1
|
Tsang HT, Ganguly DR, Furbank RT, von Caemmerer S, Danila FR. Novel resources to investigate leaf plasmodesmata formation in C 3 and C 4 monocots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2207-2225. [PMID: 39494762 PMCID: PMC11629748 DOI: 10.1111/tpj.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Plasmodesmata (PD) are nanochannels that facilitate cell-to-cell transport in plants. More productive and photosynthetically efficient C4 plants form more PD at the mesophyll (M)-bundle sheath (BS) interface in their leaves than their less efficient C3 relatives. In C4 leaves, PD play an essential role in facilitating the rapid metabolite exchange between the M and BS cells to operate a biochemical CO2 concentrating mechanism, which increases the CO2 partial pressure at the site of Rubisco in the BS cells and hence photosynthetic efficiency. The genetic mechanism controlling PD formation in C3 and C4 leaves is largely unknown, especially in monocot crops, due to the technical challenge of quantifying these nanostructures with electron microscopy. To address this issue, we have generated stably transformed lines of Oryza sativa (rice, C3) and Setaria viridis (setaria, C4) with fluorescent protein-tagged PD to build the first spatiotemporal atlas of leaf pit field (cluster of PD) density in monocots without the need for electron microscopy. Across leaf development, setaria had consistently more PD connections at the M-BS wall interface than rice while the difference in M-M pit field density varied. While light was a critical trigger of PD formation, cell type and function determined leaf pit field density. Complementary temporal mRNA sequencing and gene co-expression network analysis revealed that the pattern of pit field density correlated with differentially expressed PD-associated genes and photosynthesis-related genes. PD-associated genes identified from our co-expression network analysis are related to cell wall expansion, translation and chloroplast signalling.
Collapse
Affiliation(s)
- Hong Ting Tsang
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Florence R. Danila
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
2
|
Alazem M, Burch-Smith TM. Roles of ROS and redox in regulating cell-to-cell communication: Spotlight on viral modulation of redox for local spread. PLANT, CELL & ENVIRONMENT 2024; 47:2830-2841. [PMID: 38168864 DOI: 10.1111/pce.14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Reactive oxygen species (ROS) are important signalling molecules that influence many aspects of plant biology. One way in which ROS influence plant growth and development is by modifying intercellular trafficking through plasmodesmata (PD). Viruses have evolved to use PD for their local cell-to-cell spread between plant cells, so it is therefore not surprising that they have found ways to modulate ROS and redox signalling to optimise PD function for their benefit. This review examines how intracellular signalling via ROS and redox pathways regulate intercellular trafficking via PD during development and stress. The relationship between viruses and ROS-redox systems, and the strategies viruses employ to control PD function by interfering with ROS-redox in plants is also discussed.
Collapse
Affiliation(s)
- Mazen Alazem
- Donald Danforth Plant Science Center, Saint Louis, Missouri, USA
| | | |
Collapse
|
3
|
Nie Y, Zhang Y, Wang L, Wu J. Unveiling the Role of SlRNC1 in Chloroplast Development and Global Gene Regulation in Tomato Plants. Int J Mol Sci 2024; 25:6898. [PMID: 39000008 PMCID: PMC11241334 DOI: 10.3390/ijms25136898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
RNC1, a plant-specific gene, is known for its involvement in splicing group II introns within maize chloroplast. However, its role in chloroplast development and global gene expression remains poorly understood. This study aimed to investigate the role of RNC1 in chloroplast development and identify the genes that mediate its function in the development of entire tomato plants. Consistent with findings in maize, RNC1 silencing induced dwarfism and leaf whitening in tomato plants. Subcellular localization analysis revealed that the RNC1 protein is localized to both the nucleus and cytoplasm, including the stress granule and chloroplasts. Electron microscopic examination of tomato leaf transverse sections exposed significant disruptions in the spatial arrangement of the thylakoid network upon RNC1 silencing, crucial for efficient light energy capture and conversion into chemical energy. Transcriptome analysis suggested that RNC1 silencing potentially impacts tomato plant development through genes associated with all three categories (biological processes, cellular components, and molecular functions). Overall, our findings contribute to a better understanding of the critical role of RNC1 in chloroplast development and its significance in plant physiology.
Collapse
Affiliation(s)
| | | | | | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Y.N.); (Y.Z.); (L.W.)
| |
Collapse
|
4
|
Liu J, Fan Y, Liu Y, He M, Sun Y, Zheng Q, Mi L, Liu J, Liu W, Tang N, Zhao X, Hu Z, Guo S, Yan D. APP1/NTL9-CalS8 module ensures proper phloem differentiation by stabilizing callose accumulation and symplastic communication. THE NEW PHYTOLOGIST 2024; 242:154-169. [PMID: 38375601 DOI: 10.1111/nph.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yongxiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yanke Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Qi Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
5
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
6
|
Sheshukova EV, Kamarova KA, Ershova NM, Komarova TV. Nicotiana benthamiana Methanol-Inducible Gene (MIG) 21 Encodes a Nucleolus-Localized Protein That Stimulates Viral Intercellular Transport and Downregulates Nuclear Import. PLANTS (BASEL, SWITZERLAND) 2024; 13:279. [PMID: 38256832 PMCID: PMC10819229 DOI: 10.3390/plants13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The mechanical damage of plant tissues leads to the activation of methanol production and its release into the atmosphere. The gaseous methanol or vapors emitted by the damaged plant induce resistance in neighboring intact plants to bacterial pathogens but create favorable conditions for viral infection spread. Among the Nicotiana benthamiana methanol-inducible genes (MIGs), most are associated with plant defense and intercellular transport. Here, we characterize NbMIG21, which encodes a 209 aa protein (NbMIG21p) that does not share any homology with annotated proteins. NbMIG21p was demonstrated to contain a nucleolus localization signal (NoLS). Colocalization studies with fibrillarin and coilin, nucleolus and Cajal body marker proteins, revealed that NbMIG21p is distributed among these subnuclear structures. Our results show that recombinant NbMIG21 possesses DNA-binding properties. Similar to a gaseous methanol effect, an increased NbMIG21 expression leads to downregulation of the nuclear import of proteins with nuclear localization signals (NLSs), as was demonstrated with the GFP-NLS model protein. Moreover, upregulated NbMIG21 expression facilitates tobacco mosaic virus (TMV) intercellular transport and reproduction. We identified an NbMIG21 promoter (PrMIG21) and showed that it is methanol sensitive; thus, the induction of NbMIG21 mRNA accumulation occurs at the level of transcription. Our findings suggest that methanol-activated NbMIG21 might participate in creating favorable conditions for viral reproduction and spread.
Collapse
Affiliation(s)
- Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (K.A.K.); (N.M.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Brzezicka E, Kozieradzka-Kiszkurno M. Callose deposition analysis with special emphasis on plasmodesmata ultrastructure during megasporogenesis in Sedum (Crassulaceae). PROTOPLASMA 2024; 261:31-41. [PMID: 37418158 PMCID: PMC10784368 DOI: 10.1007/s00709-023-01879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
In this study, the results of the first detection of callose within the ovules of the representatives of the family Crassulaceae are presented. This study was carried out on three species of the genus Sedum. Data analysis showed differences in the callose deposition pattern between Sedum hispanicum and Sedum ser. Rupestria species during megasporogenesis. Callose was present mostly in the transversal walls of dyads and tetrads in S. hispanicum. Furthermore, a complete loss of callose from the cell walls of the linear tetrad and a gradual and simultaneous deposition of callose within the nucellus of S. hispanicum were observed. The findings of this study showed the presence of hypostase with callose in the ovules of S. hispanicum, which is not common in other angiosperms. The remaining species tested in this study-Sedum sediforme and Sedum rupestre-showed a typical, well-known callose deposition pattern for plants with the monospore type of megasporogenesis and the Polygonum type of embryo sac. The functional megaspore (FM) in all studied species was located most chalazally. FM is a mononuclear cell, which wall is callose-free in the chalazal pole. The study presents the causes of different patterns of callose deposition within Sedum and their relationship with the systematic position of the study species. Moreover, embryological studies present an argument for excluding callose as a substance that forms an electron-dense material near the plasmodesmata in megaspores of S. hispanicum. This research expands the knowledge about the embryological processes of succulent plants from the family Crassulaceae.
Collapse
Affiliation(s)
- Emilia Brzezicka
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland
| | - Małgorzata Kozieradzka-Kiszkurno
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308, Gdańsk, Poland.
| |
Collapse
|
8
|
Brunkard JO. Communicating Across Cell Walls: Structure, Evolution, and Regulation of Plasmodesmatal Transport in Plants. Results Probl Cell Differ 2024; 73:73-86. [PMID: 39242375 DOI: 10.1007/978-3-031-62036-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Plasmodesmata are conduits in plant cell walls that allow neighboring cells to communicate and exchange resources. Despite their central importance to plant development and physiology, our understanding of plasmodesmata is relatively limited compared to other subcellular structures. In recent years, technical advances in electron microscopy, mass spectrometry, and phylogenomics have illuminated the structure, composition, and evolution of plasmodesmata in diverse plant lineages. In parallel, forward genetic screens have revealed key signaling pathways that converge to regulate plasmodesmatal transport, including chloroplast-derived retrograde signaling, phytohormone signaling, and metabolic regulation by the conserved eukaryotic Target of Rapamycin kinase. This review summarizes our current knowledge of the structure, evolution, and regulation of plasmodesmatal transport in plants.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
10
|
Cui Y, He M, Liu D, Liu J, Liu J, Yan D. Intercellular Communication during Stomatal Development with a Focus on the Role of Symplastic Connection. Int J Mol Sci 2023; 24:ijms24032593. [PMID: 36768915 PMCID: PMC9917297 DOI: 10.3390/ijms24032593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Stomata are microscopic pores on the plant epidermis that serve as a major passage for the gas and water exchange between a plant and the atmosphere. The formation of stomata requires a series of cell division and cell-fate transitions and some key regulators including transcription factors and peptides. Monocots have different stomatal patterning and a specific subsidiary cell formation process compared with dicots. Cell-to-cell symplastic trafficking mediated by plasmodesmata (PD) allows molecules including proteins, RNAs and hormones to function in neighboring cells by moving through the channels. During stomatal developmental process, the intercellular communication between stomata complex and adjacent epidermal cells are finely controlled at different stages. Thus, the stomata cells are isolated or connected with others to facilitate their formation or movement. In the review, we summarize the main regulation mechanism underlying stomata development in both dicots and monocots and especially the specific regulation of subsidiary cell formation in monocots. We aim to highlight the important role of symplastic connection modulation during stomata development, including the status of PD presence at different cell-cell interfaces and the function of relevant mobile factors in both dicots and monocots.
Collapse
Affiliation(s)
- Yongqi Cui
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs/Lixiahe Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, China
| | - Jinxin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475001, China
- Correspondence:
| |
Collapse
|
11
|
Peláez-Vico MÁ, Fichman Y, Zandalinas SI, Van Breusegem F, Karpiński SM, Mittler R. ROS and redox regulation of cell-to-cell and systemic signaling in plants during stress. Free Radic Biol Med 2022; 193:354-362. [PMID: 36279971 DOI: 10.1016/j.freeradbiomed.2022.10.305] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
Stress results in the enhanced accumulation of reactive oxygen species (ROS) in plants, altering the redox state of cells and triggering the activation of multiple defense and acclimation mechanisms. In addition to activating ROS and redox responses in tissues that are directly subjected to stress (termed 'local' tissues), the sensing of stress in plants triggers different systemic signals that travel to other parts of the plant (termed 'systemic' tissues) and activate acclimation and defense mechanisms in them; even before they are subjected to stress. Among the different systemic signals triggered by stress in plants are electric, calcium, ROS, and redox waves that are mobilized in a cell-to-cell fashion from local to systemic tissues over long distances, sometimes at speeds of up to several millimeters per second. Here, we discuss new studies that identified various molecular mechanisms and proteins involved in mediating systemic signals in plants. In addition, we highlight recent studies that are beginning to unravel the mode of integration and hierarchy of the different systemic signals and underline open questions that require further attention. Unraveling the role of ROS and redox in plant stress responses is highly important for the development of climate resilient crops.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri. Columbia, MO, 65211, USA
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri. Columbia, MO, 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, S/n, Castelló de la Plana, 12071, Spain
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium; Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - Stanislaw M Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri. Columbia, MO, 65211, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
12
|
Ershova N, Sheshukova E, Kamarova K, Arifulin E, Tashlitsky V, Serebryakova M, Komarova T. Nicotiana benthamiana Kunitz peptidase inhibitor-like protein involved in chloroplast-to-nucleus regulatory pathway in plant-virus interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:1041867. [PMID: 36438111 PMCID: PMC9685412 DOI: 10.3389/fpls.2022.1041867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses use a variety of strategies to infect their host. During infection, viruses cause symptoms of varying severity, which are often associated with altered leaf pigmentation due to structural and functional damage to chloroplasts that are affected by viral proteins. Here we demonstrate that Nicotiana benthamiana Kunitz peptidase inhibitor-like protein (KPILP) gene is induced in response to potato virus X (PVX) infection. Using reverse genetic approach, we have demonstrated that KPILP downregulates expression of LHCB1 and LHCB2 genes of antenna light-harvesting complex proteins, HEMA1 gene encoding glutamyl-tRNA reductase, which participates in tetrapyrrole biosynthesis, and RBCS1A gene encoding RuBisCO small subunit isoform involved in the antiviral immune response. Thus, KPILP is a regulator of chloroplast retrograde signaling system during developing PVX infection. Moreover, KPILP was demonstrated to affect carbon partitioning: reduced glucose levels during PVX infection were associated with KPILP upregulation. Another KPILP function is associated with plasmodesmata permeability control. Its ability to stimulate intercellular transport of reporter 2xGFP molecules indicates that KPILP is a positive plasmodesmata regulator. Moreover, natural KPILP glycosylation is indispensable for manifestation of this function. During PVX infection KPILP increased expression leads to the reduction of plasmodesmata callose deposition. These results could indicate that KPILP affects plasmodesmata permeability via callose-dependent mechanism. Thus, virus entering a cell and starting reproduction triggers KPILP expression, which leads to downregulation of nuclear-encoded chloroplast genes associated with retrograde signaling, reduction in photoassimilates accumulation and increase in intercellular transport, creating favorable conditions for reproduction and spread of viral infection.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Bwalya J, Alazem M, Kim K. Photosynthesis-related genes induce resistance against soybean mosaic virus: Evidence for involvement of the RNA silencing pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:543-560. [PMID: 34962034 PMCID: PMC8916206 DOI: 10.1111/mpp.13177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
Increasing lines of evidence indicate that chloroplast-related genes are involved in plant-virus interactions. However, the involvement of photosynthesis-related genes in plant immunity is largely unexplored. Analysis of RNA-Seq data from the soybean cultivar L29, which carries the Rsv3 resistance gene, showed that several chloroplast-related genes were strongly induced in response to infection with an avirulent strain of soybean mosaic virus (SMV), G5H, but were weakly induced in response to a virulent strain, G7H. For further analysis, we selected the PSaC gene from the photosystem I and the ATP-synthase α-subunit (ATPsyn-α) gene whose encoded protein is part of the ATP-synthase complex. Overexpression of either gene within the G7H genome reduced virus levels in the susceptible cultivar Lee74 (rsv3-null). This result was confirmed by transiently expressing both genes in Nicotiana benthamiana followed by G7H infection. Both proteins localized in the chloroplast envelope as well as in the nucleus and cytoplasm. Because the chloroplast is the initial biosynthesis site of defence-related hormones, we determined whether hormone-related genes are involved in the ATPsyn-α- and PSaC-mediated defence. Interestingly, genes involved in the biosynthesis of several hormones were up-regulated in plants infected with SMV-G7H expressing ATPsyn-α. However, only jasmonic and salicylic acid biosynthesis genes were up-regulated following infection with the SMV-G7H expressing PSaC. Both chimeras induced the expression of several antiviral RNA silencing genes, which indicate that such resistance may be partially achieved through the RNA silencing pathway. These findings highlight the role of photosynthesis-related genes in regulating resistance to viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Mazen Alazem
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Kook‐Hyung Kim
- Department of Agriculture BiotechnologyCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
- Research of Institute Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
14
|
A Forward Genetic Approach to Identify Plasmodesmal Trafficking Regulators Based on Trichome Rescue. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2457:393-407. [PMID: 35349156 DOI: 10.1007/978-1-0716-2132-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plasmodesmata (PD) are channels in the walls of plant cells which enable cell-to-cell information transfer. This includes the selective transport of specific transcription factors that control cell fate during plant development. KNOTTED1 (KN1) homeobox (KNOX) family transcription factors that are essential for the maintenance and function of stem cells in shoot meristems use this trafficking pathway, but its mechanism is largely unknown. Here we describe a forward genetic approach to the identification of regulators of selective KN1 trafficking through PD, using a trichome rescue system that permits simple visual analysis in Arabidopsis leaves. A KN1 trafficking regulator identified in this approach had the capacity to regulate the transport not only of KN1 but also of another mobile regulatory protein, TRANSPARENT TESTA GLABRA1 (TTG1). Our system could be easily adapted to reveal the mechanism underlying the selective transport of additional mobile signals through PD.
Collapse
|
15
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
16
|
Quantifying Plasmodesmatal Transport with an Improved GFP Movement Assay. Methods Mol Biol 2022; 2457:285-298. [PMID: 35349148 PMCID: PMC9875380 DOI: 10.1007/978-1-0716-2132-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasmodesmata (PD) are membrane-lined channels that cross the cell wall to connect the cytosol of adjacent plant cells, permitting diverse cytosolic molecules to move between cells. PD are essential for plant multicellularity, and the regulation of PD transport contributes to metabolism, developmental patterning, abiotic stress responses, and pathogen defenses, which has sparked broad interest in PD among diverse plant biologists. Here, we present a straightforward method to reproducibly quantify changes in the rate of PD transport in leaves. Individual cells are transformed with Agrobacterium to express fluorescent proteins, which then move beyond the transformed cell via PD. Forty-eight to 72 h later, the extent of GFP movement is monitored by confocal fluorescence microscopy. This assay is versatile and may be combined with transient gene overexpression, virus-induced gene silencing, physiological treatments, or pharmaceutical treatments to test how PD transport responds to specific conditions. We expect that this improved method for monitoring PD transport in leaves will be broadly useful for plant biologists working in diverse fields.
Collapse
|
17
|
Sankoh AF, Burch-Smith TM. Approaches for investigating plasmodesmata and effective communication. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102143. [PMID: 34826658 DOI: 10.1016/j.pbi.2021.102143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmodesmata (PD) are integral plant cell wall components that provide routes for intercellular communication, signaling, and resource sharing. They are therefore essential for plant growth and survival. Much effort has been put forth to understand how PD are generated and their structure is refined for function and to determine how they regulate intercellular trafficking. This review provides an overview of some of the approaches that have been used to study PD structure and function, highlighting those that may be more widely adopted to address questions of PD cell biology and function. Extending our focus on the importance of communication, we address how effective communication strategies can increase diversity and accessibility in the research laboratory, focusing on challenges faced by our deaf/hard-of-hearing colleagues, and highlight successful approaches to including them in the research laboratory.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
18
|
Welchen E, Gonzalez DH. Breaking boundaries: exploring short- and long-distance mitochondrial signalling in plants. THE NEW PHYTOLOGIST 2021; 232:494-501. [PMID: 34255867 DOI: 10.1111/nph.17614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
Communication of mitochondria with other cell compartments is essential for the coordination of cellular functions. Mitochondria send retrograde signals through metabolites, redox changes, direct organelle contacts and protein trafficking. Accumulating evidence indicates that, in animal systems, changes in mitochondrial function also trigger responses in other, either neighbouring or distantly located, cells. Although not clearly established, there are indications that this type of communication may also be operative in plants. Grafting experiments suggested that the translocation of entire mitochondria or submitochondrial vesicles between neighbouring cells is possible in plants, as already documented in animals. Changes in mitochondrial function also regulate cell-to-cell communication via plasmodesmata and may be transmitted over long distances through plant hormones acting as mitokines to relay mitochondrial signals to distant tissues. Long-distance movement of transcripts encoding mitochondrial proteins involved in crucial aspects of metabolism and retrograde signalling was also described. Finally, changes in mitochondrial reactive species (ROS) production may affect the 'ROS wave' that triggers systemic acquired acclimation throughout the plant. In this review, we summarise available evidence suggesting that mitochondria establish sophisticated communications not only within the cell but also with neighbouring cells and distant tissues to coordinate plant growth and stress responses in a cell nonautonomous manner.
Collapse
Affiliation(s)
- Elina Welchen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| |
Collapse
|
19
|
Horner W, Brunkard JO. Cytokinins Stimulate Plasmodesmatal Transport in Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:674128. [PMID: 34135930 PMCID: PMC8201399 DOI: 10.3389/fpls.2021.674128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1-4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.
Collapse
Affiliation(s)
- Wilson Horner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| | - Jacob O. Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
20
|
Iswanto ABB, Shelake RM, Vu MH, Kim JY, Kim SH. Genome Editing for Plasmodesmal Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:679140. [PMID: 34149780 PMCID: PMC8207191 DOI: 10.3389/fpls.2021.679140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic canals that facilitate intercellular communication and molecular exchange between adjacent plant cells. PD-associated proteins are considered as one of the foremost factors in regulating PD function that is critical for plant development and stress responses. Although its potential to be used for crop engineering is enormous, our understanding of PD biology was relatively limited to model plants, demanding further studies in crop systems. Recently developed genome editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associate protein (CRISPR/Cas) might confer powerful approaches to dissect the molecular function of PD components and to engineer elite crops. Here, we assess several aspects of PD functioning to underline and highlight the potential applications of CRISPR/Cas that provide new insight into PD biology and crop improvement.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Minh Huy Vu
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- Jae-Yean Kim,
| | - Sang Hee Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Hee Kim,
| |
Collapse
|