1
|
Youngstrom C, Wang K, Lee K. Unlocking regeneration potential: harnessing morphogenic regulators and small peptides for enhanced plant engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17193. [PMID: 39658544 PMCID: PMC11771577 DOI: 10.1111/tpj.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Plant genetic transformation is essential for understanding gene functions and developing improved crop varieties. Traditional methods, often genotype-dependent, are limited by plants' recalcitrance to gene delivery and low regeneration capacity. To overcome these limitations, new approaches have emerged that greatly improve efficiency and genotype flexibility. This review summarizes key strategies recently developed for plant transformation, focusing on groundbreaking technologies enhancing explant- and genotype flexibility. It covers the use of morphogenic regulators (MRs), stem cell-based methods, and in planta transformation methods. MRs, such as maize Babyboom (BBM) with Wuschel2 (WUS2), and GROWTH-REGULATING FACTORs (GRFs) with their cofactors GRF-interacting factors (GIFs), offer great potential for transforming many monocot species, including major cereal crops. Optimizing BBM/WUS2 expression cassettes has further enabled successful transformation and gene editing using seedling leaves as starting material. This technology lowers the barriers for academic laboratories to adopt monocot transformation systems. For dicot plants, tissue culture-free or in planta transformation methods, with or without the use of MRs, are emerging as more genotype-flexible alternatives to traditional tissue culture-based transformation systems. Additionally, the discovery of the local wound signal peptide Regeneration Factor 1 (REF1) has been shown to enhance transformation efficiency by activating wound-induced regeneration pathways in both monocot and dicot plants. Future research may combine these advances to develop truly genotype-independent transformation methods.
Collapse
Affiliation(s)
- Christopher Youngstrom
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| | - Keunsub Lee
- Department of AgronomyIowa State UniversityAmesIowa50011USA
- Crop Bioengineering CenterIowa State UniversityAmesIowa50011USA
| |
Collapse
|
2
|
Congreves KA, Otchere O, Hucl PJ. Tracing nitrogen use efficiency of diverse Canadian spring wheat cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1439395. [PMID: 39691482 PMCID: PMC11650263 DOI: 10.3389/fpls.2024.1439395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Decades of wheat breeding have provided growers with numerous high-yielding options, but it is unknown if these yield improvements are likewise characterized with improved nitrogen use efficiency (NUE). Fertilizer nitrogen (N) is an ever-increasing expense, so improving NUE by reducing the requirement for N fertilizer without risking yield and quality is necessary. The goal of our research is to identify cultivars and associated traits that may improve NUE while maintaining productivity. We compared 25 spring wheat cultivars over a three-year period (2020, 2021, 2022) at two field sites differing in background soil N level for the ability to use fertilizer-N and allocate it to the grain. To do so, we employed the 15N stable isotope technique to trace the flow of fertilizer-N and determine the 15N recovery efficiency (15NRE). The 15NRE in the grain averaged 25.0% at the higher soil N site, and 15.5% at the lower soil N site. At the higher soil N site only, dwarfing alleles (Rht-B1b) were associated with greater 15NRE. Grain 15NRE was positively associated with yield, grain N content, and the 15N harvest index (15NHI) at the high soil N environment, but never at the low soil N environment. Our findings support the notion that the genetic development of high yielding semi-dwarf cultivars also translates into an improved ability to recover fertilizer-N-but this outcome is only expressed only under rich soil N conditions. Cultivars that simultaneously produced higher 15NRE and yields, grain N, or 15NHI differed by environment; possibly suggesting different mechanisms for improving crop NUE depending on background soil N level. Ultimately, cultivar-specific 15NRE information, including that presented here, will be useful breeders to design new crosses and approaches aimed at increasing NUE for spring wheat.
Collapse
Affiliation(s)
- Kate A. Congreves
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
3
|
Pieri A, Beleggia R, Gioia T, Tong H, Di Vittori V, Frascarelli G, Bitocchi E, Nanni L, Bellucci E, Fiorani F, Pecchioni N, Marzario S, De Quattro C, Limongi AR, De Vita P, Rossato M, Schurr U, David JL, Nikoloski Z, Papa R. Transcriptomic response to nitrogen availability reveals signatures of adaptive plasticity during tetraploid wheat domestication. THE PLANT CELL 2024; 36:3809-3823. [PMID: 39056474 PMCID: PMC11371143 DOI: 10.1093/plcell/koae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The domestication of crops, coupled with agroecosystem development, is associated with major environmental changes and provides an ideal model of phenotypic plasticity. Here, we examined 32 genotypes of three tetraploid wheat (Triticum turgidum L.) subspecies, wild emmer, emmer, and durum wheat, which are representative of the key stages in the domestication of tetraploid wheat. We developed a pipeline that integrates RNA-Seq data and population genomics to assess gene expression plasticity and identify selection signatures under diverse nitrogen availability conditions. Our analysis revealed differing gene expression responses to nitrogen availability across primary (wild emmer to emmer) and secondary (emmer to durum wheat) domestication. Notably, nitrogen triggered the expression of twice as many genes in durum wheat compared to that in emmer and wild emmer. Unique selection signatures were identified at each stage: primary domestication mainly influenced genes related to biotic interactions, whereas secondary domestication affected genes related to amino acid metabolism, in particular lysine. Selection signatures were found in differentially expressed genes (DEGs), notably those associated with nitrogen metabolism, such as the gene encoding glutamate dehydrogenase (GDH). Overall, our study highlights the pivotal role of nitrogen availability in the domestication and adaptive responses of a major food crop, with varying effects across different traits and growth conditions.
Collapse
Affiliation(s)
- Alice Pieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia 71122, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Hao Tong
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| | - Fabio Fiorani
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, Julich 52428, Germany
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia 71122, Italy
| | - Stefania Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Concetta De Quattro
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Antonina Rita Limongi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia 71122, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Ulrich Schurr
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich GmbH, Julich 52428, Germany
| | - Jacques L David
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier 34060, France
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona 60131, Italy
| |
Collapse
|
4
|
King J, Dreisigacker S, Reynolds M, Bandyopadhyay A, Braun HJ, Crespo-Herrera L, Crossa J, Govindan V, Huerta J, Ibba MI, Robles-Zazueta CA, Saint Pierre C, Singh PK, Singh RP, Achary VMM, Bhavani S, Blasch G, Cheng S, Dempewolf H, Flavell RB, Gerard G, Grewal S, Griffiths S, Hawkesford M, He X, Hearne S, Hodson D, Howell P, Jalal Kamali MR, Karwat H, Kilian B, King IP, Kishii M, Kommerell VM, Lagudah E, Lan C, Montesinos-Lopez OA, Nicholson P, Pérez-Rodríguez P, Pinto F, Pixley K, Rebetzke G, Rivera-Amado C, Sansaloni C, Schulthess U, Sharma S, Shewry P, Subbarao G, Tiwari TP, Trethowan R, Uauy C. Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. GLOBAL CHANGE BIOLOGY 2024; 30:e17440. [PMID: 39185562 DOI: 10.1111/gcb.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024]
Abstract
The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.
Collapse
Affiliation(s)
- Julie King
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Anindya Bandyopadhyay
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Hans-Joachim Braun
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Colegio de Postgraduados, Montecillos, Mexico
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Julio Huerta
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle de México, Texcoco, Mexico
| | - Maria Itria Ibba
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - V Mohan Murali Achary
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Gerald Blasch
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Shifeng Cheng
- Chinese Academy of Agricultural Science (AGIS), Shenzhen, China
| | - Hannes Dempewolf
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | | | - Guillermo Gerard
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | | | | | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Sarah Hearne
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - David Hodson
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Phil Howell
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | | | - Hannes Karwat
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Ian P King
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | - Masahiro Kishii
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | | | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Caixia Lan
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Paul Nicholson
- John Innes Centre (JIC), Norwich Research Park, Norwich, UK
| | | | - Francisco Pinto
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University Research, Wageningen, The Netherlands
| | - Kevin Pixley
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Greg Rebetzke
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Carolina Rivera-Amado
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Urs Schulthess
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- CIMMYT-China Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China
| | | | | | - Guntar Subbarao
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Thakur Prasad Tiwari
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Narrabri, New South Wales, Australia
| | - Cristobal Uauy
- John Innes Centre (JIC), Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Chen B, Hou Y, Huo Y, Zeng Z, Hu D, Mao X, Zhong C, Xu Y, Tang X, Gao X, Ma J, Chen G. QTL Mapping of Yield, Agronomic, and Nitrogen-Related Traits in Barley ( Hordeum vulgare L.) under Low Nitrogen and Normal Nitrogen Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2137. [PMID: 39124255 PMCID: PMC11314459 DOI: 10.3390/plants13152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Improving low nitrogen (LN) tolerance in barley (Hordeum vulgare L.) increases global barley yield and quality. In this study, a recombinant inbred line (RIL) population crossed between "Baudin × CN4079" was used to conduct field experiments on twenty traits of barley yield, agronomy, and nitrogen(N)-related traits under LN and normal nitrogen (NN) treatments for two years. This study identified seventeen QTL, comprising eight QTL expressed under both LN and NN treatments, eight LN-specific QTL, and one NN-specific QTL. The localized C2 cluster contained QTL controlling yield, agronomic, and N-related traits. Of the four novel QTL, the expression of the N-related QTL Qstna.sau-5H and Qnhi.sau-5H was unaffected by N treatment. Qtgw.sau-2H for thousand-grain weight, Qph.sau-3H for plant height, Qsl.sau-7H for spike length, and Qal.sau-7H for awn length were identified to be the four stable expression QTL. Correlation studies revealed a significant negative correlation between grain N content and harvest index (p < 0.01). These results are essential for barley marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yuanfeng Huo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Zhaoyong Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xingwu Mao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Chengyou Zhong
- College of Economics, Hunan Agricultural University, Changsha 410125, China;
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| |
Collapse
|
6
|
Zhang S, Xu L, Zheng Q, Hu J, Jiang D, Dai T, Tian Z. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress. PLANTA 2024; 259:151. [PMID: 38733553 DOI: 10.1007/s00425-024-04432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
8
|
Sigalas PP, Buchner P, Kröper A, Hawkesford MJ. The Functional Diversity of the High-Affinity Nitrate Transporter Gene Family in Hexaploid Wheat: Insights from Distinct Expression Profiles. Int J Mol Sci 2023; 25:509. [PMID: 38203680 PMCID: PMC10779101 DOI: 10.3390/ijms25010509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
High-affinity nitrate transporters (NRT) are key components for nitrogen (N) acquisition and distribution within plants. However, insights on these transporters in wheat are scarce. This study presents a comprehensive analysis of the NRT2 and NRT3 gene families, where the aim is to shed light on their functionality and to evaluate their responses to N availability. A total of 53 NRT2s and 11 NRT3s were identified in the bread wheat genome, and these were grouped into different clades and homoeologous subgroups. The transcriptional dynamics of the identified NRT2 and NRT3 genes, in response to N starvation and nitrate resupply, were examined by RT-qPCR in the roots and shoots of hydroponically grown wheat plants through a time course experiment. Additionally, the spatial expression patterns of these genes were explored within the plant. The NRT2s of clade 1, TaNRT2.1-2.6, showed a root-specific expression and significant upregulation in response to N starvation, thus emphasizing a role in N acquisition. However, most of the clade 2 NRT2s displayed reduced expression under N-starved conditions. Nitrate resupply after N starvation revealed rapid responsiveness in TaNRT2.1-2.6, while clade 2 genes exhibited gradual induction, primarily in the roots. TaNRT2.18 was highly expressed in above-ground tissues and exhibited distinct nitrate-related response patterns for roots and shoots. The TaNRT3 gene expression closely paralleled the profiles of TaNRT2.1-2.6 in response to nitrate induction. These findings enhance the understanding of NRT2 and NRT3 involvement in nitrogen uptake and utilization, and they could have practical implications for improving nitrogen use efficiency. The study also recommends a standardized nomenclature for wheat NRT2 genes, thereby addressing prior naming inconsistencies.
Collapse
Affiliation(s)
- Petros P. Sigalas
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK; (P.B.); (M.J.H.)
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK; (P.B.); (M.J.H.)
| | - Alex Kröper
- Faculty of Agronomy, University of Hohenheim, 70599 Stuttgart, Germany;
| | | |
Collapse
|
9
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
10
|
Das S, Sathee L. miRNA mediated regulation of nitrogen response and nitrogen use efficiency of plants: the case of wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1371-1394. [PMID: 38076770 PMCID: PMC10709294 DOI: 10.1007/s12298-023-01336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 10/04/2024]
Abstract
Nitrogen (N) is needed for plant growth and development and is the major limiting nutrient due to its higher demand in agricultural production globally. The use of N fertilizers has increased considerably in recent years to achieve higher cereal yields. High N inputs coupled with declining N use efficiency (NUE) result in the degradation of the environment. Plants have developed multidimensional strategies in response to changes in N availability in soil. These strategies include N stress-induced responses such as changes in gene expression patterns. Several N stress-induced genes and other regulatory factors, such as microRNAs (miRNAs), have been identified in different plant species, opening a new avenue of research in plant biology. This review presents a general overview of miRNA-mediated regulation of N response and NUE. Further, the in-silico target predictions and the predicted miRNA-gene network for nutrient metabolism/homeostasis in wheat provide novel insights. The information on N-regulated miRNAs and the differentially expressed target transcripts are necessary resources for genetic improvement of NUE by genome editing.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
11
|
Sun Y, Gao L, Meng X, Huang J, Guo J, Zhou X, Fu G, Xu Y, Firbank LG, Wang M, Ling N, Feng X, Shen Q, Guo S. Large-scale exploration of nitrogen utilization efficiency in Asia region for rice crop: Variation patterns and determinants. GLOBAL CHANGE BIOLOGY 2023; 29:5367-5378. [PMID: 37431724 DOI: 10.1111/gcb.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Improving rice nitrogen utilization efficiency (NUtE) is imperative to maximizing future food productivity while minimizing environmental threats, yet knowledge of its variation and the underlying regulatory factors is still lacking. Here, we integrated a dataset with 21,571 data compiled by available data from peer-reviewed literature and a large-scale field survey to address this knowledge gap. The overall results revealed great variations in rice NUtE, which were mainly associated with human activities, climate conditions, and rice variety. Specifically, N supply rate, temperature, and precipitation were the foremost determinants of rice NUtE, and NUtE responses to climatic change differed among rice varieties. Further prediction highlighted the improved rice NUtE with the increasing latitude or longitude. The indica and hybrid rice exhibited higher NUtE in low latitude regions compared to japonica and inbred rice, respectively. Collectively, our results evaluated the primary drivers of rice NUtE variations and predicted the geographic responses of NUtE in different varieties. Linking the global variations in rice NUtE with environmental factors and geographic adaptability provides valuable agronomic and ecological insights into the regulation of rice NUtE.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing, China
| | - Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jian Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xuan Zhou
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Guohai Fu
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Yang Xu
- National Agro-Tech Extension and Service Center, Beijing, China
| | | | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xumeng Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Abualia R, Riegler S, Benkova E. Nitrate, Auxin and Cytokinin-A Trio to Tango. Cells 2023; 12:1613. [PMID: 37371083 DOI: 10.3390/cells12121613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.
Collapse
Affiliation(s)
- Rashed Abualia
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Stefan Riegler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
13
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
14
|
Gaspareto RN, Jalal A, Ito WCN, Oliveira CEDS, Garcia CMDP, Boleta EHM, Rosa PAL, Galindo FS, Buzetti S, Ghaley BB, Filho MCMT. Inoculation with Plant Growth-Promoting Bacteria and Nitrogen Doses Improves Wheat Productivity and Nitrogen Use Efficiency. Microorganisms 2023; 11:microorganisms11041046. [PMID: 37110469 PMCID: PMC10142644 DOI: 10.3390/microorganisms11041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat is one of the staple foods of the global population due to its adaptability to a wide range of environments. Nitrogen is one of the crucial limiting factors in wheat production and is considered a challenge to food security. Therefore, sustainable agricultural technologies such as seed inoculation with plant growth-promoting bacteria (PGPBs) can be adopted to promote biological nitrogen fixation (BNF) for higher crop productivity. In this context, the objective of the current study was to evaluate the effects of nitrogen fertilization and seed inoculations with Azospirillum brasilense, Bacillus subtilis and A. brasilense + B. subtilis on agronomic and yield attributes, grain yield, grain N accumulation, N use efficiency and applied N recovery in Brazilian Cerrado, which consists of gramineous woody savanna. The experiment was carried out in two cropping seasons in Rhodic Haplustox soil under a no-tillage system. The experiment was designed in a randomized complete block in a 4 × 5 factorial scheme, with four replications. The treatments consisted of four seed inoculations (control-without inoculation, inoculation with A. brasilense, B. subtilis and A. brasilense + B. subtilis) under five N doses (0, 40, 80, 120 and 160 kg ha-1, applied from urea) at the wheat tillering stage. Seed co-inoculation with A. brasilense + B. subtilis increased grain N accumulation, number of spikes m-1, grains spike-1 and grain yield of wheat in an irrigated no-tillage system of tropical savannah, regardless of the applied N doses. Nitrogen fertilization at a dose of 80 kg ha-1 significantly increased grain N accumulation and number of grains spikes-1 and nitrogen use efficiency. Recovery of applied N was increased with inoculation of B. subtilis and co-inoculation of A. brasilense + B. subtilis at increasing N doses. Therefore, N fertilization can be reduced by the inclusion of co-inoculation with A. brasilense + B. subtilis in the cultivation of winter wheat under a no-tillage system of Brazilian Cerrado.
Collapse
Affiliation(s)
- Rafaela Neris Gaspareto
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - William Cesar Nishimoto Ito
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Cássia Maria de Paula Garcia
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | | - Poliana Aparecida Leonel Rosa
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Department of Crop Production, College of Agricultural and Technology Sciences, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Salatiér Buzetti
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630 Taastrup, Denmark
| | | |
Collapse
|
15
|
Liu P, Ning F, Li H, Zhang Y, Zhang Q, Wang R, Wang X, Chen X, Li J. Adaptive nitrogen inputs sustain water-nitrogen use and improve maize productivity with varied precipitation conditions on a semi-arid agroecosystem. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2262-2272. [PMID: 36694202 DOI: 10.1002/jsfa.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Maize productivity in semi-arid regions is increasingly at risk because of the sparse and uneven precipitation, and it is also restricted by excessive or insufficient fertilization management strategies. A 4-year (2016-2019) field experiment was therefore conducted to show the effects of fertilizer with five nitrogen levels (0, 75-90, 150-180, 270, and 360 kg ha-1 , represented as N0 , N75-90 , N150-180 , N270 , N360 , respectively) under two variable precipitation patterns (rainy at pre-anthesis in 2016 and 2018 versus dry at pre-anthesis in 2017 and 2019) on soil water storage (SWS), water use efficiency (WUE), nitrogen use efficiency (NUE), and maize yield in the Loess Plateau. RESULTS Nitrogen inputs increased the amount of above-ground dry matter and the WUE for dry matter (WUEd). Dry years at pre-anthesis significantly reduced dry matter accumulation and kernel number per plant. However, soil water storage before sowing (SWSs) decreased from 440 mm in 2016 to 384 mm in 2019, and the increase in fertilization resulted in the water imbalance. Both the maximum grain yield and WUE for grain yield were found in N270 under rainy years at pre-anthesis, whereas in N150-180 under dry years at pre-anthesis. The average nitrogen recovery efficiency (NRE), nitrogen agronomy efficiency (NAE) and nitrogen partial factor productivity (NPFP) decreased with increases in N application, compared with N360 , the NRE,NAE and NPFP of N150-180 increased by 63.5%, 189.2% and 135.5%, respectively. CONCLUSIONS Reducing basal N fertilizers could enhance maize yield and maintain moderate water and nitrogen productivity in years with less rainfall. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengzhao Liu
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Fang Ning
- Taiyuan Agricultural Technology Extension and Service Center, Taiyuan, China
| | - Haoyu Li
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Yuanhong Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Rui Wang
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Xiaoli Wang
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Jun Li
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| |
Collapse
|
16
|
Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fertilizers are indispensable agri-inputs to accomplish the growing food demand. The injudicious use of conventional fertilizer products has resulted in several environmental and human health complications. To mitigate these problems, nanocomposite-based fertilizers are viable alternative options. Nanocomposites, a novel class of materials having improved mechanical strength, barrier properties, and mechanical and thermal stability, are suitable candidates to develop eco-friendly slow/controlled release fertilizer formulations. In this review, the use of different nanocomposite materials developed for nutrient management in agriculture has been summarized with a major focus on their synthesis and characterization techniques, and application aspects in plant nutrition, along with addressing constraints and future opportunities of this domain. Further detailed studies on nanocomposite-based fertilizers are required to evaluate the cost-effective synthesis methods, in-depth field efficacy, environmental fate, stability, etc. before commercialization in the field of agriculture. The present review is expected to help the policy makers and all the stakeholders in the large-scale commercialization and application of nanocomposite-based smart fertilizer products with greater societal acceptance and environmental sustainability in near future.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhadip Paul
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Subhasis Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
17
|
Maize Breeding for Low Nitrogen Inputs in Agriculture: Mechanisms Underlying the Tolerance to the Abiotic Stress. STRESSES 2023. [DOI: 10.3390/stresses3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitrogen (N) is essential for sustaining life on Earth and plays a vital role in plant growth and thus agricultural production. The excessive use of N fertilizers not only harms the economy, but also the environment. In the context of the environmental impacts caused by agriculture, global maize improvement programs aim to develop cultivars with high N-use efficiency (NUE) to reduce the use of N fertilizers. Since N is highly mobile in plants, NUE is related to numerous little-known morphophysiological and molecular mechanisms. In this review paper we present an overview of the morpho-physiological adaptations of shoot and root, molecular mechanisms involved in plant response to low nitrogen environment, and the genetic effects involved in the control of key traits for NUE. Some studies show that the efficiency of cultivars growing under low N is related to deep root architecture, more lateral roots (LR), and sparser branching of LR, resulting in lower metabolic costs. The NUE cultivars also exhibit more efficient photosynthesis, which affects plant growth under suboptimal nitrogen conditions. In this sense, obtaining superior genotypes for NUE can be achieved with the exploitation of heterosis, as non-additive effects are more important in the expression of traits associated with NUE.
Collapse
|
18
|
Wang H, Ma Q, Shan F, Tian L, Gong J, Quan W, Yang W, Hou Q, Zhang F, Zhang S. Transcriptional regulation mechanism of wheat varieties with different nitrogen use efficiencies in response to nitrogen deficiency stress. BMC Genomics 2022; 23:727. [PMID: 36289540 PMCID: PMC9597979 DOI: 10.1186/s12864-022-08948-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background As one of the microelements, nitrogen play essential roles in cereal production. Although the use of chemical fertilizers has significantly improved the yield of wheat, it has also caused increasingly adverse environmental pollution. Revealing the molecular mechanism manipulating wheat nitrogen use efficiency (NUE), and cultivating wheat germplasms with high nitrogen use efficiency has become important goals for wheat researchers. In this study, we investigated the physiological and transcriptional differences of three wheat cultivars with different NUE under low nitrogen stress. Results The results showed that, under low nitrogen conditions, the activities of nitrogen metabolism-related enzymes (GS, NR, GDH), antioxidant enzymes (SOD, POD, CAT) and soluble protein contents of ZM366 (high NUE cultivar) were higher than those of JD8 (low NUE cultivar). The hybrid cultivar of ZM366 and JD8 showed mid-parent or over-parent heterosis. Transcriptome analysis revealed that ‘alanine, aspartate and glutamate metabolism’, ‘terpenoid backbone biosynthesis’ and ‘vitamin B6 metabolism’ pathways play key roles in nitrogen use efficiency in wheat. The significant enhancement of the ‘Calvin cycle’ and ‘photorespiration’ in ZM366 contributed to its higher level of carbon metabolism under low nitrogen stress, which is an important attribute differs from the other two varieties. In addition, the activation of ABA signal transduction and biosynthesis pathways also helps to maintain NUE under low- nitrogen conditions. Moreover, bHLH transcription factors were also found to play a positive role in wheat NUE. Conclusions In conclusion, these results enriched our knowledge of the mechanism of wheat NUE, and provided a theoretical basis for improving wheat NUE and breeding new cultivars. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08948-0.
Collapse
Affiliation(s)
- Hanxia Wang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Qiaoyun Ma
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Fuhua Shan
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Liping Tian
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Jie Gong
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Wei Quan
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Weibing Yang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Qiling Hou
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Fengting Zhang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| | - Shengquan Zhang
- grid.418260.90000 0004 0646 9053Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China ,The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing, 100097 China
| |
Collapse
|
19
|
Liu X, Jiang H, Yang J, Han J, Jin M, Zhang H, Chen L, Chen S, Teng S. Comprehensive QTL analyses of nitrogen use efficiency in indica rice. FRONTIERS IN PLANT SCIENCE 2022; 13:992225. [PMID: 36212385 PMCID: PMC9539535 DOI: 10.3389/fpls.2022.992225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen-use efficiency (NUE) in rice is a complex quantitative trait involved in multiple biological processes and agronomic traits; however, the genetic basis and regulatory network of NUE remain largely unknown. We constructed a high-resolution microarray-based genetic map for 261 recombinant inbred lines derived from two indica parents. Using 2,345 bin markers, comprehensive analyses of quantitative trait loci (QTLs) of seven key agronomic traits under two different N levels were performed. A total of 11 non-redundant QTLs for effective panicle number (EPN), 7 for grain number per panicle, 13 for thousand-grain weight, 2 for seed-setting percentage, 15 for plant height, 12 for panicle length, and 6 for grain yield per plant were identified. The QTL regions were as small as 512 kb on average, and more than half spanned an interval smaller than 100 kb. Using this advantage, we identified possible candidate genes of two major EPN-related QTLs. One QTL detected under both N levels possibly encodes a DELLA protein SLR1, which is known to regulate NUE, although the natural variations of this protein have not been reported. The other QTL detected only under a high N level could encode the transcription factor OsbZIP59. We also predicted the possible candidate genes for another three of the NUE-related QTLs. Our results provide a reference for improving NUE-related QTL cloning and promote our understanding of NUE regulation in indica rice.
Collapse
Affiliation(s)
- Xiuyan Liu
- College of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Han
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mengxian Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Ahmad N, Ibrahim S, Tian Z, Kuang L, Wang X, Wang H, Dun X. Quantitative trait loci mapping reveals important genomic regions controlling root architecture and shoot biomass under nitrogen, phosphorus, and potassium stress in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:994666. [PMID: 36172562 PMCID: PMC9511887 DOI: 10.3389/fpls.2022.994666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.
Collapse
Affiliation(s)
- Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
21
|
Begho T, Eory V, Glenk K. Demystifying risk attitudes and fertilizer use: A review focusing on the behavioral factors associated with agricultural nitrogen emissions in South Asia. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.991185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fertilizer use is environmentally unsustainable in South Asia. Ideally, farmers would follow optimal fertilization rates for crops based on scientific recommendations. However, there is ample evidence on why farmers under-fertilize or over-fertilize their crops. Important amongst them is that farmers' attitude to risk influences decisions on fertilizer use. This paper reviews studies on the effects of risk attitude on fertilizer use, the timing of application, and application intensity. We observe that the use of fertilizer is affected by perceptions of fertilizer as a risk-enhancing or risk-reducing input. In order to influence the future fertilizer decisions of farmers, several policy measures are suggested. Among these, gradual withdrawal of fertilizer subsidies, repurposing subsides toward improved technologies that increase productivity, improves nitrogen use efficiency (NUE) and reduce emission, providing enhanced-efficiency fertilizers and eliminating the fraudulent practice of fertilizer adulteration may be the most appropriate in a South Asian context.
Collapse
|
22
|
Tan Y, Chai Q, Li G, Hu F, Yu A, Zhao C, Fan Z, Yin W, Fan H. No-till and nitrogen fertilizer reduction improve nitrogen translocation and productivity of spring wheat ( Triticum aestivum L.) via promotion of plant transpiration. FRONTIERS IN PLANT SCIENCE 2022; 13:988211. [PMID: 36119600 PMCID: PMC9478441 DOI: 10.3389/fpls.2022.988211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive nitrogen (N) fertilizer has threatened the survivability and sustainability of agriculture. Improving N productivity is promising to address the above issue. Therefore, the field experiment, which investigated the effect of no-till and N fertilizer reduction on water use and N productivity of spring wheat (Triticum aestivum L.), was conducted at Wuwei experimental station in northwestern China. There were two tillage practices (conventional tillage, CT; and no-till with previous plastic film mulching, NT) and three N fertilizer rates (135 kg N ha-1, N1; 180 kg N ha-1, N2; and 225 kg N ha-1, N3). The results showed that NT lowered soil evaporation (SE) by 22.4% while increasing the ratio of transpiration to evapotranspiration (T/ET) by 13.6%, compared with CT. In addition, NT improved the total N accumulation by 11.5% and enhanced N translocation (NT) quantity, rate, and contribution by a range of 6.2-23.3%. Ultimately, NT increased grain yield (GY), N partial factor productivity, and N harvest index by 13.4, 13.1, and 26.0%, respectively. Overall, N1 increased SE (13.6%) but decreased T/ET (6.1%) compared with N3. While, N2 enhanced NT quantity, rate, and contribution by a range of 6.0-15.2%. With the integration of NT, N2 achieved the same level of GY and N harvest index as N3 and promoted N partial factor productivity by 11.7%. The significant positive correlation of NT relative to T/ET and GY indicated that improving T/ET was essential for achieving higher NT. Therefore, we concluded that no-till coupled with N fertilizer rate at 180 kg N ha-1 was a preferable management option to boost the N productivity of spring wheat in arid areas.
Collapse
Affiliation(s)
- Yan Tan
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
23
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
24
|
Kumar A, Kumar S, Venkatesh K, Singh NK, Mandal PK, Sinha SK. Physio-molecular traits of contrasting bread wheat genotypes associated with 15N influx exhibiting homeolog expression bias in nitrate transporter genes under different external nitrate concentrations. PLANTA 2022; 255:104. [PMID: 35416522 DOI: 10.1007/s00425-022-03890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The high affinity nitrate transport system is a potential target for improving nitrogen use efficiency of bread wheat growing either under optimal or limiting nitrate concentration. Nitrate uptake is one of the most important traits to take into account to improve nitrogen use efficiency in wheat (Triticum aestivum L.). In this study, we aimed to gain an insight into the regulation of NO3- -uptake and translocation systems in two contrasting wheat genotypes [K9107(K9) vs. Choti Lerma (CL)]. Different conditions, such as NO3--uptake rates, soil-types, N-free solid external media, and external NO3- levels at the seedling stage, were considered. We also studied the contribution of homeolog expression of five genes encoding two nitrate transporters in the root tissue, along with their overall transcript expression levels relative to specific external nitrate availability. We observed that K9107 had a higher 15N influx than Choti Lerma under both limiting as well as optimum external N conditions in vermiculite-perlite (i.e., N-free solid) medium, with the improved translocation efficiency in Choti Lerma. However, in different soil types, different levels of 15N-enrichment in both the genotypes were found. Our results also demonstrated that the partitioning of dry matter in root and shoot was different under these growing conditions. Moreover, K9107 showed significantly higher relative expression of TaNRT2.1 at the lowest and TaNPF6.1 and TaNPF6.2 at the highest external nitrate concentrations. We also observed genotype-specific and nitrate starvation-dependent homeolog expression bias in all five nitrate transporter genes. Our data suggest that K9107 had a higher NO3- influx capacity, involving different nitrate transporters, than Choti Lerma at the seedling stage.
Collapse
Affiliation(s)
- Amresh Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Sarvendra Kumar
- Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Karnam Venkatesh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
25
|
Mauceri A, Aci MM, Toppino L, Panda S, Meir S, Mercati F, Araniti F, Lupini A, Panuccio MR, Rotino GL, Aharoni A, Abenavoli MR, Sunseri F. Uncovering Pathways Highly Correlated to NUE through a Combined Metabolomics and Transcriptomics Approach in Eggplant. PLANTS 2022; 11:plants11050700. [PMID: 35270170 PMCID: PMC8912549 DOI: 10.3390/plants11050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant.
Collapse
Affiliation(s)
- Antonio Mauceri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Meriem Miyassa Aci
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Laura Toppino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Francesco Mercati
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milano, 20133 Milan, Italy;
| | - Antonio Lupini
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Maria Rosaria Panuccio
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Giuseppe Leonardo Rotino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Maria Rosa Abenavoli
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| |
Collapse
|
26
|
Javed SA, Shahzad SM, Ashraf M, Kausar R, Arif MS, Albasher G, Rizwana H, Shakoor A. Interactive effect of different salinity sources and their formulations on plant growth, ionic homeostasis and seed quality of maize. CHEMOSPHERE 2022; 291:132678. [PMID: 34710460 DOI: 10.1016/j.chemosphere.2021.132678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 05/27/2023]
Abstract
Soil salinity is one of the most pernicious environmental hazards affecting crop growth and productivity in arid and semi-arid climates. In saline soils, the crop plants encounter nutrients deficient conditions mainly due to antagonistic affinity of sodium (Na+) and chloride (Cl-). The accumulation of salts in the rhizosphere restricts plant growth, the severity of which depends on the source and concentration of the salt. Therefore, we hypothesized that sodium containing salts could have toxic effects on maize plants either in a single or in combined form. To evaluate the interactive effect of sodium salts on plant growth, ionic homeostasis, and seed quality attributes, a pot study was performed using maize as a test plant at the research area of the College of Agriculture, University of Sargodha. Selected salts including, NaCl, Na2SO4 and their combination (NaCl + Na2SO4), were applied in equal ratio for different salinity levels (7, 10, 13 and 16 dS m-1) and the untreated control. The results show that all the measured growth, yield, biochemical and quality attributes of maize were negatively affected with increasing concentration of all the salt sources; however, severity of these effects were more intense when NaCl was applied at all salinity levels. It is concluded that all salts (NaCl, Na2SO4 and NaCl + Na2SO4) had negative effects on biochemical, qualitative, growth and yield characteristics of maize plant. Most importantly, NaCl was found to be more harmful compared to Na2SO4 and mixtures of both salts due to the dominance of Na+ and Cl-ions. Among all salinity levels, the more detrimental effects of NaCl occurred at salinity level of 16 dS m-1.
Collapse
Affiliation(s)
- Syed Ayyaz Javed
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Muhammad Ashraf
- Department of Soil Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Rizwana Kausar
- Soil and Water Testing Laboratory for Research, Sargodha, Punjab, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humira Rizwana
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
27
|
Galindo FS, Pagliari PH, Fernandes GC, Rodrigues WL, Boleta EHM, Jalal A, Céu EGO, Lima BHD, Lavres J, Teixeira Filho MCM. Improving Sustainable Field-Grown Wheat Production With Azospirillum brasilense Under Tropical Conditions: A Potential Tool for Improving Nitrogen Management. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022. [DOI: 10.3389/fenvs.2022.821628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sustainable intensification of cropping systems requires to increase productivity and nutrients use efficiency while reducing negative impacts of agricultural management practices on ecosystem and environment. Plant growth-promoting rhizobacteria (PGPR) inoculations are considered one of the most promising and safe strategy to alleviate environmental alterations in context of climatic extremes to improve plant nutrition while reducing dependency of nitrogen (N) fertilizer application. This study investigated the interactive effects of N levels and inoculation with A. brasilense on plant biomass, grain yield, agronomic efficiency (AE) of applied N, apparent N-fertilizer recovery (AFR) and N content in plant targeting economic feasibility of wheat production system. The field trial tested 4 N application levels applied in side-dressing (control, low, average and high; named 0, 50, 100 and 200 kg N ha−1) and two inoculations (without and with A. brasilense seed inoculation). The results exhibited that inoculation with A. brasilense enhanced AE, AFR and N uptake in wheat plants with increased root and shoot N accumulation and grain N accumulation under average and high N application levels. In addition, inoculation increased root and shoot biomass, leading to a yield increase of 10.3% compared with non-inoculated plants. Wheat plant inoculation associated with application of the average N level provided the greatest profitability. Furthermore, results showed that reducing N fertilization from 100 to 50 kg N ha−1 along A. brasilense inoculation led to an increase in operating profit of 10.5%. In view of low economic cost, ease of application, and high probability of a positive response by wheat crops, even associated with different N application levels, the inoculation with A. brasilense prone to be a key sustainable management practice to improve wheat production under tropical conditions. This practice has the potential to increase wheat grain yield, N use and uptake, and overall farm profitability.
Collapse
|
28
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
29
|
Mălinaş A, Vidican R, Rotar I, Mălinaş C, Moldovan CM, Proorocu M. Current Status and Future Prospective for Nitrogen Use Efficiency in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020217. [PMID: 35050105 PMCID: PMC8777959 DOI: 10.3390/plants11020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 05/11/2023]
Abstract
Although essential for achieving high crop yields required for the growing population worldwide, nitrogen, (N) in large amounts, along with its inefficient use, results in environmental pollution and increased greenhouse gas (GHG) emissions. Therefore, improved nitrogen use efficiency (NUE) has a significant role to play in the development of more sustainable crop production systems. Considering that wheat is one of the major crops cultivated in the world and contributes in high amounts to the large N footprint, designing sustainable wheat crop patterns, briefly defined by us in this review as the 3 Qs (high quantity, good quality and the quintessence of natural environment health) is urgently required. There are numerous indices used to benchmark N management for a specific crop, including wheat, but the misunderstanding of their specific functions could result in an under/overestimation of crop NUE. Thus, a better understanding of N dynamics in relation to wheat N cycling can enhance a higher efficiency of N use. In this sense, the aim of our review is to provide a critical analysis on the current knowledge with respect to wheat NUE. Further, considering the key traits involved in N uptake, assimilation, distribution and utilization efficiency, as well as genetics (G), environment (E) and management (M) interactions, we suggest a series of future perspectives that can enhance a better efficiency of N in wheat.
Collapse
Affiliation(s)
- Anamaria Mălinaş
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
| | - Roxana Vidican
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
| | - Ioan Rotar
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
| | - Cristian Mălinaş
- Department of Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Correspondence: (C.M.); (C.M.M.)
| | - Cristina Maria Moldovan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.M.); (R.V.); (I.R.)
- Correspondence: (C.M.); (C.M.M.)
| | - Marian Proorocu
- Department of Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
30
|
He W, Wang L, Lin Q, Yu F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1999-2019. [PMID: 34581486 DOI: 10.1111/jipb.13176] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 05/02/2023]
Abstract
Rice (Oryza sativa L.) is the most important food crop for at least half of the world's population. Due to improved living standards, the cultivation of high-quality rice for different purposes and markets has become a major goal. Rice quality is determined by the presence of many nutritional components, including seed storage proteins (SSPs), which are the second most abundant nutrient components of rice grains after starch. Rice SSP biosynthesis requires the participation of multiple organelles and is influenced by the external environment, making it challenging to understand the molecular details of SSP biosynthesis and improve rice protein quality. In this review, we highlight the current knowledge of rice SSP biosynthesis, including a detailed description of the key molecules involved in rice SSP biosynthetic processes and the major environmental factors affecting SSP biosynthesis. The effects of these factors on SSP accumulation and their contribution to rice quality are also discussed based on recent findings. This recent knowledge suggests not only new research directions for exploring rice SSP biosynthesis but also innovative strategies for breeding high-quality rice varieties.
Collapse
Affiliation(s)
- Wei He
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| |
Collapse
|
31
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021; 232:98-112. [PMID: 33683730 PMCID: PMC8518983 DOI: 10.1111/nph.17329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/26/2021] [Indexed: 05/05/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Habtamu Ayalew
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | | | - Kundan Dhakal
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Marcus Griffiths
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xue‐Feng Ma
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Larry M. York
- Noble Research Institute LLC2510 Sam Noble ParkwayArdmoreOK73401USA
| |
Collapse
|
32
|
Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma XF, York LM. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. THE NEW PHYTOLOGIST 2021. [PMID: 33683730 DOI: 10.1101/2020.11.12.380238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The root economics space is a useful framework for plant ecology but is rarely considered for crop ecophysiology. In order to understand root trait integration in winter wheat, we combined functional phenomics with trait economic theory, utilizing genetic variation, high-throughput phenotyping, and multivariate analyses. We phenotyped a diversity panel of 276 genotypes for root respiration and architectural traits using a novel high-throughput method for CO2 flux and the open-source software RhizoVision Explorer to analyze scanned images. We uncovered substantial variation in specific root respiration (SRR) and specific root length (SRL), which were primary indicators of root metabolic and structural costs. Multiple linear regression analysis indicated that lateral root tips had the greatest SRR, and the residuals from this model were used as a new trait. Specific root respiration was negatively correlated with plant mass. Network analysis, using a Gaussian graphical model, identified root weight, SRL, diameter, and SRR as hub traits. Univariate and multivariate genetic analyses identified genetic regions associated with SRR, SRL, and root branching frequency, and proposed gene candidates. Combining functional phenomics and root economics is a promising approach to improving our understanding of crop ecophysiology. We identified root traits and genomic regions that could be harnessed to breed more efficient crops for sustainable agroecosystems.
Collapse
Affiliation(s)
- Haichao Guo
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Habtamu Ayalew
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Anand Seethepalli
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kundan Dhakal
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Marcus Griffiths
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Xue-Feng Ma
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Larry M York
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
33
|
Xiong D, Flexas J. Leaf anatomical characteristics are less important than leaf biochemical properties in determining photosynthesis responses to nitrogen top-dressing. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5709-5720. [PMID: 34022050 DOI: 10.1093/jxb/erab230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The photosynthetic capacity of leaves is dramatically influenced by nitrogen (N) availability in the soil, as CO2 concentration in chloroplasts and photosynthetic biochemical capacity are related to leaf N content. The relationship between mesophyll conductance (gm) and leaf N content was expected to be shaped by leaf anatomical traits. However, the increased gm in mature leaves achieved by N top-dressing is unlikely to be caused by changes in leaf anatomy. Here, we assessed the impacts of N supply on leaf anatomical, biochemical, and photosynthetic features, specifically, the dynamic responses of leaf anatomy, biochemistry, and photosynthesis to N top-dressing in tobacco. Plant performance was substantially affected by soil N status. In comparison with the leaves of plants subjected to low N treatment, leaves of plants with high N treatment photosynthesized significantly more, due to higher CO2 diffusion conductance and photosynthetic biochemical capacity. The high gm in high N-treated leaves apparently related to modifications in the leaf anatomy; however, the rapid response of gm to N top-dressing cannot be fully explained by leaf anatomical modifications.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
34
|
Massel K, Lam Y, Wong ACS, Hickey LT, Borrell AK, Godwin ID. Hotter, drier, CRISPR: the latest edit on climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1691-1709. [PMID: 33420514 DOI: 10.1007/s00122-020-03764-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
Integrating CRISPR/Cas9 genome editing into modern breeding programs for crop improvement in cereals. Global climate trends in many agricultural regions have been rapidly changing over the past decades, and major advances in global food systems are required to ensure food security in the face of these emerging challenges. With increasing climate instability due to warmer temperatures and rising CO2 levels, the productivity of global agriculture will continue to be negatively impacted. To combat these growing concerns, creative approaches will be required, utilising all the tools available to produce more robust and tolerant crops with increased quality and yields under more extreme conditions. The integration of genome editing and transgenics into current breeding strategies is one promising solution to accelerate genetic gains through targeted genetic modifications, producing crops that can overcome the shifting climate realities. This review focuses on how revolutionary genome editing tools can be directly implemented into breeding programs for cereal crop improvement to rapidly counteract many of the issues affecting agriculture production in the years to come.
Collapse
Affiliation(s)
- Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Albert C S Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew K Borrell
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
35
|
Chaudhary S, Kalkal M. Rice Transcriptome Analysis Reveals Nitrogen Starvation Modulates Differential Alternative Splicing and Transcript Usage in Various Metabolism-Related Genes. Life (Basel) 2021; 11:285. [PMID: 33801769 PMCID: PMC8066416 DOI: 10.3390/life11040285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen (N) is crucial for plant growth and development; however, excessive use of N fertilizers cause many problems including environmental damage, degradation of soil fertility, and high cost to the farmers. Therefore, immediate implementation is required to develop N efficient crop varieties. Rice being low nitrogen use efficiency (NUE) and a high demand staple food across the world has become a favorite crop to study the NUE trait. In the current study, we used the publicly available transcriptome data generated from the root and shoot tissues of two rice genotypes IR-64 and Nagina-22 (N-22) under optimum N supply (N+) and chronic N-starvation (N-). A stringent pipeline was applied to detect differentially expressed genes (DEGs), alternatively spliced (DAS) genes, differentially expressed transcripts (DETs) and differential transcript usage (DTU) transcripts in both the varieties and tissues under N+ and N- conditions. The DAS genes and DTU transcripts identified in the study were found to be involved in several metabolic and biosynthesis processes. We suggest alternative splicing (AS) plays an important role in fine-tuning the regulation of metabolic pathways related genes in genotype, tissue, and condition-dependent manner. The current study will help in understanding the transcriptional dynamics of NUE traits in the future.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Meenu Kalkal
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India;
| |
Collapse
|
36
|
Defining the physiological determinants of low nitrogen requirement in wheat. Biochem Soc Trans 2021; 49:609-616. [PMID: 33769462 PMCID: PMC8106490 DOI: 10.1042/bst20200282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Nitrogen (N) is a major nutrient limiting productivity in many ecosystems. The large N demands associated with food crop production are met mainly through the provision of synthetic N fertiliser, leading to economic and ecological costs. Optimising the balance between N supply and demand is key to reducing N losses to the environment. Wheat (Triticum aestivum L.) production provides food for millions of people worldwide and is highly dependent on sufficient N supply. The size of the N sink, i.e. wheat grain (number, size, and protein content) is the main driver of high N requirement. Optimal functioning of temporary sinks, in particular the canopy, can also affect N requirement. N use efficiency (i.e. yield produced per unit of N available) tends to be lower under high N conditions, suggesting that wheat plants are more efficient under low N conditions and that there is an optimal functioning yet unattained under high N conditions. Understanding the determinants of low N requirement in wheat would provide the basis for the selection of genetic material suitable for sustainable cereal production. In this review, we dissect the drivers of N requirement at the plant level along with the temporal dynamics of supply and demand.
Collapse
|
37
|
The SV, Snyder R, Tegeder M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 11:628366. [PMID: 33732269 PMCID: PMC7957077 DOI: 10.3389/fpls.2020.628366] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 05/22/2023]
Abstract
In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions.
Collapse
Affiliation(s)
| | | | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
38
|
Souza LA, Tavares R. Nitrogen and Stem Development: A Puzzle Still to Be Solved. FRONTIERS IN PLANT SCIENCE 2021; 12:630587. [PMID: 33659017 PMCID: PMC7917133 DOI: 10.3389/fpls.2021.630587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 05/14/2023]
Abstract
High crop yields are generally associated with high nitrogen (N) fertilizer rates. A growing tendency that is urgently demanding the adoption of precision technologies that manage N more efficiently, combined with the advances of crop genetics to meet the needs of sustainable farm systems. Among the plant traits, stem architecture has been of paramount importance to enhance harvest index in the cereal crops. Nonetheless, the reduced stature also brought undesirable effect, such as poor N-uptake, which has led to the overuse of N fertilizer. Therefore, a better understanding of how N signals modulate the initial and late stages of stem development might uncover novel semi-dwarf alleles without pleiotropic effects. Our attempt here is to review the most recent advances on this topic.
Collapse
Affiliation(s)
- Lucas Anjos Souza
- Innovation Centre in Bioenergy and Grains, Goiano Federal Institute of Education, Science and Technology, Goiás, Brazil
| | - Rafael Tavares
- Department of Cell and Development Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
39
|
Pujarula V, Pusuluri M, Bollam S, Das RR, Ratnala R, Adapala G, Thuraga V, Rathore A, Srivastava RK, Gupta R. Genetic Variation for Nitrogen Use Efficiency Traits in Global Diversity Panel and Parents of Mapping Populations in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:625915. [PMID: 33613608 PMCID: PMC7893144 DOI: 10.3389/fpls.2021.625915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 05/09/2023]
Abstract
Nitrogen (N) is one of the primary macronutrients required for crop growth and yield. This nutrient is especially limiting in the dry and low fertility soils where pearl millet [Pennisetum glaucum (L.) R. Br] is typically grown. Globally, pearl millet is the sixth most important cereal grown by subsistence farmers in the arid and semi-arid regions of sub-Saharan Africa and the Indian subcontinent. Most of these agro-ecologies have low N in the root zone soil strata. Therefore, there is an immense need to identify lines that use nitrogen efficiently. A set of 380 diverse pearl millet lines consisting of a global diversity panel (345), parents of mapping populations (20), and standard checks (15) were evaluated in an alpha-lattice design with two replications, 25 blocks, a three-row plot for 11 nitrogen use efficiency (NUE) related traits across three growing seasons (Summer 2017, Rainy 2017, and Summer 2018) in an N-depleted precision field under three different N levels (0%-N0, 50%-N50, 100%-N100 of recommended N, i.e., 100 kg ha-1). Analysis of variance revealed significant genetic variation for NUE-related traits across treatments and seasons. Nitrogen in limited condition (N0) resulted in a 27.6 and 17.6% reduction in grain yield (GY) and dry stover yield (DSY) compared to N50. Higher reduction in GY and DSY traits by 24.6 and 23.6% were observed under N0 compared to N100. Among the assessed traits, GY exhibited significant positive correlations with nitrogen utilization efficiency (NUtE) and nitrogen harvest index (NHI). This indicated the pivotal role of N remobilization to the grain in enhancing yield levels. Top 25 N-insensitive (NIS-top grain yielders) and N-sensitive (NS-poor grain yielders) genotypes were identified under low N conditions. Out of 25 NIS lines, nine genotypes (IP 10820, IP 17720, ICMB 01222-P1, IP 10379, ICMB 89111-P2, IP 8069, ICMB 90111-P2, ICMV IS89305, and ICMV 221) were common with the top 25 lines for N100 level showing the genotype plasticity toward varying N levels. Low N tolerant genotypes identified from the current investigation may help in the identification of genomic regions responsible for NUE and its deployment in pearl millet breeding programs through marker-assisted selection (MAS).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
40
|
Islam S, Zhang J, Zhao Y, She M, Ma W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110759. [PMID: 33487345 DOI: 10.1016/j.plantsci.2020.110759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 05/25/2023]
Abstract
High nitrogen application aimed at increasing crop yield is offset by higher production costs and negative environmental consequences. For wheat, only one third of the applied nitrogen is utilized, which indicates there is scope for increasing Nitrogen Use Efficiency (NUE). However, achieving greater NUE is challenged by the complexity of the trait, which comprises processes associated with nitrogen uptake, transport, reduction, assimilation, translocation and remobilization. Thus, knowledge of the genetic regulation of these processes is critical in increasing NUE. Although primary nitrogen uptake and metabolism-related genes have been well studied, the relative influence of each towards NUE is not fully understood. Recent attention has focused on engineering transcription factors and identification of miRNAs acting on expression of specific genes related to NUE. Knowledge obtained from model species needs to be translated into wheat using recently-released whole genome sequences, and by exploring genetic variations of NUE-related traits in wild relatives and ancient germplasm. Recent findings indicate the genetic basis of NUE is complex. Pyramiding various genes will be the most effective approach to achieve a satisfactory level of NUE in the field.
Collapse
Affiliation(s)
- Shahidul Islam
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Yun Zhao
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Center, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
41
|
Long Non-Coding RNAs, the Dark Matter: An Emerging Regulatory Component in Plants. Int J Mol Sci 2020; 22:ijms22010086. [PMID: 33374835 PMCID: PMC7795044 DOI: 10.3390/ijms22010086] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are pervasive transcripts of longer than 200 nucleotides and indiscernible coding potential. lncRNAs are implicated as key regulatory molecules in various fundamental biological processes at transcriptional, post-transcriptional, and epigenetic levels. Advances in computational and experimental approaches have identified numerous lncRNAs in plants. lncRNAs have been found to act as prime mediators in plant growth, development, and tolerance to stresses. This review summarizes the current research status of lncRNAs in planta, their classification based on genomic context, their mechanism of action, and specific bioinformatics tools and resources for their identification and characterization. Our overarching goal is to summarize recent progress on understanding the regulatory role of lncRNAs in plant developmental processes such as flowering time, reproductive growth, and abiotic stresses. We also review the role of lncRNA in nutrient stress and the ability to improve biotic stress tolerance in plants. Given the pivotal role of lncRNAs in various biological processes, their functional characterization in agriculturally essential crop plants is crucial for bridging the gap between phenotype and genotype.
Collapse
|
42
|
Kocheva K, Kartseva T, Nenova V, Georgiev G, Brestič M, Misheva S. Nitrogen assimilation and photosynthetic capacity of wheat genotypes under optimal and deficient nitrogen supply. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2139-2149. [PMID: 33268919 PMCID: PMC7688811 DOI: 10.1007/s12298-020-00901-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/21/2020] [Accepted: 10/17/2020] [Indexed: 06/08/2023]
Abstract
The performance of two contrasting Bulgarian wheat varieties (Slomer, an old tall cultivar, and Enola, a modern semi-dwarf one) to nitrogen deficiency was compared by measuring biochemical parameters characterizing N uptake and assimilation as well as growth and photosynthetic activity of young seedlings. The old genotype displayed better photosynthetic capacity, higher N assimilation expressed by elevated amino acid synthesis and better overall performance under N limitation. This could be explained by the fact that selection of old varieties was performed mostly in environments with low nutrient availability and consequently these genotypes proved to be more suitable for growing on low-input conditions. Upon limiting N supply modern variety preferentially accumulated sugars while the old one retained higher amino acids levels. It was demonstrated that processes involved in N metabolism were tightly interrelated with photochemical reactions and carbon assimilation even at early developmental stage.
Collapse
Affiliation(s)
- Konstantina Kocheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bld. 21, 1113 Sofia, Bulgaria
| | - Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bld. 21, 1113 Sofia, Bulgaria
| | - Veselina Nenova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bld. 21, 1113 Sofia, Bulgaria
| | - Georgi Georgiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bld. 21, 1113 Sofia, Bulgaria
| | - Marián Brestič
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bld. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
43
|
Jha UC, Nayyar H, Jha R, Khurshid M, Zhou M, Mantri N, Siddique KHM. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC PLANT BIOLOGY 2020; 20:466. [PMID: 33046001 PMCID: PMC7549229 DOI: 10.1186/s12870-020-02595-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The immobile nature of plants means that they can be frequently confronted by various biotic and abiotic stresses during their lifecycle. Among the various abiotic stresses, water stress, temperature extremities, salinity, and heavy metal toxicity are the major abiotic stresses challenging overall plant growth. Plants have evolved complex molecular mechanisms to adapt under the given abiotic stresses. Long non-coding RNAs (lncRNAs)-a diverse class of RNAs that contain > 200 nucleotides(nt)-play an essential role in plant adaptation to various abiotic stresses. RESULTS LncRNAs play a significant role as 'biological regulators' for various developmental processes and biotic and abiotic stress responses in animals and plants at the transcription, post-transcription, and epigenetic level, targeting various stress-responsive mRNAs, regulatory gene(s) encoding transcription factors, and numerous microRNAs (miRNAs) that regulate the expression of different genes. However, the mechanistic role of lncRNAs at the molecular level, and possible target gene(s) contributing to plant abiotic stress response and adaptation, remain largely unknown. Here, we review various types of lncRNAs found in different plant species, with a focus on understanding the complex molecular mechanisms that contribute to abiotic stress tolerance in plants. We start by discussing the biogenesis, type and function, phylogenetic relationships, and sequence conservation of lncRNAs. Next, we review the role of lncRNAs controlling various abiotic stresses, including drought, heat, cold, heavy metal toxicity, and nutrient deficiency, with relevant examples from various plant species. Lastly, we briefly discuss the various lncRNA databases and the role of bioinformatics for predicting the structural and functional annotation of novel lncRNAs. CONCLUSIONS Understanding the intricate molecular mechanisms of stress-responsive lncRNAs is in its infancy. The availability of a comprehensive atlas of lncRNAs across whole genomes in crop plants, coupled with a comprehensive understanding of the complex molecular mechanisms that regulate various abiotic stress responses, will enable us to use lncRNAs as potential biomarkers for tailoring abiotic stress-tolerant plants in the future.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Khurshid
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nitin Mantri
- School of Science, RMIT University, Plenty Road, Bundoora. Victoria. 3083., Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
44
|
Mosleth EF, Lillehammer M, Pellny TK, Wood AJ, Riche AB, Hussain A, Griffiths S, Hawkesford MJ, Shewry PR. Genetic variation and heritability of grain protein deviation in European wheat genotypes. FIELD CROPS RESEARCH 2020; 255:107896. [PMID: 32943810 PMCID: PMC7397848 DOI: 10.1016/j.fcr.2020.107896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
There is a well-established negative relationship between the yield and the concentration of protein in the mature wheat grain. However, some wheat genotypes consistently deviate from this relationship, a phenomenon known as Grain Protein Deviation (GPD). Positive GPD is therefore of considerable interest in relation to reducing the requirement for nitrogen fertilization for producing wheat for breadmaking. We have carried out two sets of field experiments on multiple sites in South East England. The first set comprised 11 field trials of 6 cultivars grown over three years (2008-2011) and the second comprised 9 field trials of 40 genotypes grown over two years (2015-2017) and 5 field trials of 30 genotypes grown in a single year (2017-2018). All trials comprised three replicate randomized plots of each genotype and nutrient regime. These studies showed strong genetic variation in GPD, which also differed in stability between genotypes, with cultivars bred in the UK generally having higher GPD and higher stability than those bred in other European countries. The heritability of GPD was estimated as 0.44, based on data from the field trials of 30 and 40 genotypes. The largest component contributing to the genetic variance was genotype (0.30), with a smaller contribution of the interaction between genotype and year/site (0.11) and a small (but statistically significant) contribution of nitrogen level. These studies suggest that selection for GPD is a viable target for breeders.
Collapse
Affiliation(s)
| | | | - Till K Pellny
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | - Abrar Hussain
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab 57000, Pakistan
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | - Peter R. Shewry
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
- Corresponding author.
| |
Collapse
|
45
|
Seo JS, Kim JK. Nitrogen molecular sensors and their use for screening mutants involved in nitrogen use efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110587. [PMID: 32771146 DOI: 10.1016/j.plantsci.2020.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) is an essential macronutrient that is required for plant growth and development and has a major impact on crop yield and biomass. However, excessive application of N-based fertilizer results in environmental pollution and increases cultivation cost. A significant target of crop biotechnology is to develop crop varieties with improved N use efficiency (NUE), thereby overcoming these issues. While various aspects of plant N uptake and utilization have been studied, many factors that fundamentally affect NUE remain uncharacterized. For example, much remains to be learnt about the genes that determine NUE. One of the significant barriers to studying NUE is the absence of an in vivo N monitoring system. There are currently several methods for measuring plant N status, but they have limitations in terms of screening for NUE mutants and sensitive NUE assessment. Here, we describe strategies for generating and screening mutant pools using N molecular sensors, comprised of the rice genes OsALN and OsUPS1, the expression of which is sensitive to endogenous N status. Forward and reverse genetic approaches using the molecular N sensors will help identify molecular mechanisms underlying NUE.
Collapse
Affiliation(s)
- Jun Sung Seo
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
46
|
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4469-4479. [PMID: 32157312 PMCID: PMC7475097 DOI: 10.1093/jxb/eraa112] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.
Collapse
Affiliation(s)
- Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Quillere
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
47
|
Use of Fluorescence Sensing to Detect Nitrogen and Potassium Variability in Maize. REMOTE SENSING 2020. [DOI: 10.3390/rs12111752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Real-time fluoro-sensing is a promising crop sensing technology to support variable-rate nutrient management for precision agricultural practices. The objective of this study was to evaluate the potential of fluoro-sensing to detect the variability of nitrogen (N) and potassium (K) in the crop canopy at the early growth stages of maize (before the V6 crop growth stage). This study was conducted under greenhouse conditions in pots filled with silica sand, and maize plants were supplied with modified Hoagland’s solution with different rates of N and K. Sensor readings were collected using a Multiplex®3 fluorescence sensor and analyzed using ANOVA (analysis of variance) to test differences in crop response to nutrient rates. Regression analysis was used to assess the ability of fluorescence sensor-based indices to estimate N and K in the crop canopy. The results of this study indicate that all fluorescence indices under consideration enabled the detection of N variability in the maize canopy prior to the V2 crop growth stage. The NBI_B (nitrogen balance index blue) index enabled N uptake detection (R2 = 0.99) as early as the V2 crop growth stage. However, the fluorescence indices failed to identify K deficiency, as the maize plants with K treatments showed little to no variability of this nutrient at early crop growth stages as measured by plant tissue analysis. The results present a tremendous opportunity to assess N uptake at early growth stages of maize for precision nitrogen application. We recommend using fluorescence sensor-based NBI_B or NBI_R (Nitrogen balance index red) for early detection of nitrogen uptake in maize for precision nitrogen management.
Collapse
|
48
|
Ahmed M, Rauf M, Akhtar M, Mukhtar Z, Saeed NA. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17661-17670. [PMID: 32180142 DOI: 10.1007/s11356-020-08236-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
In modern agriculture, farm produce accumulates a lot of nitrates that can reach toxic levels owing to the unfair use of nitrogen fertilizers, cultural methods, farming policies in multiple areas of the world, thereby increasing concerns about the availability of hygienic food supply and environmental hazards. Over the past few decades, global interest in achieving greater output through intensive fertilization has been a growing trend. The fertilizer based on urea or ammonium mainly yields ammonium, which is then transformed to nitrate through the oxidation process that is biologically mediated. Nitrate tends to accumulate differently in distinct crop plants and distinct components of agricultural commodities based on species, crop variety, genetic history, environmental circumstances, harvest phase, post-harvest storage conditions, agronomic variables, nature, and fertilizer application rate. The current article highlights various factors that could directly or indirectly contribute to the accumulation of nitrates in different parts of crop plants and discusses strategies to minimize the accumulation of nitrates in farm produce, thus ensuring healthy food supply and protecting the environment from the accumulation of nitrates.
Collapse
Affiliation(s)
- Moddassir Ahmed
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| | - Muhammad Rauf
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan.
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea.
| | - Muhammad Akhtar
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Nasir Ahmad Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
49
|
Iqbal A, Qiang D, Zhun W, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:61-74. [PMID: 32050119 DOI: 10.1016/j.plaphy.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Crops, including cotton, are sensitive to nitrogen (N) and excessive use can lead to an increase in production costs and environmental problems. We hypothesized that the use of cotton genotypes with substantial root systems and high genetic potentials for nitrogen-use efficiency (NUE) would best address these problems. Therefore, the interspecific variations and traits contributing to NUE in six cotton genotypes having contrasting NUEs were studied in response to various nitrate concentrations. Large genotypic variations were observed in morphophysiological and biochemical traits, especially shoot dry weight, root traits, and N-assimilating enzyme levels. The roots of all the cotton genotypes were more sensitive to low-than high-nitrate concentrations, and the genotype CCRI-69 had the largest root system irrespective of the nitrate concentration. The root morphological traits were positively correlated with N-utilization efficiency and were more affected by genotype than nitrate concentration. Conversely, growth and N-assimilating enzyme levels were more affected by nitrate concentration and were positively correlated with N-uptake efficiency. Based on shoot dry weight, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting root systems, N metabolism, and NUEs. In the future, multi-omics techniques will be performed to identify key genes/pathways involved in N metabolism, which may have the potential to improve root architecture and increase NUE.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Zhun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| |
Collapse
|
50
|
Karim MR, Wang R, Zheng L, Dong X, Shen R, Lan P. Physiological and Proteomic Dissection of the Responses of Two Contrasting Wheat Genotypes to Nitrogen Deficiency. Int J Mol Sci 2020; 21:E2119. [PMID: 32204457 PMCID: PMC7139514 DOI: 10.3390/ijms21062119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 01/18/2023] Open
Abstract
Nitrogen deficiency usually occurs along with aluminum toxicity in acidic soil, which is one of the major constraints for wheat production worldwide. In order to compare adaptive processes to N deficiency with different Al-tolerant wheat cultivars, we chose Atlas 66 and Scout 66 to comprehensively analyze the physiological responses to N deficiency, coupled with label-free mass spectrometry-based proteomics analysis. Results showed that both cultivars were comparable in most physiological indexes under N deficient conditions. However, the chlorophyll content in Scout 66 was higher than that of Atlas 66 under N deficiency. Further proteomic analysis identified 5592 and 5496 proteins in the leaves of Atlas 66 and Scout 66, respectively, of which 658 and 734 proteins were shown to significantly change in abundance upon N deficiency, respectively. The majority of the differentially expressed proteins were involved in cellular N compound metabolic process, photosynthesis, etc. Moreover, tetrapyrrole synthesis and sulfate assimilation were particularly enriched in Scout 66. Our findings provide evidence towards a better understanding of genotype-dependent responses under N deficiency which could help us to develop N efficient cultivars to various soil types.
Collapse
Affiliation(s)
- Mohammad Rezaul Karim
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
| | - Xiaoying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|