the increased GFP signal, kb-1 showed no alterations to bundle sheath anatomy. The causal locus, AT1G29480, is specific to the Brassicaceae with its second exon being conserved. Overexpression and reconstitution studies confirmed that AT1G29480, and specifically its second exon, were sufficient for the enhanced GFP phenotype, which was not dependent on translation of the locus or its parts into protein. We conclude, therefore, that the AT1G29480 locus enhances the GFP reporter gene activity via an RNA-based mechanism.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits Towards Synthetic Modules’Düsseldorf‐CologneGermany
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Stefanie Schulze
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
| | - Eva Lena Marie Schulz
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoOntarioCanada
| | - Tina B. Schreier
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Julian M. Hibberd
- Department of Plant Sciences, Downing StreetUniversity of CambridgeCambridgeUK
| | - Martha Ludwig
- School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyUniversitätsstrasse 1, Heinrich‐Heine‐UniversityDuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits Towards Synthetic Modules’Düsseldorf‐CologneGermany
| |
Collapse
|
11
|
Transcriptional Comparison of Genes Associated with Photosynthesis, Photorespiration, and Photo-Assimilate Allocation and Metabolic Profiling of Rice Species. Int J Mol Sci 2022; 23:ijms23168901. [PMID: 36012167 PMCID: PMC9408291 DOI: 10.3390/ijms23168901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ever-increasing human population alongside environmental deterioration has presented a pressing demand for increased food production per unit area. As a consequence, considerable research effort is currently being expended in assessing approaches to enhance crop yields. One such approach is to harness the allelic variation lost in domestication. This is of particular importance since crop wild relatives often exhibit better tolerance to abiotic stresses. Here, we wanted to address the question as to why wild rice species have decreased grain production despite being characterized by enhanced rates of photosynthesis. In order to do so, we selected ten rice species on the basis of the presence of genome information, life span, the prominence of distribution, and habitat type and evaluated the expression of genes in photosynthesis, photorespiration, sucrose and starch synthesis, sucrose transport, and primary and secondary cell walls. We additionally measured the levels of a range of primary metabolites via gas chromatography–mass spectrometry. The results revealed that the wild rice species exhibited not only higher photosynthesis but also superior CO2 recovery by photorespiration; showed greater production of photosynthates such as soluble sugars and starch and quick transportation to the sink organs with a possibility of transporting forms such as RFOs, revealing the preferential consumption of soluble sugars to develop both primary and secondary cell walls; and, finally, displayed high glutamine/glutamic acid ratios, indicating that they likely exhibited high N-use efficiency. The findings from the current study thus identify directions for future rice improvement through breeding.
Collapse
|
12
|
Tefarikis DT, Morales-Briones DF, Yang Y, Edwards G, Kadereit G. On the hybrid origin of the C 2 Salsola divaricata agg. (Amaranthaceae) from C 3 and C 4 parental lineages. THE NEW PHYTOLOGIST 2022; 234:1876-1890. [PMID: 35288945 DOI: 10.1111/nph.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
C2 photosynthesis is characterised using recapturing photorespiratory CO2 by RuBisCo in Kranz-like cells and is therefore physiologically intermediate between C3 and C4 photosynthesis. C2 can be interpreted as an evolutionary precursor of C4 and/or as the result of hybridisation between a C3 and C4 lineage. We compared the expression of photosynthetic traits among populations of the Salsola divaricata agg. (C2 ) from humid subtropical to arid habitats on the coasts of the Canary Islands and Morocco and subjected them to salt and drought treatments. We screened for enhanced C4 -like expression of traits related to habitat or treatment. We estimated species trees with a transcriptome dataset of Salsoleae and explored patterns of gene tree discordance. With phylogenetic networks and hybridisation analyses we tested for the hybrid origin of the Salsola divaricata agg. We observed distinct independent variation of photosynthetic traits within and among populations and no clear evidence for selection towards C4 -like trait expression in more stressful habitats or treatments. We found reticulation and gene tree incongruence in Salsoleae supporting a putative hybrid origin of the Salsola divaricata agg. C2 photosynthesis in the Salsola divaricata agg. combines traits inherited from its C3 and C4 parental lineages and seems evolutionarily stable, possibly well adapted to a wide climatic amplitude.
Collapse
Affiliation(s)
- Delphine T Tefarikis
- AG Biodiversity and Evolution of Plants, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, 55108, USA
- Princess Therese von Bayern Chair of Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilians University of Munich, 80638, Munich, Germany
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN, 55108, USA
| | - Gerald Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Gudrun Kadereit
- AG Biodiversity and Evolution of Plants, Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
- Princess Therese von Bayern Chair of Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilians University of Munich, 80638, Munich, Germany
| |
Collapse
|
13
|
Mercado MA, Studer AJ. Meeting in the Middle: Lessons and Opportunities from Studying C 3-C 4 Intermediates. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:43-65. [PMID: 35231181 DOI: 10.1146/annurev-arplant-102720-114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of C3-C4 intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C3 to C4. A key feature of C3-C4 intermediates that utilize C2 photosynthesis is the improvement in photosynthetic efficiency compared with C3 species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C3 to C4 photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C2 photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C3-C4 intermediates species will enrich comparisons between evolutionary lineages. The investigation of C3-C4 intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.
Collapse
Affiliation(s)
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA; ,
| |
Collapse
|
14
|
Oono J, Hatakeyama Y, Yabiku T, Ueno O. Effects of growth temperature and nitrogen nutrition on expression of C 3-C 4 intermediate traits in Chenopodium album. JOURNAL OF PLANT RESEARCH 2022; 135:15-27. [PMID: 34519912 DOI: 10.1007/s10265-021-01346-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Proto-Kranz plants represent an initial phase in the evolution from C3 to C3-C4 intermediate to C4 plants. The ecological and adaptive aspects of C3-C4 plants would provide an important clue to understand the evolution of C3-C4 plants. We investigated whether growth temperature and nitrogen (N) nutrition influence the expression of C3-C4 traits in Chenopodium album (proto-Kranz) in comparison with Chenopodium quinoa (C3). Plants were grown during 5 weeks at 20 or 30 °C under standard or low N supply levels (referred to as 20SN, 20LN, 30SN, and 30LN). Net photosynthetic rate and leaf N content were higher in 20SN and 30SN plants than in 20LN and 30LN plants of C. album but did not differ among growth conditions in C. quinoa. The CO2 compensation point (Γ) of C. album was lowest in 30LN plants (36 µmol mol-1), highest in 20SN plants (51 µmol mol-1), and intermediate in 20LN and 30SN plants, whereas Γ of C. quinoa did not differ among the growth conditions (51-52 µmol mol-1). The anatomical structure of leaves was not considerably affected by growth conditions in either species. However, ultrastructural observations in C. album showed that the number of mitochondria per mesophyll or bundle sheath (BS) cell was lower in 20LN and 30LN plants than in 20SN and 30SN plants. Immunohistochemical observations revealed that lower accumulation level of P-protein of glycine decarboxylase (GDC-P) in mesophyll mitochondria than in BS mitochondria is the major factor causing the decrease in Γ values in C. album plants grown under low N supply and high temperature. These results suggest that high growth temperature and low N supply lead to the expression of C3-C4 traits (the reduction of Γ) in the proto-Kranz plants of C. album through the regulation of GDC-P expression.
Collapse
Affiliation(s)
- Jemin Oono
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
15
|
Huang CF, Liu WY, Jade Lu MY, Chen YH, Ku MSB, Li WH. Whole genome duplication facilitated the evolution of C4 photosynthesis in Gynandropsis gynandra. Mol Biol Evol 2021; 38:4715-4731. [PMID: 34191030 PMCID: PMC8557433 DOI: 10.1093/molbev/msab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In higher plants, whole-genome duplication (WGD) is thought to facilitate the evolution of C4 photosynthesis from C3 photosynthesis. To understand this issue, we used new and existing leaf-development transcriptomes to construct two coding sequence databases for C4Gynandropsis gynandra and C3Tarenaya hassleriana, which shared a WGD before their divergence. We compared duplicated genes in the two species and found that the WGD contributed to four aspects of the evolution of C4 photosynthesis in G. gynandra. First, G. gynandra has retained the duplicates of ALAAT (alanine aminotransferase) and GOGAT (glutamine oxoglutarate aminotransferase) for nitrogen recycling to establish a photorespiratory CO2 pump in bundle sheath (BS) cells for increasing photosynthesis efficiency, suggesting that G. gynandra experienced a C3–C4 intermediate stage during the C4 evolution. Second, G. gynandra has retained almost all known vein-development-related paralogous genes derived from the WGD event, likely contributing to the high vein complexity of G. gynandra. Third, the WGD facilitated the evolution of C4 enzyme genes and their recruitment into the C4 pathway. Fourth, several genes encoding photosystem I proteins were derived from the WGD and are upregulated in G. gynandra, likely enabling the NADH dehydrogenase-like complex to produce extra ATPs for the C4 CO2 concentration mechanism. Thus, the WGD apparently played an enabler role in the evolution of C4 photosynthesis in G. gynandra. Importantly, an ALAAT duplicate became highly expressed in BS cells in G. gynandra, facilitating nitrogen recycling and transition to the C4 cycle. This study revealed how WDG may facilitate C4 photosynthesis evolution.
Collapse
Affiliation(s)
- Chi-Fa Huang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Maurice S B Ku
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 600, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA
| |
Collapse
|
16
|
Cai Y, Yan J, Tu W, Deng Z, Dong W, Gao H, Xu J, Zhang N, Yin L, Meng Q, Zhang Y. Expression of Sucrose Transporters from Vitis vinifera Confer High Yield and Enhances Drought Resistance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21072624. [PMID: 32283825 PMCID: PMC7177370 DOI: 10.3390/ijms21072624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023] Open
Abstract
Sucrose is the predominant form of sugar transported from photosynthetic (source) to non-photosynthetic (sink) organs in higher plants relying on the transporting function of sucrose transporters (SUTs or SUCs). Many SUTs have been identified and characterized in both monocots and dicots. However, the function of sucrose transporters (SUTs or SUCs) from Vitis is not clear. As the world’s most planted grape species, Vitis vinifera owns three sucrose transport activity verified SUTs. In this study, we constructed three kinds of VvSUC (Vitis vinifera SUC)-overexpressing transgenic Arabidopsis. VvSUC-overexpressing transgenic Arabidopsis was cultured on sucrose-supplemented medium. VvSUC11- and VvSUC12-overexpressing lines had similar thrived growth phenotypes, whereas the size and number of leaves and roots from VvSUC27-overexpressing lines were reduced compared with that of WT. When plants were cultured in soil, all SUT transgenic seedlings produced more number of leaves and siliques, resulting in higher yield (38.6% for VvSUC12-transformants) than that of WT. Besides, VvSUC27-transformants and VvSUC11-transformants enhanced drought resistance in Arabidopsis, providing a promising target for crop improvement
Collapse
Affiliation(s)
- Yumeng Cai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jing Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Wenrui Tu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Zhefang Deng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Wenjie Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Han Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Jinxu Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Nan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing 100193, China;
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yali Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.C.); (J.Y.); (W.T.); (Z.D.); (W.D.); (H.G.); (J.X.); (N.Z.)
- Correspondence: ; Tel.: +86-010-62737465
| |
Collapse
|
17
|
Feng BH, Li GY, Islam M, Fu WM, Zhou YQ, Chen TT, Tao LX, Fu GF. Strengthened antioxidant capacity improves photosynthesis by regulating stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110245. [PMID: 31779890 DOI: 10.1016/j.plantsci.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 05/10/2023]
Abstract
ABA is important for plant growth and development; however, it also inhibits photosynthesis by regulating the stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Noteworthy, this negative effect can be alleviated by antioxidants including ascorbic acid (AsA) and catalase (CAT), but the underlying mechanism remains unclear. Two rice cultivars, Zhefu802 (recurrent parent) and its near-isogenic line, fgl were selected and planted in a greenhouse with 30/24 °C (day/night) under natural sunlight conditions. Compared to fgl, Zhefu802 had significantly lower net photosynthetic rate (PN) and stomatal conductance (Cond) as well as significantly higher ABA and H2O2 contents. However, AsA and CAT increased PN, Cond, and stomatal aperture, which decreased H2O2 and malondialdehyde (MDA) levels. In this process, AsA and CAT significantly increased the ribulose-1,5-bisphosphate carboxylase activity, while they strongly decreased the ribulose-1,5-bisphosphate oxygenase activity, and finally caused an obvious decrease in the ratio of photorespiration (Pr) to PN. Additionally, AsA and CAT significantly increased the expression levels of RbcS and RbcL genes of leaves, while H2O2 significantly decreased them, especially the RbcS gene. In summary, the removal of H2O2 by AsA and CAT can improve the leaf photosynthesis by alleviating the inhibition on the stomatal conductance and ribulose-1,5-bisphosphate carboxylase capacity caused by ABA.
Collapse
Affiliation(s)
- B H Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - G Y Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Md Islam
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - W M Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Y Q Zhou
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - T T Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - L X Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| | - G F Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| |
Collapse
|
18
|
Yang Q, Zhao D, Liu Q. Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example. FRONTIERS IN PLANT SCIENCE 2020; 11:928. [PMID: 32636870 PMCID: PMC7317030 DOI: 10.3389/fpls.2020.00928] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Extensive efforts have been made to fortify essential amino acids and boost nutrition in plants, but unintended effects on growth and physiology are also observed. Understanding how different amino acid metabolisms are connected with other biological pathways is therefore important. In addition to protein synthesis, amino acid metabolism is also tightly linked to energy and carbohydrate metabolism, the carbon-nitrogen budget, hormone and secondary metabolism, stress responses, and so on. Here, we update the currently available information on the connections between amino acid metabolisms, which tend to be overlooked in higher plants. Particular emphasis was placed on the connections between lysine metabolism and other pathways, such as tryptophan metabolism, the tricarboxylic acid cycle, abiotic and biotic stress responses, starch metabolism, and the unfolded protein response. Interestingly, regulation of lysine metabolism was found to differ between plant species, as is the case between dicots and monocots. Determining the metabolic connection between amino acid metabolisms will help improve our understanding of the metabolic flux, supporting studies on crop nutrition.
Collapse
Affiliation(s)
- Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Dongsheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Qiaoquan Liu,
| |
Collapse
|
19
|
Adwy W, Schlüter U, Papenbrock J, Peterhansel C, Offermann S. Loss of the M-box from the glycine decarboxylase P-subunit promoter in C2 Moricandia species. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Bohley K, Schröder T, Kesselmeier J, Ludwig M, Kadereit G. C4-like photosynthesis and the effects of leaf senescence on C4-like physiology in Sesuvium sesuvioides (Aizoaceae). JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1553-1565. [PMID: 30689935 PMCID: PMC6411375 DOI: 10.1093/jxb/erz011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/07/2019] [Indexed: 05/10/2023]
Abstract
Sesuvium sesuvioides (Sesuvioideae, Aizoaceae) is a perennial, salt-tolerant herb distributed in flats, depressions, or disturbed habitats of southern Africa and the Cape Verdes. Based on carbon isotope values, it is considered a C4 species, despite a relatively high ratio of mesophyll to bundle sheath cells (2.7:1) in the portulacelloid leaf anatomy. Using leaf anatomy, immunocytochemistry, gas exchange measurements, and enzyme activity assays, we sought to identify the biochemical subtype of C4 photosynthesis used by S. sesuvioides and to explore the anatomical, physiological, and biochemical traits of young, mature, and senescing leaves, with the aim to elucidate the plasticity and possible limitations of the photosynthetic efficiency in this species. Assays indicated that S. sesuvioides employs the NADP-malic enzyme as the major decarboxylating enzyme. The activity of C4 enzymes, however, declined as leaves aged, and the proportion of water storage tissue increased while air space decreased. These changes suggest a functional shift from photosynthesis to water storage in older leaves. Interestingly, S. sesuvioides demonstrated CO2 compensation points ranging between C4 and C3-C4 intermediate values, and immunocytochemistry revealed labeling of the Rubisco large subunit in mesophyll cells. We hypothesize that S. sesuvioides represents a young C4 lineage with C4-like photosynthesis in which C3 and C4 cycles are running simultaneously in the mesophyll.
Collapse
Affiliation(s)
- Katharina Bohley
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz, Germany
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Till Schröder
- Philipps-Universität, FB 16–Pharmazie, Marburg, Germany
| | - Jürgen Kesselmeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Martha Ludwig
- School of Molecular Sciences [310], University of Western Australia, Crawley, Western Australia, Australia
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz, Germany
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
21
|
Zhuang H, Wu F, Wei W, Dang Y, Yang B, Ma X, Han F, Li Y. Glycine decarboxylase induces autophagy and is downregulated by miRNA-30d-5p in hepatocellular carcinoma. Cell Death Dis 2019; 10:192. [PMID: 30804330 PMCID: PMC6389915 DOI: 10.1038/s41419-019-1446-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Glycine decarboxylase (GLDC) belongs to the glycine cleavage system and is involved in one-carbon metabolism. We previously reported that GLDC downregulation enhances hepatocellular carcinoma (HCC) progression and intrahepatic metastasis through decreasing ROS-mediated ubiquitination of cofilin. The role of autophagy in cancer metastasis is still controversial. Redox-dependent autophagy largely relies on the magnitude and the rate of ROS generation. Thus, we aimed to explore the role of GLDC in cellular autophagy during HCC progression. We showed that a high GLDC expression level is associated with better overall survival and is an independent factor for the favorable prognosis of HCC patients. GLDC overexpression significantly induced cell autophagy, whereas GLDC downregulation reduced cell autophagy. Of note, GLDC is the post-transcriptional target of miR-30d-5p. GLDC overexpression could rescue miR-30d-5p-mediated cell metastasis and increase autophagy. Furthermore, upregulation of GLDC could significantly decrease p62 expression and impair intrahepatic metastasis in vivo. Taken together, our results suggest that GLDC may play an important role to increasing miR-30d-5p-reduced autophagy to suppress HCC progress.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Fei Wu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Wen Wei
- School of Life Sciences, Chongqing University, 400044, Chongqing, China
| | - Yamei Dang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Baicai Yang
- Department of Gynaecology and Obstetrics, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang Province, China
| | - Xuda Ma
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
22
|
Matantseva O, Pozdnyakov I, Voss M, Liskow I, Skarlato S. The Uncoupled Assimilation of Carbon and Nitrogen from Urea and Glycine by the Bloom-forming Dinoflagellate Prorocentrum minimum. Protist 2018; 169:603-614. [DOI: 10.1016/j.protis.2018.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
|
23
|
A novel non-dairy beverage from durian pulp fermented with selected probiotics and yeast. Int J Food Microbiol 2018; 265:1-8. [DOI: 10.1016/j.ijfoodmicro.2017.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/27/2017] [Accepted: 10/28/2017] [Indexed: 01/13/2023]
|
24
|
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G. De novo Transcriptome Assembly and Comparison of C 3, C 3-C 4, and C 4 Species of Tribe Salsoleae (Chenopodiaceae). FRONTIERS IN PLANT SCIENCE 2017; 8:1939. [PMID: 29184562 PMCID: PMC5694442 DOI: 10.3389/fpls.2017.01939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 05/29/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis appears likely, since PEP-CK gene expression is not only increased in S. divaricata but also in C2 species of other groups.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hanno Schmidt
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Kumari Billakurthi
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Westhoff
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Udo Gowik
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Biology and Environmental Science (IBU), Plant Evolutionary Genetics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Gudrun Kadereit
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
25
|
Hatakeyama Y, Ueno O. Intracellular position of mitochondria in mesophyll cells differs between C 3 and C 4 grasses. JOURNAL OF PLANT RESEARCH 2017; 130:885-892. [PMID: 28434121 DOI: 10.1007/s10265-017-0947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
In C3 plants, part of the CO2 fixed during photosynthesis in chloroplasts is released from mitochondria during photorespiration by decarboxylation of glycine via glycine decarboxylase (GDC), thereby reducing photosynthetic efficiency. The apparent positioning of most mitochondria in the interior (vacuole side of chloroplasts) of mesophyll cells in C3 grasses would increase the efficiency of refixation of CO2 released from mitochondria by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in chloroplasts. Therefore, in mesophyll cells of C4 grasses, which lack both GDC and Rubisco, the mitochondria ought not to be positioned the same way as in C3 mesophyll cells. To test this hypothesis, we investigated the intracellular position of mitochondria in mesophyll cells of 14 C4 grasses of different C4 subtypes and subfamilies (Chloridoideae, Micrairoideae, and Panicoideae) and a C3-C4 intermediate grass, Steinchisma hians, under an electron microscope. In C4 mesophyll cells, most mitochondria were positioned adjacent to the cell wall, which clearly differs from the positioning in C3 mesophyll cells. In S. hians mesophyll cells, the positioning was similar to that in C3 cells. These results suggest that the mitochondrial positioning in C4 mesophyll cells reflects the absence of both GDC and Rubisco in the mesophyll cells and the high activity of phosphoenolpyruvate carboxylase. In contrast, the relationship between the mitochondrial positioning and enzyme distribution in S. hians is complex, but the positioning may be related to the capture of respiratory CO2 by Rubisco. Our study provides new possible insight into the physiological role of mitochondrial positioning in photosynthetic cells.
Collapse
Affiliation(s)
- Yuto Hatakeyama
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
- NARO Kyushu Okinawa Agricultural Research Center, Chikugoshi, Fukuoka, 833-0027, Japan
| | - Osamu Ueno
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
| |
Collapse
|
26
|
Yerramsetty P, Agar EM, Yim WC, Cushman JC, Berry JO. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4635-4649. [PMID: 28981775 PMCID: PMC5853808 DOI: 10.1093/jxb/erx264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Erin M Agar
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
27
|
Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW. C 3 -C 4 intermediates may be of hybrid origin - a reminder. THE NEW PHYTOLOGIST 2017; 215:70-76. [PMID: 28397963 DOI: 10.1111/nph.14567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
The currently favoured model of the evolution of C4 photosynthesis relies heavily on the interpretation of the broad phenotypic range of naturally growing C3 -C4 intermediates as proxies for evolutionary intermediate steps. On the other hand, C3 -C4 intermediates had earlier been interpreted as hybrids or hybrid derivates. By first comparing experimentally generated with naturally growing C3 -C4 intermediates, and second summarising either direct or circumstantial evidence for hybridisation in lineages comprising C3 , C4 and C3 -C4 intermediates, we conclude that a possible hybrid origin of C3 -C4 intermediates deserves careful examination. While we acknowledge that the current model of C4 photosynthesis evolution is clearly the best available, C3 -C4 intermediates of hybrid origin, if existing, should not be used for further analysis of this model. However, experimental C3 × C4 hybrids potentially are excellent systems to analyse the genetic differences between C3 and C4 species and, also using segregating progeny, to study the relationship between individual photosynthetic traits and environmental factors.
Collapse
Affiliation(s)
- Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Katharina Bohley
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Maximilian Lauterbach
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
28
|
Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G. Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C3-C4 intermediates and NAD-ME C4 species with Pilosoid-type Kranz anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:225-239. [PMID: 27986845 PMCID: PMC5853368 DOI: 10.1093/jxb/erw393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 05/24/2023]
Abstract
Portulacaceae is a family that has considerable diversity in photosynthetic phenotypes. It is one of 19 families of terrestrial plants where species having C4 photosynthesis have been found. Most species in Portulaca are in the alternate-leaved (AL) lineage, which includes one clade (Cryptopetala) with taxa lacking C4 photosynthesis and three clades having C4 species (Oleracea, Umbraticola and Pilosa). All three species in the Cryptopetala clade lack Kranz anatomy, the leaves have C3-like carbon isotope composition and they have low levels of C4 cycle enzymes. Anatomical, biochemical and physiological analyses show they are all C3-C4 intermediates. They have intermediate CO2 compensation points, enrichment of organelles in the centripetal position in bundle sheath (BS) cells, with selective localization of glycine decarboxylase in BS mitochondria. In the three C4 clades there are differences in Kranz anatomy types and form of malic enzyme (ME) reported to function in C4 (NAD-ME versus NADP-ME): Oleracea (Atriplicoid, NAD-ME), Umbraticola (Atriplicoid, NADP-ME) and Pilosa (Pilosoid, NADP-ME). Structural and biochemical analyses were performed on Pilosa clade representatives having Pilosoid-type leaf anatomy with Kranz tissue enclosing individual peripheral vascular bundles and water storage in the center of the leaf. In this clade, all species except P. elatior are NADP-ME-type C4 species with grana-deficient BS chloroplasts and grana-enriched M chloroplasts. Surprisingly, P. elatior has BS chloroplasts enriched in grana and NAD-ME-type photosynthesis. The results suggest photosynthetic phenotypes were probably derived from an ancestor with NADP-ME-type C4, with two independent switches to NAD-ME type.
Collapse
Affiliation(s)
- Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376, St. Petersburg, Russia
| | - Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376, St. Petersburg, Russia
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gilberto Ocampo
- Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
29
|
Furbank RT, Sage RF. Editorial overview: Physiology and metabolism: CO2 concentrating mechanisms in photosynthetic organisms: evolution, efficiency and significance for crop improvement. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:iv-vii. [PMID: 27173063 DOI: 10.1016/j.pbi.2016.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Robert T Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, 30, Toronto, ON M5S3B2, Canada
| |
Collapse
|