1
|
Kou Y, Shi H, Qiu J, Tao Z, Wang W. Effectors and environment modulating rice blast disease: from understanding to effective control. Trends Microbiol 2024; 32:1007-1020. [PMID: 38580607 DOI: 10.1016/j.tim.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Rice blast is a highly destructive crop disease that requires the interplay of three essential factors: the virulent blast fungus, the susceptible rice plant, and favorable environmental conditions. Although previous studies have focused mainly on the pathogen and rice, recent research has shed light on the molecular mechanisms by which the blast fungus and environmental conditions regulate host resistance and contribute to blast disease outbreaks. This review summarizes significant achievements in understanding the sophisticated modulation of blast resistance by Magnaporthe oryzae effectors and the dual regulatory mechanisms by which environmental conditions influence rice resistance and virulence of the blast fungus. Furthermore, it emphasizes potential strategies for developing blast-resistant rice varieties to effectively control blast disease.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
3
|
Yang W, Yang Z, Yang L, Li Z, Zhang Z, Wei T, Huang R, Li G. Genomic and transcriptomic analyses of the elite rice variety Huizhan provide insight into disease resistance and heat tolerance. Genomics 2024; 116:110915. [PMID: 39134161 DOI: 10.1016/j.ygeno.2024.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The indica rice variety Huizhan shows elite traits of disease resistance and heat tolerance. However, the underlying genetic basis of these traits is not fully understood due to limited genomic resources. Here, we used Nanopore long-read and next-generation sequencing technologies to generate a chromosome-scale genome assembly of Huizhan. Comparative genomics analysis uncovered a large chromosomal inversion and expanded gene families that are associated with plant growth, development and stress responses. Functional rice blast resistance genes, including Pi2, Pib and Ptr, and bacterial blight resistance gene Xa27, contribute to disease resistance of Huizhan. Furthermore, integrated genomics and transcriptomics analyses showed that OsHIRP1, OsbZIP60, the SOD gene family, and various transcription factors are involved in heat tolerance of Huizhan. The high-quality genome assembly and comparative genomics results presented in this study facilitate the use of Huizhan as an elite parental line in developing rice varieties adapted to disease pressure and climate challenges.
Collapse
Affiliation(s)
- Wei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhou Yang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Li
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaowu Zhang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Renliang Huang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Tang L, Song J, Cui Y, Fan H, Wang J. Detection and Evaluation of Blast Resistance Genes in Backbone Indica Rice Varieties from South China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2134. [PMID: 39124252 PMCID: PMC11314011 DOI: 10.3390/plants13152134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Rice blast caused by the pathogenic fungus Magnaporthe oryzae poses a significant threat to rice cultivation. The identification of robust resistance germplasm is crucial for breeding resistant varieties. In this study, we employed functional molecular markers for 10 rice blast resistance genes, namely Pi1, Pi2, Pi5, Pi9, Pia, Pid2, Pid3, Pigm, Pikh, and Pita, to assess blast resistance across 91 indica rice backbone varieties in South China. The results showed a spectrum of resistance levels ranging from highly resistant (HR) to highly susceptible (HS), with corresponding frequencies of 0, 19, 40, 27, 5, and 0, respectively. Yearly correlations in blast resistance genes among the 91 key indica rice progenitors revealed Pid2 (60.44%), Pia (50.55%), Pita (45.05%), Pi2 (32.97%), Pikh (4.4%), Pigm (2.2%), Pi9 (2.2%), and Pi1 (1.1%). Significant variations were observed in the distribution frequencies of these 10 resistance genes among these progenitors across different provinces. Furthermore, as the number of aggregated resistance genes increased, parental resistance levels correspondingly improved, though the efficacy of different gene combinations varied significantly. This study provides the initial steps toward strategically distributing varieties of resistant indica rice genotypes across South China.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.T.); (J.S.); (Y.C.); (H.F.)
| |
Collapse
|
5
|
Jinlong H, Yu Z, Ruizhi W, Xiaoyu W, Zhiming F, Qiangqiang X, Nianbing Z, Yong Z, Haiyan W, Hongcheng Z, Jinyan Z. A genome-wide association study of panicle blast resistance to Magnaporthe oryzae in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:49. [PMID: 39007057 PMCID: PMC11236831 DOI: 10.1007/s11032-024-01486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most serious diseases worldwide. Developing blast-resistant rice varieties is an effective strategy to control the spread of rice blast and reduce the reliance on chemical pesticides. In this study, 477 sequenced rice germplasms from 48 countries were inoculated and assessed at the booting stage. We found that 23 germplasms exhibited high panicle blast resistance against M. oryzae. Genome-wide association analysis (GWAS) identified 43 quantitative trait loci (QTLs) significantly associated (P < 1.0 × 10-4) with resistance to rice panicle blast. These QTL intervals encompass four genes (OsAKT1, OsRACK1A, Bsr-k1 and Pi25/Pid3) previously reported to contribute to rice blast resistance. We selected QTLs with -Log10 (P-value) greater than 6.0 or those detected in two-year replicates, amounting to 12 QTLs, for further candidate gene analysis. Three blast resistance candidate genes (Os06g0316800, Os06g0320000, Pi25/Pid3) were identified based on significant single nucleotide polymorphisms (SNP) distributions within annotated gene sequences across these 12 QTLs and the differential expression levels among blast-resistant varieties after 72 h of inoculation. Os06g0316800 encodes a glycine-rich protein, OsGrp6, an important component of plant cell walls involved in cellular stress responses and signaling. Os06g0320000 encodes a protein with unknown function (DUF953), part of the thioredoxin-like family, which is crucial for maintaining reactive oxygen species (ROS) homeostasis in vivo, named as OsTrxl1. Lastly, Pi25/Pid3 encodes a disease resistance protein, underscoring its potential importance in plant biology. By analyzing the haplotypes of these three genes, we identified favorable haplotypes for blast resistance, providing valuable genetic resources for future rice blast resistance breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01486-5.
Collapse
Affiliation(s)
- Hu Jinlong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Wang Ruizhi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Wang Xiaoyu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Feng Zhiming
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Xiong Qiangqiang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhou Nianbing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhou Yong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Wei Haiyan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhang Hongcheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhu Jinyan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
6
|
Ze M, Ma F, Zhang J, Duan J, Feng D, Shen Y, Chen G, Hu X, Dong M, Qi T, Zou L. Beneficial effects of Bacillus mojavensis strain MTC-8 on plant growth, immunity and disease resistance against Magnaporthe oryzae. Front Microbiol 2024; 15:1422476. [PMID: 38933037 PMCID: PMC11199545 DOI: 10.3389/fmicb.2024.1422476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rice blast, a prevalent and highly destructive rice disease that significantly impacts rice yield, is caused by the rice blast fungus. In the present study, a strain named MTC-8, identified as Bacillus mojavensis, was demonstrated has strong antagonistic activity against the rice blast fungus, Rhizoctonia solani, Ustilaginoidea virens, and Bipolaria maydis. The potential biocontrol agents were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis and chromatography. Further investigations elucidated the inhibitory mechanism of the isolated compound and demonstrated its ability to suppress spore germination, alter hyphal morphology, disrupt cell membrane integrity, and induce defense-related gene expression in rice. MTC-8 promoted plant growth and may lead to the development of a biocontrol agent that meets agricultural standards. Overall, the Bacillus mojavensis MTC-8 strain exerted beneficial effects on plant growth, immunity and disease resistance against rice blast fungus. In this study, we isolated and purified a bioactive substance from fermentation broth, and the results provide a foundation for the development and application of biopesticides. Elucidation of the inhibitory mechanism against rice blast fungus provides theoretical support for the identification of molecular targets. The successful development of a biocontrol agent lays the groundwork for its practical application in agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| |
Collapse
|
7
|
Hou J, Xiao H, Yao P, Ma X, Shi Q, Yang J, Hou H, Li L. Unveiling the mechanism of broad-spectrum blast resistance in rice: The collaborative role of transcription factor OsGRAS30 and histone deacetylase OsHDAC1. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1740-1756. [PMID: 38294722 PMCID: PMC11123394 DOI: 10.1111/pbi.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
8
|
Ambalavanan A, Mallikarjuna MG, Bansal S, Bashyal BM, Subramanian S, Kumar A, Prakash G. Genome-wide characterization of the NBLRR gene family provides evolutionary and functional insights into blast resistance in pearl millet (Cenchrus americanus (L.) Morrone). PLANTA 2024; 259:143. [PMID: 38704489 DOI: 10.1007/s00425-024-04413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
MAIN CONCLUSION The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Aruljothi Ambalavanan
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shilpi Bansal
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Science and Humanities, SRM Institute of Science and Technology, Modinagar, Uttar Pradesh, 201204, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
9
|
Zeng H, He K, He Q, Xu L, Zhang W, Lu X, Tang Y, Zhu X, Yin J, He M, Chen X, Li W. Exogenous Indole-3-Acetic Acid Suppresses Rice Infection of Magnaporthe oryzae by Affecting Plant Resistance and Fungal Growth. PHYTOPATHOLOGY 2024; 114:1050-1056. [PMID: 38709298 DOI: 10.1094/phyto-10-23-0365-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.
Collapse
Affiliation(s)
- Hongling Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qin He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
10
|
Lap B, Magudeeswari P, Tyagi W, Rai M. Genetic analysis of purple pigmentation in rice seed and vegetative parts - implications on developing high-yielding purple rice (Oryza sativa L.). J Appl Genet 2024; 65:241-254. [PMID: 38191812 DOI: 10.1007/s13353-023-00825-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Pigmentation in rice grains is an important quality parameter. Purple-coloured rice (Oryza sativa L.) indicates the presence of high anthocyanin with benefits of antioxidant properties. However, the genetic mechanism of grain colour is not fully understood. Therefore, the study focused on understanding pigmentation in grain pericarp and vegetative parts, and its relationship with blast resistance and enhanced grain yield. Three local cultivars from the northeastern region (NER) of India - Chakhao Poireiton (purple), Mang Meikri (light brown), and Kala Joha (white) - along with high-yielding varieties (HYVs) Shasharang (light brown) and Sahbhagi dhan (white) were used to develop biparental populations. The findings suggested that pigmentation in vegetative tissue was governed by the inter-allelic interaction of several genes. Haplotype analysis revealed that Kala3 complemented Kala4 in enhancing purple pigmentation and that Kala4 is not the only gene responsible for purple colour as evident by the presence of a desired allele for markers RID3 and RID4 (Kala4 locus) in Chakhao Poireiton and Kala Joha irrespective of their pericarp colour, implying the involvement of some other additional, unidentified genes/loci. RID3 and RID4 together with RM15191 (Kala3 locus) could be employed as a reliable marker set for marker-assisted selection (MAS). Pericarp colour was strongly correlated with colour in different vegetative parts, but showed a negative correlation with grain yield. Pb1, reported to be associated with panicle blast resistance, contributed to leaf blast resistance. Transgressive segregants for improved pigmentation and high yield were identified. The selection of lines exhibiting coloured pericarp, high anthocyanin content, aroma, blast resistance, and increased yield compared to their respective HYV parents will be valuable resources in the rice breeding programme.
Collapse
Affiliation(s)
- Bharati Lap
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - P Magudeeswari
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India
- Present Address: CMBTE, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India.
| |
Collapse
|
11
|
Shen W, Liu R, Wang J, Yang M, Qi T, Shu G, He M, Chen X. Characterization of a broad-spectrum antifungal strain, Streptomyces graminearus STR-1, against Magnaporthe oryzae. Front Microbiol 2024; 15:1298781. [PMID: 38650873 PMCID: PMC11033478 DOI: 10.3389/fmicb.2024.1298781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 04/25/2024] Open
Abstract
Fungal diseases such as the devastating rice blast pose severe threats to crop production worldwide. Biological control of crop diseases caused by fungal pathogens is an environment-friendly approach for safeguarding crop production. But the insufficient availability of microbial agents effective against various fungal diseases has hampered the development of green production in crops. In this study, we identified a broad-spectrum antifungal bacterium, Streptomyces graminearus STR-1, showing antagonistic activity to diverse fungal pathogens including Magnaporthe oryzae, Rhizoctonia solani, Fusarium graminearum, Ustilaginoidea virens, and Bipolaris maydis. Its antifungal activity was relatively stable and less affected by temperature and pH. Evaluation of the biocontrol activity of STR-1 revealed that STR-1 prevented and controlled rice blast disease via eliciting plant immunity and suppressing fungal infection-structure development. STR-1 broth extract inhibited spore germination, likely through inhibiting protein synthesis. Combining LC-MS and chromatography analysis of the antimicrobial compounds purified from STR-1 broth extract, together with decoding STR-1 genomic sequence, we identified 4-oxo-4-[(1-phenylethyl)amino]but-2-enoic acid, 1,3,5-Trimethylpyrazole and SMA-1 as the potential main STR-1 secondary metabolites associated with its antifungal effects. This study suggests that bacterial strain STR-1 could be used for identifying highly effective and broad-spectrum secondary metabolites for containing rice blast and other crop diseases. The application of the active compounds offers a promising measure to tackle fungal disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhang Y, Lin XF, Li L, Piao RH, Wu S, Song A, Gao M, Jin YM. CRISPR/Cas9-mediated knockout of Bsr-d1 enhances the blast resistance of rice in Northeast China. PLANT CELL REPORTS 2024; 43:100. [PMID: 38498220 DOI: 10.1007/s00299-024-03192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The blast resistance allele of OsBsr-d1 does not exist in most japonica rice varieties of Jilin Province in China. The development of Bsr-d1 knockout mutants via CRISPR/Cas9 enhances broad-spectrum resistance to rice blast in Northeast China. Rice blast is a global disease that has a significant negative impact on rice yield and quality. Due to the complexity and variability of the physiological races of rice blast, controlling rice blast is challenging in agricultural production. Bsr-d1, a negative transcription factor that confers broad-spectrum resistance to rice blast, was identified in the indica rice cultivar Digu; however, its biological function in japonica rice varieties is still unclear. In this study, we analyzed the blast resistance allele of Bsr-d1 in a total of 256 japonica rice varieties from Jilin Province in Northeast China and found that this allele was not present in these varieties. Therefore, we generated Bsr-d1 knockout mutants via the CRISPR/Cas9 system using the japonica rice variety Jigeng88 (JG88) as a recipient variety. Compared with those of the wild-type JG88, the homozygous Bsr-d1 mutant lines KO#1 and KO#2 showed enhanced leaf blast resistance at the seedling stage to several Magnaporthe oryzae (M. oryzae) races collected from Jilin Province in Northeast China. Physiological and biochemical indices revealed that the homozygous mutant lines produced more hydrogen peroxide than did JG88 plants when infected with M. oryzae. Comparative RNA-seq revealed that the DEGs were mainly involved in the synthesis of amide compounds, zinc finger proteins, transmembrane transporters, etc. In summary, our results indicate that the development of Bsr-d1 knockout mutants through CRISPR/Cas9 can enhance the broad-spectrum resistance of rice in Northeast China to rice blast. This study not only provides a theoretical basis for disease resistance breeding involving the Bsr-d1 gene in Northeast China, but also provides new germplasm resources for disease-resistance rice breeding.
Collapse
Affiliation(s)
- Ying Zhang
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, People's Republic of China
| | - Xiu-Feng Lin
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
| | - Li Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management On Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, 136100, People's Republic of China
| | - Ri-Hua Piao
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, People's Republic of China
| | - Songquan Wu
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Anqi Song
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Mengmeng Gao
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
- College of Agricultural Sciences, Yanbian University, Yanji, 133000, People's Republic of China
| | - Yong-Mei Jin
- Research Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China.
| |
Collapse
|
13
|
Zhang X, Liu Y, Yuan G, Wang S, Wang D, Zhu T, Wu X, Ma M, Guo L, Guo H, Bhadauria V, Liu J, Peng YL. The synthetic NLR RGA5 HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition. Nat Commun 2024; 15:1104. [PMID: 38321036 PMCID: PMC10847126 DOI: 10.1038/s41467-024-45380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Some plant sensor nucleotide-binding leucine-rich repeat (NLR) receptors detect pathogen effectors through their integrated domains (IDs). Rice RGA5 sensor NLR recognizes its corresponding effectors AVR-Pia and AVR1-CO39 from the blast fungus Magnaporthe oryzae through direct binding to its heavy metal-associated (HMA) ID to trigger the RGA4 helper NLR-dependent resistance in rice. Here, we report a mutant of RGA5 named RGA5HMA5 that confers complete resistance in transgenic rice plants to the M. oryzae strains expressing the noncorresponding effector AVR-PikD. RGA5HMA5 carries three engineered interfaces, two of which lie in the HMA ID and the other in the C-terminal Lys-rich stretch tailing the ID. However, RGA5 variants having one or two of the three interfaces, including replacing all the Lys residues with Glu residues in the Lys-rich stretch, failed to activate RGA4-dependent cell death of rice protoplasts. Altogether, this work demonstrates that sensor NLRs require a concerted action of multiple surfaces within and outside the IDs to both recognize effectors and activate helper NLR-mediated resistance, and has implications in structure-guided designing of sensor NLRs.
Collapse
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Yang Liu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Guixin Yuan
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Shiwei Wang
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China
| | - Dongli Wang
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Tongtong Zhu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Xuefeng Wu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Mengqi Ma
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China
| | - Liwei Guo
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, China
| | - Hailong Guo
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Vijai Bhadauria
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Junfeng Liu
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, 100193, Beijing, China.
| | - You-Liang Peng
- The State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
14
|
Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Fan J, Gong G, He M, Wang J, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis. Nat Commun 2023; 14:8399. [PMID: 38110425 PMCID: PMC10728069 DOI: 10.1038/s41467-023-44197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.
Collapse
Affiliation(s)
- Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tianyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Guobang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peili Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
15
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Chen YN, Wu DH, Chen MC, Hsieh MT, Jwo WS, Lin GC, Chen RK, Chou HP, Chen PC. Dynamics of spatial and temporal population structure of Pyricularia oryzae in Taiwan. PEST MANAGEMENT SCIENCE 2023; 79:4254-4263. [PMID: 37341444 DOI: 10.1002/ps.7621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND To gain a better understanding of how Pyricularia oryzae population shifts is important for selecting suitable resistance genes for rice breeding programs. However, the relationships between P. oryzae pathogenic dynamics, geographic distribution, rice varieties, and timeline are not well studied. RESULTS Resistance genes Piz-5, Pi9(t), Pi12(t), Pi20(t), Pita-2, and Pi11 showed stable resistance to the Taiwan rice blast fungus over 8 years of observations. Furthermore, 1749 rice blast isolates were collected from 2014 to 2021 and categorized into five pathotype clusters based on their correlation analysis between the geographic sources and virulence of Lijiangxintuanheigu monogenic lines. A detailed map of their distributions in Taiwan is presented. Isolates collected from the western region of Taiwan had greater pathotype diversity than those from the east region. Isolates collected from the subtropical region had greater diversity than those from the tropical region. Rice cultivars carrying Pik alleles were highly susceptible to pathotype L4. Cultivars with Piz-t were highly susceptible to pathotype L5, and those with Pish were highly susceptible to pathotype L1. The geographical distribution of each pathotype was distinct, and the population size of each pathotype fluctuated significantly each year. CONCLUSION The regional mega cultivars significantly impact the evolution of Pyricularia oryzae in Taiwan within the span of 8 years. However, the annual fluctuation of pathotype populations likely correlate to the rising annual temperatures that selected pathotype clusters by their optimal growth temperature. The results will provide useful information for effective disease management, and enable the R-genes to prolong their function in the fields. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Nian Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Dong-Hong Wu
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Mei-Chun Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Meng-Ting Hsieh
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Woei-Shyuan Jwo
- Technical Service Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Guo-Cih Lin
- Tainan District Agricultural Research and Extension Station, Council of Agriculture, Taiwan
| | - Rong-Kuen Chen
- Tainan District Agricultural Research and Extension Station, Council of Agriculture, Taiwan
| | - Hau-Ping Chou
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, Taiwan
| | - Pei-Chen Chen
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| |
Collapse
|
17
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
18
|
Zhao E, Dong L, Zhao H, Zhang H, Zhang T, Yuan S, Jiao J, Chen K, Sheng J, Yang H, Wang P, Li G, Qin Q. A Relationship Prediction Method for Magnaporthe oryzae-Rice Multi-Omics Data Based on WGCNA and Graph Autoencoder. J Fungi (Basel) 2023; 9:1007. [PMID: 37888263 PMCID: PMC10607591 DOI: 10.3390/jof9101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Magnaporthe oryzae Oryzae (MoO) pathotype is a devastating fungal pathogen of rice; however, its pathogenic mechanism remains poorly understood. The current research is primarily focused on single-omics data, which is insufficient to capture the complex cross-kingdom regulatory interactions between MoO and rice. To address this limitation, we proposed a novel method called Weighted Gene Autoencoder Multi-Omics Relationship Prediction (WGAEMRP), which combines weighted gene co-expression network analysis (WGCNA) and graph autoencoder to predict the relationship between MoO-rice multi-omics data. We applied WGAEMRP to construct a MoO-rice multi-omics heterogeneous interaction network, which identified 18 MoO small RNAs (sRNAs), 17 rice genes, 26 rice mRNAs, and 28 rice proteins among the key biomolecules. Most of the mined functional modules and enriched pathways were related to gene expression, protein composition, transportation, and metabolic processes, reflecting the infection mechanism of MoO. Compared to previous studies, WGAEMRP significantly improves the efficiency and accuracy of multi-omics data integration and analysis. This approach lays out a solid data foundation for studying the biological process of MoO infecting rice, refining the regulatory network of pathogenic markers, and providing new insights for developing disease-resistant rice varieties.
Collapse
Affiliation(s)
- Enshuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Liyan Dong
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Hengyi Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Tianyue Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Shuai Yuan
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Jiao Jiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Kang Chen
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Jianhua Sheng
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Hongbo Yang
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Pengyu Wang
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Guihua Li
- College of Plant Science, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130012, China;
| | - Qingming Qin
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MI 65211-7310, USA;
| |
Collapse
|
19
|
Escolà G, González-Miguel VM, Campo S, Catala-Forner M, Domingo C, Marqués L, San Segundo B. Development and Genome-Wide Analysis of a Blast-Resistant japonica Rice Variety. PLANTS (BASEL, SWITZERLAND) 2023; 12:3536. [PMID: 37896000 PMCID: PMC10667994 DOI: 10.3390/plants12203536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Rice is one of the most important crops in the world, and its production is severely affected by the rice blast disease caused by the fungus Magnaporthe oryzae. Several major blast resistance genes and QTLs associated with blast resistance have been described and mostly identified in indica rice varieties. In this work, we report the obtention of a blast-resistant rice breeding line derived from crosses between the resistant indica variety CT13432 and the japonica elite cultivar JSendra (highly susceptible to blast). The breeding line, named COPSEMAR9, was found to exhibit resistance to leaf blast and panicle blast, as demonstrated by disease assays under controlled and field conditions. Furthermore, a high-quality genome sequence of the blast-resistant breeding line was obtained using a strategy that combines short-read sequencing (Illumina sequencing) and long-read sequencing (Pacbio sequencing). The use of a whole-genome approach allowed the fine mapping of DNA regions of indica and japonica origin present in the COPSEMAR9 genome and the identification of parental gene regions potentially contributing to blast resistance in the breeding line. Rice blast resistance genes (including Pi33 derived from the resistant parent) and defense-related genes in the genome of COPSEMAR9 were identified. Whole-genome analyses also revealed the presence of microRNAs (miRNAs) with a known function in the rice response to M. oryzae infection in COPSEMAR9, which might also contribute to its phenotype of blast resistance. From this study, the genomic information and analysis methods provide valuable knowledge that will be useful in breeding programs for blast resistance in japonica rice cultivars.
Collapse
Affiliation(s)
- Glòria Escolà
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
| | - Víctor M. González-Miguel
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
| | - Mar Catala-Forner
- Institute of Agrifood Research and Technology (IRTA), Field Crops, Ctra. Balada km. 1, 43870 Tarragona, Spain;
| | - Concha Domingo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Departamento del Arroz and Centro de Genómica. Ctra Moncada-Náquera km 10.7, 46113 Moncada, Spain;
| | - Luis Marqués
- Cooperativa de Productores de Semillas de Arroz, S.C.L. (COPSEMAR) Avda del Mar 1, 46410 Sueca, Spain;
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193 Barcelona, Spain; (G.E.); (V.M.G.-M.); (S.C.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
20
|
Shaheen N, Ahmad S, Alghamdi SS, Rehman HM, Javed MA, Tabassum J, Shao G. CRISPR-Cas System, a Possible "Savior" of Rice Threatened by Climate Change: An Updated Review. RICE (NEW YORK, N.Y.) 2023; 16:39. [PMID: 37688677 PMCID: PMC10492775 DOI: 10.1186/s12284-023-00652-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/11/2023]
Abstract
Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia.
| | - Salem S Alghamdi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, National Rice Research Institute, 310006, Hangzhou, China.
- Zhejiang Lab, 310006, Hangzhou, China.
| |
Collapse
|
21
|
Simon EV, Hechanova SL, Hernandez JE, Li CP, Tülek A, Ahn EK, Jairin J, Choi IR, Sundaram RM, Jena KK, Kim SR. Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1247014. [PMID: 37731986 PMCID: PMC10507716 DOI: 10.3389/fpls.2023.1247014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production.
Collapse
Affiliation(s)
- Eliza Vie Simon
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
- Institute of Crop Science (ICropS), University of the Philippines Los Baños, Laguna, Philippines
| | - Sherry Lou Hechanova
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
| | - Jose E. Hernandez
- Institute of Crop Science (ICropS), University of the Philippines Los Baños, Laguna, Philippines
| | - Charng-Pei Li
- Taiwan Agricultural Research Institute (TARI), Council of Agriculture, Taiwan
| | - Adnan Tülek
- Trakya Agricultural Research Institute, Edirne, Türkiye
| | - Eok-Keun Ahn
- National Institute of Crop Science, Rural Development Administration (RDA), Republic of Korea
| | - Jirapong Jairin
- Division of Rice Research and Development, Rice Department, Bangkok, Thailand
| | - Il-Ryong Choi
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
- National Institute of Crop Science, Rural Development Administration (RDA), Republic of Korea
| | - Raman M. Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Kshirod K. Jena
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Sung-Ryul Kim
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
| |
Collapse
|
22
|
Wang Y, Yue J, Yang N, Zheng C, Zheng Y, Wu X, Yang J, Zhang H, Liu L, Ning Y, Bhadauria V, Zhao W, Xie Q, Peng YL, Chen Q. An ERAD-related ubiquitin-conjugating enzyme boosts broad-spectrum disease resistance and yield in rice. NATURE FOOD 2023; 4:774-787. [PMID: 37591962 DOI: 10.1038/s43016-023-00820-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
Rice is a staple crop for over half of the global population. However, blast disease caused by Magnaporthe orzae can result in more than a 30% loss in rice yield in epidemic years. Although some major resistance genes bolstering blast resistance have been identified in rice, their stacking in elite cultivars usually leads to yield penalties. Here we report that OsUBC45, a ubiquitin-conjugating enzyme functioning in the endoplasmic reticulum-associated protein degradation system, promotes broad-spectrum disease resistance and yield in rice. OsUBC45 is induced upon infection by M. oryzae, and its overexpression enhances resistance to blast disease and bacterial leaf blight by elevating pathogen-associated molecular pattern-triggered immunity (PTI) while nullifying the gene-attenuated PTI. The OsUBC45 overexpression also increases grain yield by over 10%. Further, OsUBC45 enhances the degradation of glycogen synthase kinase 3 OsGSK3 and aquaporin OsPIP2;1, which negatively regulate the grain size and PTI, respectively. The OsUBC45 reported in our study has the potential for improving yield and disease resistance for sustainable rice production.
Collapse
Affiliation(s)
- Yu Wang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jiaolin Yue
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Nan Yang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Chuan Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yunna Zheng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xi Wu
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Jun Yang
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vijai Bhadauria
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - You-Liang Peng
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Qian Chen
- MOA Key Lab of Pest Monitoring and Green Management and Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Overexpressing a ubiquitin-conjugating enzyme improves rice yield and disease resistance. NATURE FOOD 2023; 4:744-745. [PMID: 37591964 DOI: 10.1038/s43016-023-00829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
|
24
|
Sahoo B, Nayak I, Parameswaran C, Kesawat MS, Sahoo KK, Subudhi HN, Balasubramaniasai C, Prabhukarthikeyan SR, Katara JL, Dash SK, Chung SM, Siddiqui MH, Alamri S, Samantaray S. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 ( OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3035. [PMID: 37687282 PMCID: PMC10490456 DOI: 10.3390/plants12173035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Ravenshaw University, Cuttack 753006, India;
| | - Itishree Nayak
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Utkal University, Bhubaneswar 751004, India
| | - C. Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri University, Cuttack 754006, India
| | | | - H. N. Subudhi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Cayalvizhi Balasubramaniasai
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sushanta Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sang-Min Chung
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| |
Collapse
|
25
|
Deng Y, He Z. Genome editing enables defense-yield balance in rice. STRESS BIOLOGY 2023; 3:22. [PMID: 37676404 PMCID: PMC10442007 DOI: 10.1007/s44154-023-00102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 09/08/2023]
Abstract
This brief article highlights the key findings of the study conducted by Sha et al. (Nature, doi:10.1038/s41586-023-06205-2, 2023), focusing on the cloning of the RBL1 gene from rice, which is associated with lesion mimic mutant (LMM) traits. The RBL1 gene encodes a cytidine diphosphate diacylglycerol (CDP-DAG) synthase and plays a crucial role in regulating cell death and immunity by controlling phosphatidylinositol biosynthesis. The rbl1 mutant shows autoimmunity with multi-pathogen resistance but with severe yield penalty. Using genome editing techniques, the research team successfully generated an elite allele of RBL1 that not only restores rice yield but also provides broad-spectrum resistance against both bacterial and fungal pathogens. These findings demonstrate the potential of utilizing genome editing to enhance crop productivity and pathogen resistance.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
26
|
Yan Y, Guo YT, Chang CY, Li XM, Zhang MQ, Ding CH, Cui D, Sun C, Ren Y, Wang ML, Xie C, Ni Z, Sun Q, Chen F, Gou 缑金营 JY. HSP90.2 modulates 2Q2-mediated wheat resistance against powdery mildew. PLANT, CELL & ENVIRONMENT 2023; 46:1935-1945. [PMID: 36890722 DOI: 10.1111/pce.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) is a critical food crop feeding the world, but pathogens threaten its production. Wheat Heat Shock Protein 90.2 (HSP90.2) is a pathogen-inducible molecular chaperone folding nascent preproteins. Here, we used wheat HSP90.2 to isolate clients regulated at the posttranslational level. Tetraploid wheat hsp90.2 knockout mutant was susceptible to powdery mildew, while the HSP90.2 overexpression line was resistant, suggesting that HSP90.2 was essential for wheat resistance against powdery mildew. We next isolated 1500 clients of HSP90.2, which contained a wide variety of clients with different biological classifications. We utilized 2Q2, a nucleotide-binding leucine repeat-rich protein, as a model to investigate the potential of HSP90.2 interactome in fungal resistance. The transgenic line co-suppressing 2Q2 was more susceptible to powdery mildew, suggesting 2Q2 as a novel Pm-resistant gene. The 2Q2 protein resided in chloroplasts, and HSP90.2 played a critical role in the accumulation of 2Q2 in thylakoids. Our data provided over 1500 HSP90.2 clients with a potential regulation at the protein folding process and contributed a nontypical approach to isolate pathogenesis-related proteins.
Collapse
Affiliation(s)
- Yan Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Ting Guo
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chao-Yan Chang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiao-Ming Li
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mei-Qi Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ci-Hang Ding
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Dangqun Cui
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Improvement Joint Center/College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jin-Ying Gou 缑金营
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Sha G, Sun P, Kong X, Han X, Sun Q, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q, Zhou Y, Zhou W, Jain R, Gao J, Huang R, Chen X, Zheng L, Zhang W, Qin Z, Zhou Q, Zeng Q, Xie K, Xu J, Chiu TY, Guo L, Mortimer JC, Boutté Y, Li Q, Kang Z, Ronald PC, Li G. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 2023; 618:1017-1023. [PMID: 37316672 DOI: 10.1038/s41586-023-06205-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.
Collapse
Affiliation(s)
- Gan Sha
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Kong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yun Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiuwen Gong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wenqing Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Renliang Huang
- National Engineering Research Center of Rice (Nanchang), Key Laboratory of Rice Physiology and Genetics of Jiangxi Province, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xiaoyang Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wanying Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qi Zhou
- BGI-Shenzhen, Shenzhen, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | | | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jenny C Mortimer
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, China.
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA.
- Feedstocks Division, The Joint BioEnergy Institute, Emeryville, CA, USA.
| |
Collapse
|
28
|
Shen E, Wang X, Lu Z, Zhou F, Ma W, Cui Z, Li Z, Li C, Lin Y. Overexpression of a beta-1,6-glucanase gene GluM in transgenic rice confers high resistance to rice blast, sheath blight and false smut. PEST MANAGEMENT SCIENCE 2023; 79:2152-2162. [PMID: 36729081 DOI: 10.1002/ps.7394] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Frequent fungal diseases tend to lead to severe losses in rice production. As a main component of the fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking glycosidic bonds, and may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS We transferred a codon-optimized β-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety Zhonghua11 (ZH11), and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of the recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over 3 years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss of yield (without a significant effect on agronomic traits). Furthermore, plants overexpressing a β-1,6-glucanase gene showed higher disease resistance than rice plants overexpressing a β-1,3-glucanase gene derived from tobacco. CONCLUSION The β-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environmentally friendly alternative way to effectively manage fungal pathogens in rice production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingchao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoxi Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Zhang T, Hu H, Wang Z, Feng T, Yu L, Zhang J, Gao W, Zhou Y, Sun M, Liu P, Zhong K, Chen Z, Chen J, Li W, Yang J. Wheat yellow mosaic virus NIb targets TaVTC2 to elicit broad-spectrum pathogen resistance in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1073-1088. [PMID: 36715229 PMCID: PMC10106851 DOI: 10.1111/pbi.14019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 05/03/2023]
Abstract
GDP-L-galactose phosphorylase (VTC2) catalyses the conversion of GDP-L-galactose to L-galactose-1-P, a vital step of ascorbic acid (AsA) biosynthesis in plants. AsA is well known for its function in the amelioration of oxidative stress caused by most pathogen infection, but its function against viral infection remains unclear. Here, we have identified a VTC2 gene in wheat named as TaVTC2 and investigated its function in association with the wheat yellow mosaic virus (WYMV) infection. Our results showed that overexpression of TaVTC2 significantly increased viral accumulation, whereas knocking down TaVTC2 inhibited the viral infection in wheat, suggesting a positive regulation on viral infection by TaVTC2. Moreover, less AsA was produced in TaVTC2 knocking down plants (TaVTC2-RNAi) which due to the reduction in TaVTC2 expression and subsequently in TaVTC2 activity, resulting in a reactive oxygen species (ROS) burst in leaves. Furthermore, the enhanced WYMV resistance in TaVTC2-RNAi plants was diminished by exogenously applied AsA. We further demonstrated that WYMV NIb directly bound to TaVTC2 and inhibited TaVTC2 enzymatic activity in vitro. The effect of TaVTC2 on ROS scavenge was suppressed by NIb in a dosage-dependent manner, indicating the ROS scavenging was highly regulated by the interaction of TaVTC2 with NIb. Furthermore, TaVTC2 RNAi plants conferred broad-spectrum disease resistance. Therefore, the data indicate that TaVTC2 recruits WYMV NIb to down-regulate its own enzymatic activity, reducing AsA accumulation to elicit a burst of ROS which confers the resistance to WYMV infection. Thus, a new mechanism of the formation of plant innate immunity was proposed.
Collapse
Affiliation(s)
- Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Haichao Hu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Ziqiong Wang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | | | - Lu Yu
- Guizhou UniversityGuiyangGuizhouChina
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Wenqing Gao
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Meihao Sun
- College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - ZhiHui Chen
- School of Life SciencesUniversity of DundeeDundeeUK
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
30
|
Zhang H, Liu Y, Zhang X, Ji W, Kang Z. A necessary considering factor for breeding: growth-defense tradeoff in plants. STRESS BIOLOGY 2023; 3:6. [PMID: 37676557 PMCID: PMC10441926 DOI: 10.1007/s44154-023-00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 09/08/2023]
Abstract
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuanming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
31
|
Vo KTX, Yi Q, Jeon JS. Engineering effector-triggered immunity in rice: Obstacles and perspectives. PLANT, CELL & ENVIRONMENT 2023; 46:1143-1156. [PMID: 36305486 DOI: 10.1111/pce.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Improving rice immunity is one of the most effective approaches to reduce yield loss by biotic factors, with the aim of increasing rice production by 2050 amidst limited natural resources. Triggering a fast and strong immune response to pathogens, effector-triggered immunity (ETI) has intrigued scientists to intensively study and utilize the mechanisms for engineering highly resistant plants. The conservation of ETI components and mechanisms across species enables the use of ETI components to generate broad-spectrum resistance in plants. Numerous efforts have been made to introduce new resistance (R) genes, widen the effector recognition spectrum and generate on-demand R genes. Although engineering ETI across plant species is still associated with multiple challenges, previous attempts have provided an enhanced understanding of ETI mechanisms. Here, we provide a survey of recent reports in the engineering of rice R genes. In addition, we suggest a framework for future studies of R gene-effector interactions, including genome-scale investigations in both rice and pathogens, followed by structural studies of R proteins and effectors, and potential strategies to use important ETI components to improve rice immunity.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Qi Yi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
32
|
Zou T, Li G, Liu M, Liu R, Yang S, Wang K, Lu L, Ye Q, Liu J, Liang J, Deng Q, Wang S, Zhu J, Liang Y, Liu H, Yu X, Sun C, Li P, Li S. A ubiquitin-specific protease functions in regulating cell death and immune responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1312-1326. [PMID: 36624579 DOI: 10.1111/pce.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liuhui Lu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiuyu Ye
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changhui Sun
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Gao JG, Zhu XG. The legacies of the "Father of Hybrid Rice" and the seven representative achievements of Chinese rice research: A pioneering perspective towards sustainable development. FRONTIERS IN PLANT SCIENCE 2023; 14:1087768. [PMID: 37025150 PMCID: PMC10070957 DOI: 10.3389/fpls.2023.1087768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The "Father of Hybrid Rice", Yuan Longping, created high-yield hybrid rice that can feed tens of millions of people annually. The research achievements of Yuan and his team on low cadmium-accumulating rice and sea rice, in addition to hybrid rice, as well as those of a large number of Chinese scientists engaged in rice research in other six areas, including the rice genome, purple endosperm rice, de novo domestication of tetraploid rice, perennial rice, rice blast disease, and key genes for high nitrogen use efficiency, play an important role in promoting the realization of the United Nations Sustainable Development Goals 2 and 12. The purpose of this review is not to elaborate on the details of each research, but to innovatively summarize the significance and inspiration of these achievements to ensure global food security and achieve sustainable agriculture. In the future, cultivating new rice varieties through modern biotechnology, such as genome editing, will not only reduce hunger, but potentially reduce human-land conflicts, improve the environment, and mitigate climate change.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Ecology, Peking University, Beijing, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Thulasinathan T, Ayyenar B, Kambale R, Manickam S, Chellappan G, Shanmugavel P, Narayanan MB, Swaminathan M, Muthurajan R. Marker Assisted Introgression of Resistance Genes and Phenotypic Evaluation Enabled Identification of Durable and Broad-Spectrum Blast Resistance in Elite Rice Cultivar, CO 51. Genes (Basel) 2023; 14:genes14030719. [PMID: 36980991 PMCID: PMC10048046 DOI: 10.3390/genes14030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 03/17/2023] Open
Abstract
Across the globe, rice cultivation is seriously affected by blast disease, caused by Magnaporthe oryzae. This disease has caused heavy yield loss to farmers over the past few years. In this background, the most affordable and eco-friendly strategy is to introgress blast-resistant genes from donors into elite rice cultivars. However, it is not only challenging to evolve such resistance lines using conventional breeding approaches, but also a time-consuming process. Therefore, the marker-assisted introduction of resistance genes has been proposed as a rapid strategy to develop durable and broad-spectrum resistance in rice cultivars. The current study highlights the successful introgression of a blast resistance gene, i.e., Pi9, into CO 51, an elite rice cultivar which already has another resistance gene named Pi54. The presence of two blast resistance genes in the advanced backcross breeding materials (BC2F2:3) was confirmed in this study through a foreground selection method using functional markers such as NBS4 and Pi54MAS. The selected positive introgressed lines were further genotyped for background selection with 55 SSR markers that are specific to CO 51. Consequently, both Pi9 as well as Pi54 pyramided lines, with 82.7% to 88.1% of the recurrent parent genome recovery, were identified and the selected lines were evaluated under hotspot. The analysis outcomes found that both the lines possessed a high level of resistance against blast disease during the seedling stage itself. In addition to this, it was also noticed that the advanced breeding rice lines that carry Pi9 + Pi54 were effective in nature and exhibited a higher degree of resistance against blast disease compared to the lines that were introgressed with a single blast resistance gene. Thus, the current study demonstrates a rapid and a successful introgression and pyramiding of two blast resistance genes, with the help of markers, into a susceptible yet high-yielding elite rice cultivar within a short period of time. Those gene pyramided rice lines can be employed as donors to introgress the blast-resistant genes in other popular susceptible cultivars.
Collapse
Affiliation(s)
- Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Bharathi Ayyenar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Gopalakrishnan Chellappan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Priyanka Shanmugavel
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manikanda B. Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence:
| |
Collapse
|
35
|
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity. Int J Mol Sci 2023; 24:ijms24054985. [PMID: 36902415 PMCID: PMC10003181 DOI: 10.3390/ijms24054985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Collapse
|
36
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
37
|
Gao P, Li M, Wang X, Xu Z, Wu K, Sun Q, Du H, Younas MU, Zhang Y, Feng Z, Hu K, Chen Z, Zuo S. Identification of Elite R-Gene Combinations against Blast Disease in Geng Rice Varieties. Int J Mol Sci 2023; 24:ijms24043984. [PMID: 36835399 PMCID: PMC9960461 DOI: 10.3390/ijms24043984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rice blast, caused by the Magnaporthe oryzae fungus, is one of the most devastating rice diseases worldwide. Developing resistant varieties by pyramiding different blast resistance (R) genes is an effective approach to control the disease. However, due to complex interactions among R genes and crop genetic backgrounds, different R-gene combinations may have varying effects on resistance. Here, we report the identification of two core R-gene combinations that will benefit the improvement of Geng (Japonica) rice blast resistance. We first evaluated 68 Geng rice cultivars at seedling stage by challenging with 58 M. oryzae isolates. To evaluate panicle blast resistance, we inoculated 190 Geng rice cultivars at boosting stage with five groups of mixed conidial suspensions (MCSs), with each containing 5-6 isolates. More than 60% cultivars displayed moderate or lower levels of susceptibility to panicle blast against the five MCSs. Most cultivars contained two to six R genes detected by the functional markers corresponding to 18 known R genes. Through multinomial logistics regression analysis, we found that Pi-zt, Pita, Pi3/5/I, and Pikh loci contributed significantly to seedling blast resistance, and Pita, Pi3/5/i, Pia, and Pit contributed significantly to panicle blast resistance. For gene combinations, Pita+Pi3/5/i and Pita+Pia yielded more stable pyramiding effects on panicle blast resistance against all five MCSs and were designated as core R-gene combinations. Up to 51.6% Geng cultivars in the Jiangsu area contained Pita, but less than 30% harbored either Pia or Pi3/5/i, leading to less cultivars containing Pita+Pia (15.8%) or Pita+Pi3/5/i (5.8%). Only a few varieties simultaneously contained Pia and Pi3/5/i, implying the opportunity to use hybrid breeding procedures to efficiently generate varieties with either Pita+Pia or Pita+Pi3/5/i. This study provides valuable information for breeders to develop Geng rice cultivars with high resistance to blast, especially panicle blast.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Mingyou Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xiaoqiu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiwen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Keting Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Quanyi Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Haibo Du
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (S.Z.)
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (S.Z.)
| |
Collapse
|
38
|
Zhan C, Lei L, Guo H, Zhou S, Xu C, Liu Z, Wu Z, Deng Y, Miao Y, Han Y, Zhang M, Li H, Huang S, Yang C, Zhang F, Li Y, Liu L, Liu X, Abbas HMK, Fernie AR, Yuan M, Luo J. Disease resistance conferred by components of essential chrysanthemum oil and the epigenetic regulation of OsTPS1. SCIENCE CHINA LIFE SCIENCES 2022; 66:1108-1118. [PMID: 36462108 DOI: 10.1007/s11427-022-2241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
The sesquiterpene alpha-bisabolol is the predominant active ingredient in essential oils that are highly valued in the cosmetics industry due to its wound healing, anti-inflammatory, and skin-soothing properties. Alpha-bisabolol was thought to be restricted to Compositae plants. Here we reveal that alpha-bisabolol is also synthesized in rice, a non-Compositae plant, where it acts as a novel sesquiterpene phytoalexin. Overexpressing the gene responsible for the biosynthesis of alpha-bisabolol, OsTPS1, conferred bacterial blight resistance in rice. Phylogenomic analyses revealed that alpha-bisabolol-synthesizing enzymes in rice and Compositae evolved independently. Further experiments demonstrated that the natural variation in the disease resistance level was associated with differential transcription of OsTPS1 due to polymorphisms in its promoter. We demonstrated that OsTPS1 was regulated at the epigenetic level by JMJ705 through the methyl jasmonate pathway. These data reveal the cross-family accumulation and regulatory mechanisms of alpha-bisabolol production.
Collapse
|
39
|
Xu Y, Miao Y, Cai B, Yi Q, Tian X, Wang Q, Ma D, Luo Q, Tan F, Hu Y. A histone deacetylase inhibitor enhances rice immunity by derepressing the expression of defense-related genes. FRONTIERS IN PLANT SCIENCE 2022; 13:1041095. [PMID: 36407628 PMCID: PMC9667192 DOI: 10.3389/fpls.2022.1041095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely used in plants to investigate the role of histone acetylation, particularly the function of HDACs, in the regulation of development and stress response. However, how histone acetylation is involved in rice (Oryza sativa L.) disease resistance has hardly been studied. In this paper, four HDACis including Sodium butyrate (NaBT), Suberoylanilide Hydroxamic Acid (SAHA), LBH-589 and Trichostatin A (TSA) were used to treat rice seedlings at different concentrations before inoculation of Magnaporthe oryzae. We found that only 10mM NaBT treatment can significantly enhanced rice blast resistance. However, treatment of the four HDACis all increased global histone acetylation but at different sites, suggesting that the inhibition selectivity of these HDACis is different. Notably, the global H3K9ac level was dramatically elevated after both NaBT and LBH589 treatment although LBH589 could not enhance rice blast resistance. This indicates that the HDACs they inhibit target different genes. In accordance with the phenotype, transcriptomic analysis showed that many defense-related genes were up-regulated by NaBT treatment. Up-regulation of the four genes bsr-d1, PR10B, OsNAC4, OsKS4 were confirmed by RT-qPCR. ChIP-qPCR results revealed that H3K9ac level on these genes was increased after NaBT treatment, suggesting that these defense-related genes were repressed by HDACs. In addition, by promoter motif analysis of the genes that induced by both NaBT treatment and rice blast infection, we found that the motifs bound by ERF and AHL transcription factors (TFs) were the most abundant, which demonstrates that ERF and AHL proteins may act as the candidate TFs that recruit HDACs to defense-related genes to repress their expression when plants are not infected by rice blast.
Collapse
Affiliation(s)
- Yan Xu
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yuanxin Miao
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Botao Cai
- Center for Science Popularization Jingmen, Science and Technology Museum, Jingmen, China
| | - Qingping Yi
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Xuejun Tian
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Qihai Wang
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Dan Ma
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Feng Tan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, China
| |
Collapse
|
40
|
Kapoor R, Kumar G, Pawar L, Salvi P, Devanna BN, Singh K, Sharma TR. Stress responsive OsHyPRP16 promoter driven early expression of resistance gene Pi54 potentiate the resistance against Magnaporthe oryzae in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111413. [PMID: 35963493 DOI: 10.1016/j.plantsci.2022.111413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The rice Hybrid Proline Rich Protein (HyPRP) encoding gene, OsHyPRP16 expression exhibit early upregulation in response to Magnaporthe oryzae inoculation. Here, we functionally characterized the OsHyPRP16 promoter through deletion analysis in transgenic Arabidopsis using GUS (β-glucuronidase) reporter assay. The promoter fragments, sequentially deleted from the 5' end could induce differential GUS activity in response to stresses induced by different hormones and abiotic stress conditions. In addition, a strong GUS induction was observed in M. oryzae inoculated transgenic Arabidopsis. Based on the insilico and stress-inducibility of D1 promoter fragment against various phytohormones and rice blast fungus, and with no basal activity under control conditions, we rationally selected D1 promoter fragment to drive the expression of a major rice blast resistance gene; Pi54 in the genetic background of blast susceptible TP309 rice line. The D1 promoter fragment was able to induce the expression of Pi54 at immediate-early stages of M. oryzae infection in transgenic rice. The transgenic plants with Pi54 under the control of D1 promoter fragment displayed complete resistance against M. oryzae infection as compared to control plants. The present study suggests that the D1 fragment of OsHyPRP16 promoter is a valuable tool for breeding and development of rice lines with early-inducible and pathogen-responsive enhanced disease resistance.
Collapse
Affiliation(s)
- Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gulshan Kumar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Lata Pawar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Basavantraya N Devanna
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Indian council of Agricultural Research, New Delhi, India.
| |
Collapse
|
41
|
Liang D, Yu J, Song T, Zhang R, Du Y, Yu M, Cao H, Pan X, Qiao J, Liu Y, Qi Z, Liu Y. Genome-Wide Prediction and Analysis of Oryza Species NRP Genes in Rice Blast Resistance. Int J Mol Sci 2022; 23:ijms231911967. [PMID: 36233270 PMCID: PMC9569735 DOI: 10.3390/ijms231911967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Members of the N-rich proteins (NRPs) gene family play important roles in the plant endoplasmic reticulum stress in response, which can be triggered by plant pathogens’ infection. Previous studies of the NRP gene family have been limited to only a few plants, such as soybean and Arabidopsis thaliana. Thus, their evolutionary characteristics in the Oryza species and biological functions in rice defense against the pathogenic fungus Magnaporthe oryzae have remained unexplored. In the present study, we demonstrated that the NRP genes family may have originated in the early stages of plant evolution, and that they have been strongly conserved during the evolution of the Oryza species. Domain organization of NRPs was found to be highly conserved within but not between subgroups. OsNRP1, an NRP gene in the Oryza sativa japonica group, was specifically up-regulated during the early stages of rice-M. oryzae interactions-inhibited M. oryzae infection. Predicted protein-protein interaction networks and transcription-factor binding sites revealed a candidate interactor, bZIP50, which may be involved in OsNRP1-mediated rice resistance against M. oryzae infection. Taken together, our results established a basis for future studies of the NRP gene family and provided molecular insights into rice immune responses to M. oryzae.
Collapse
Affiliation(s)
| | | | | | | | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rathour R, Kumar R, Thakur K, Pote TD. Genetic improvement for blast resistance in high-yielding cold-tolerant rice ( Oryza sativa L.) cultivar Himalaya 741 by marker-assisted backcross breeding. 3 Biotech 2022; 12:165. [PMID: 35845107 PMCID: PMC9276897 DOI: 10.1007/s13205-022-03244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Blast disease and cold stress are two major yield-limiting factors for rice under temperate climates. Marker-assisted backcross breeding approach (MABB) was employed for the improvement of blast resistance in a popular cold-tolerant variety 'Himalaya741' by introgressing a broad-spectrum resistance locus Pi9 from a Basmati donor PB1637. A combined use of phenotypic selection and marker-based genotypic selection ensured speedy reconstitution of the recurrent parent genome (RPG) in backcross progenies; RPG recovery in most of the progenies was > 96% with three progenies namely, HPU-1-33, -38 and -49 showing complete recovery of recurrent parent genome. Notwithstanding a very higher recovery rate of RPG in introgression lines, the lines still inherited a large linkage block > 13.3 Mb with Pi9 from the donor line PB1637. The donor chromosome segments co-inherited with Pi9 gene, however, did not have any adverse effect on the agronomic performance of the Pi9 introgression lines. Of the eight genetically superior Pi9 introgression lines identified, two exhibited resemblance to Himalaya 741 for most of the agronomic traits in addition to having superior grain length and tiller number. The introgression line HPU-1-81 displayed 44% yield superiority over recurrent parent, primarily due to improvement in yield-contributing traits, namely, tiller number, panicle length, thousand-seed-weight and grain length. All the Pi9 introgression lines displayed a high level of resistance comparable to PB1637 against two highly virulent blast races, which collectively displayed compatibility to 15 different major resistance genes. The introgression lines also possessed reproductive stage cold tolerance similar to recurrent parent under prevailing cold stress conditions. The agronomically superior Pi9 introgression lines developed herein are expected to provide a comparable or better substitute to blast susceptible variety Himalaya 741 for extenuating losses due to cold stress and blast disease. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03244-w.
Collapse
Affiliation(s)
- Rajeev Rathour
- CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rohit Kumar
- CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Kalpna Thakur
- CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | | |
Collapse
|
43
|
Feng Z, Li M, Xu Z, Gao P, Wu Y, Wu K, Zhao J, Wang X, Wang J, Li M, Hu K, Chen H, Deng Y, Li A, Chen Z, Zuo S. Development of Rice Variety With Durable and Broad-Spectrum Resistance to Blast Disease Through Marker-Assisted Introduction of Pigm Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:937767. [PMID: 35937342 PMCID: PMC9354813 DOI: 10.3389/fpls.2022.937767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/02/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most destructive diseases threatening rice production worldwide. Development of resistant cultivars using broad-spectrum resistance (R) genes with high breeding value is the most effective and economical approach to control this disease. In this study, the breeding potential of Pigm gene in geng/japonica rice breeding practice in Jiangsu province was comprehensively evaluated. Through backcross and marker-assisted selection (MAS), Pigm was introduced into two geng rice cultivars (Wuyungeng 32/WYG32 and Huageng 8/HG8). In each genetic background, five advanced backcross lines with Pigm (ABLs) and the same genotypes as the respective recurrent parent in the other 13 known R gene loci were developed. Compared with the corresponding recurrent parent, all these ABLs exhibited stronger resistance in seedling inoculation assay using 184 isolates collected from rice growing regions of the lower region of the Yangtze River. With respect to panicle blast resistance, all ABLs reached a high resistance level to blast disease in tests conducted in three consecutive years with the inoculation of seven mixed conidial suspensions collected from different regions of Jiangsu province. In natural field nursery assays, the ABLs showed significantly higher resistance than the recurrent parents. No common change on importantly morphological traits and yield-associated components was found among the ABLs, demonstrating the introduction of Pigm had no tightly linked undesirable effect on rice economically important traits and its associated grain weight reduction effect could be probably offset by others grain weight genes or at least in the background of the aforementioned two varieties. Notably, one rice line with Pigm, designated as Yangnonggeng 3091, had been authorized as a new variety in Jiangsu province in 2021, showing excellent performance on both grain yield and quality, as well as the blast resistance. Together, these results suggest that the Pigm gene has a high breeding value in developing rice varieties with durable and broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Mingyou Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zhiwen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yunyu Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Keting Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiaoqiu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jianan Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Mengchen Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hongqi Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
44
|
Xu Y, Miao Y, Tian X, Wang Q, Hu Y, Luo Q. Transcriptomic and Epigenomic Assessment Reveals Epigenetic Regulation of WRKY Genes in Response to Magnaporthe oryzae Infection in Rice. Curr Genomics 2022; 23:182-194. [PMID: 36777006 PMCID: PMC9878826 DOI: 10.2174/1389202923666220510195910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Histone acetylations acting as active hallmarks for gene transcription is involved in regulating numerous developmental and stress-responsive gene expression. Methods: The data from chromatin immunoprecipitation sequencing (ChIP-seq) was performed by using histone H3 lysine 9 acetylation (H3K9ac) antibody, and RNA sequencing (RNA-seq) utilizing rice seedlings inoculated by Magnaporthe oryzae (M. oryzae) were integrated. Results: RNA-seq data revealed that 422, 460 and 466 genes were up-regulated at 12h, 24h and 48h after inoculation. ChIP-seq data showed that 60%-80% of blast up-regulated genes at different time points were marked with H3K9ac, which was prone to be enriched in both TSS and gene body region. However, the H3K9ac level at a rather small proportion of the up-regulated genes was elevated after M. oryzae inoculation. We found that seven WRKY genes induced by rice blast fungus harbor H3K9ac. For different WRKY genes, blast fungus induction led to the increase of H3K9ac in distinct regions, including promoter, TSS or gene body, indicating that histone acetylation may play diverse roles in the activation of defense-related genes. By searching DNA-binding motifs of transcription factors in the promoter of genes with increased H3K9ac after M. oryzae infection, we found that ERF family protein-binding motifs were enriched with high -log P-value (>20), including ERF1, DEAR3, DREB2C, RAP2.6, RRTF1_3ARY, all of which contain GCC-box (GCCGCC). Conclusion: In this study, we revealed that the vast majority of genes induced by fungus M. oryzae were marked with H3K9ac preferring both TSS and gene body regions. However, H3K9ac enrichment was increased, responding to M. oryzae inoculation only at a low proportion of these genes, including several WRKY genes. Besides, for different genes, the increment of H3K9ac occurred in different regions. Finally, ERF proteins that have been proved to bind GCC-box might be one of the potential transcription factors for recruiting histone acetyltransferases to deposit histone acetylation at defense-related genes in rice.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education, Key Labo-ratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China;,College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China;,These authors contributed equally to this work.
| | - Yuanxin Miao
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China;,These authors contributed equally to this work.
| | - Xuejun Tian
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China
| | - Qihai Wang
- College of Bioengineering, Jingchu University of Technology, 448000, Jingmen, China
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, 443002, Yichang, Hubei, China,Address correspondence to these authors at the State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China; Tel/Fax: 13769133718; E-mail: and Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, 443002, Yichang, Hubei, China; Tel/Fax: 13677246318; E-mail:
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education, Key Labo-ratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China;,Address correspondence to these authors at the State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, 650201, Kunming, China; Tel/Fax: 13769133718; E-mail: and Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, 443002, Yichang, Hubei, China; Tel/Fax: 13677246318; E-mail:
| |
Collapse
|
45
|
Zhao Y, Zhu X, Chen X, Zhou JM. From plant immunity to crop disease resistance. J Genet Genomics 2022; 49:693-703. [PMID: 35728759 DOI: 10.1016/j.jgg.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Plant diseases caused by diverse pathogens lead to serious reduction in crop yield and threaten food security worldwide. Genetic improvement of plant immunity is considered as the most effective and sustainable approach to control crop diseases. In the last decade, our understanding of plant immunity at both molecular and genomic levels has improved greatly. Combined with advances in biotechnologies, particularly CRISPR/Cas9-based genome editing, we can now rapidly identify new resistance genes and engineer disease resistance crop plants like never before. In this review, we summarize the current knowledge of plant immunity and outline existing and new strategies for disease resistance improvement in crop plants. We also discuss existing challenges in this field and suggest directions for future studies.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu Sichuan 611130, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainai 572025, China.
| |
Collapse
|
46
|
Liu Y, Qin Z, Chen N, Bu Z, Yang Y, Hu X, Zheng H, Zhu Z, Xu T, Gao Y, Niu S, Xing J, Lin J, Liu X, Zhu Y. The Vital Role of ShTHIC from the Endophyte OsiSh-2 in Thiamine Biosynthesis and Blast Resistance in the OsiSh-2-Rice Symbiont. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6993-7003. [PMID: 35667655 DOI: 10.1021/acs.jafc.2c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endophytes can benefit the growth and stress resistance of host plants by secreting bioactive components. Thiamine is an essential vitamin involved in many metabolic pathways and can only be synthesized by microbes and plants. In this study, we found that thiamine could inhibit the development of the phytopathogen Magnaporthe oryzae and decrease the rice blast index under field conditions. In the thiamine biosynthesis pathway, the key enzyme ShTHIC of an endophyte Streptomyces hygroscopicus OsiSh-2 and OsTHIC of rice (Oryza sativa) were highly homologous. Gene overexpression or knockout approaches revealed that both THIC contributed to thiamine synthesis and resistance to M. oryzae. Furthermore, S. hygroscopicus OsiSh-2 colonization led to a decrease in the thiamine synthesis level of rice but still maintained thiamine homeostasis in rice. However, inoculation with the ShTHIC knockout strain ΔTHIC reduced the thiamine content in rice, although the thiamine synthesis level of rice was increased. After infection with M. oryzae, blast resistance was dramatically improved in OsiSh-2-inoculated rice but decreased in ΔTHIC-inoculated rice compared with non-inoculated rice. This result demonstrated that ShTHIC could regulate thiamine biosynthesis and consequently assist blast resistance in the OsiSh-2-rice symbiont. Our results revealed a novel blast-resistance mechanism mediated by a key thiamine biosynthetic enzyme from an endophyte OsiSh-2.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Ziwei Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Ning Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Zhigang Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Yuanzhu Yang
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha, Hunan 410000, P. R. China
| | - Xiaochun Hu
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha, Hunan 410000, P. R. China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Zhuoyi Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Ting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Shuqi Niu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan Province 410125, P. R. China
| | - Jianzhong Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| | - Yonghua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan Province 410082, P. R. China
| |
Collapse
|
47
|
Navia-Urrutia M, Mosquera G, Ellsworth R, Farman M, Trick HN, Valent B. Effector Genes in Magnaporthe oryzae Triticum as Potential Targets for Incorporating Blast Resistance in Wheat. PLANT DISEASE 2022; 106:1700-1712. [PMID: 34931892 DOI: 10.1094/pdis-10-21-2209-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.
Collapse
Affiliation(s)
- Monica Navia-Urrutia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Gloria Mosquera
- Rice Pathology, International Center for Tropical Agriculture, Palmira, 763537, Colombia
| | - Rebekah Ellsworth
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
48
|
Chen S, Sun B, Shi Z, Miao X, Li H. Identification of the rice genes and metabolites involved in dual resistance against brown planthopper and rice blast fungus. PLANT, CELL & ENVIRONMENT 2022; 45:1914-1929. [PMID: 35343596 DOI: 10.1111/pce.14321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Brown planthopper (BPH) and blast disease jointly or individually cause big yield losses every year. To identify genes and metabolites with potential contributions to the dual resistance against both biotic-stress factors, we carried out a transcriptome and metabolome analysis for susceptible and resistant rice varieties after BPH and rice blast infestations. Coexpression network analysis identified a modular pattern that had the highest correlation coefficients (0.81) after the BPH and rice blast (-0.81) treatments. In total, 134 phenylpropanoid biosynthesis pathway-related genes were detected in this group. We found that the flavanone 3-hydroxylase gene (OsF3H) had opposite expression trends in response to BPH and rice blast infestations whereas the OsF3'H had similar expression patterns. Genetics analysis confirmed that the OsF3H gene knockdown lines demonstrated the opposite resistance phenotypes against BPH and rice blast, whereas the OsF3'H knockout lines enhanced rice resistance against both pests. Consistently, our metabolomics analysis identified the metabolite eriodictyol, one putative essential product of these two genes, that was more highly accumulated in the resistant rice variety of RHT than in the susceptible variety MDJ. This study highlights a useful strategy for identifying more genes and metabolites that have potential synergistic effects on rice against to multiple biotic stresses.
Collapse
Affiliation(s)
- Su Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haichao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
50
|
Sahu KP, Kumar A, Sakthivel K, Reddy B, Kumar M, Patel A, Sheoran N, Gopalakrishnan S, Prakash G, Rathour R, Gautam RK. Deciphering core phyllomicrobiome assemblage on rice genotypes grown in contrasting agroclimatic zones: implications for phyllomicrobiome engineering against blast disease. ENVIRONMENTAL MICROBIOME 2022; 17:28. [PMID: 35619157 PMCID: PMC9134649 DOI: 10.1186/s40793-022-00421-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - K Sakthivel
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - R K Gautam
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| |
Collapse
|