1
|
Zhang Q, Wang Z, Gao R, Jiang Y. Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:1656-1673. [PMID: 39465686 PMCID: PMC11695786 DOI: 10.1111/pce.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Heterotrophic microbes rely on host-derived carbon sources for their growth and survival. Depriving pathogens of plant carbon is therefore a promising strategy for protecting plants from disease and reducing yield losses. Importantly, this carbon starvation-mediated resistance is expected to be more broad-spectrum and durable than race-specific R-gene-mediated resistance. Although sugars are well characterized as major carbon sources for bacteria, emerging evidence suggests that plant-derived lipids are likely to be an essential carbon source for some fungal microbes, particularly biotrophs. Here, we comprehensively discuss the dual roles of carbon sources (mainly sugars and lipids) and their transport processes in immune signalling and microbial nutrition. We summarize recent findings revealing the crucial roles of lipids as susceptibility factors at all stages of pathogen infection. In particular, we discuss the potential pathways by which lipids and other plant carbon sources are delivered to biotrophs, including protein-mediated transport, vesicle trafficking and autophagy. Finally, we highlight knowledge gaps and offer suggestions for clarifying the mechanisms that underlie nutrient uptake by biotrophs, providing guidance for future research on the application of carbon starvation-mediated resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zongqi Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Runjie Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yina Jiang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
2
|
Li Y, Chen J, Zhi J, Huang D, Zhang Y, Zhang L, Duan X, Zhang P, Qiu S, Geng J, Feng J, Zhang K, Yang X, Gao S, Xia W, Zhou Z, Qiao Y, Li B, Li Q, Li T, Chen W, Xiao Y. The ABC transporter SmABCG1 mediates tanshinones export from the peridermic cells of Salvia miltiorrhiza root. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:135-149. [PMID: 39575678 DOI: 10.1111/jipb.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Plants have mechanisms to transport secondary metabolites from where they are biosynthesized to the sites where they function, or to sites such as the vacuole for detoxification. However, current research has mainly focused on metabolite biosynthesis and regulation, and little is known about their transport. Tanshinone, a class diterpenoid with medicinal properties, is biosynthesized in the periderm of Salvia miltiorrhiza roots. Here, we discovered that tanshinone can be transported out of peridermal cells and secreted into the soil environment and that the ABC transporter SmABCG1 is involved in the efflux of tanshinone ⅡA and tanshinone Ⅰ. The SmABCG1 gene is adjacent to the diterpene biosynthesis gene cluster in the S. miltiorrhiza genome. The temporal-spatial expression pattern of SmABCG1 is consistent with tanshinone accumulation profiles. SmABCG1 is located on the plasma membrane and preferentially accumulates in the peridermal cells of S. miltiorrhiza roots. Heterologous expression in Xenopus laevis oocytes demonstrated that SmABCG1 can export tanshinone ⅡA and tanshinone Ⅰ. CRISPR/Cas9-mediated mutagenesis of SmABCG1 in S. miltiorrhiza hairy roots resulted in a significant decrease in tanshinone contents in both hairy roots and the culture medium, whereas overexpression of this gene resulted in increased tanshinone contents. CYP76AH3 transcript levels increased in hairy roots overexpressing SmABCG1 and decreased in knockout lines, suggesting that SmABCG1 may affect the expression of CYP76AH3, indirectly regulating tanshinone biosynthesis. Finally, tanshinone ⅡA showed cytotoxicity to Arabidopsis roots. These findings offer new perspectives on plant diterpenoid transport and provide a new genetic tool for metabolic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Yajing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Doudou Huang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xinyi Duan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310000, China
| | - Pan Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaran Geng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingxian Feng
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ke Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Yang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenwen Xia
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng Zhou
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Li J, Liu X, Cao Z, Yu Q, Li M, Qin G. Pomegranate ATP-binding cassette transporter PgABCG9 plays a negative regulatory role in lignin accumulation. Int J Biol Macromol 2024; 292:139371. [PMID: 39743070 DOI: 10.1016/j.ijbiomac.2024.139371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Seed hardness is an important quality characteristic of pomegranate fruit. The development of seed hardness relies on the deposition of lignin in the inner seed coat, but the underlying molecular mechanisms remain unclear. In this study, we identified a member of ABCG transporters, PgABCG9, which may function in seed hardening by negatively regulating lignin biosynthesis. PgABCG9 was expressed at high levels in the inner seed coats of pomegranate fruit, and its transcript level was negatively correlated with seed hardness. PgABCG9-transgenic Arabidopsis plants exhibited weaker growth and thinner stems than the wild-type. The number of xylem cells, xylem cell wall thickness, and lignin deposition in the PgABCG9 transgenic plants were significantly reduced. In addition, overexpression of PgABCG9 in Arabidopsis enhanced plant tolerance to exogenous monolignols. Targeted metabolite profiling revealed that the contents of metabolites involved in lignin biosynthesis, including monolignols and monolignol precursors, were also reduced in PgABCG9- transgenic plants. We found that PgABCG9 is localized to the Golgi. These findings indicate that PgABCG9 plays a negative regulatory role in lignin biosynthesis and potentially contributes to soft-seed development in pomegranate through a mechanism that includes the reduction of lignin content in the seed coat by sequestration of monolignols in intracellular compartments.
Collapse
Affiliation(s)
- Jiyu Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xin Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Qing Yu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mingxia Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
4
|
Zhao QP, Miao BL, Zhu JD, Li XK, Fu XL, Han MY, Wu QQ, Niu QH, Zhang X, Zhao X. Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39676447 DOI: 10.1111/pce.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium. The mutation in SAV1, which encodes the protein Sec. 24C, leads to ultrastructural alterations in cuticle membranes, decreased deposition of epicuticular wax crystals, and modifications in the chemical composition of very-long-chain fatty acids in cuticular waxes. SAV1 is a membrane protein and expressed during the early stages of seedling development. The defective phenotype of sav1-1 in sugar-free medium resembles that of abcg5, which encodes an ATP-BINDING CASSETTE TRANSPORTER subfamily G 5 (ABCG5) protein involved in cuticle layer formation. Further investigations reveal that SAV1 interacts with ABCG5, influencing the membrane localisation of ABCG5. Collectively, our results suggest that SAV1 plays a critical role in wax transport by altering the subcellular localisation of ABCG5.
Collapse
Affiliation(s)
- Qing-Ping Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Bai-Ling Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xing-Kun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang-Lin Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Yuan Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Hong Niu
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Chen W, Liu L, Wang X, Li H, Liu J, Zhi P, Chang C. Wheat WW Domain-Containing Protein TaCFL1 Negatively Regulates Cuticular Wax Biosynthesis. Int J Mol Sci 2024; 25:13187. [PMID: 39684897 DOI: 10.3390/ijms252313187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Waxy cuticle covers plant aerial organs and protects plants against environmental challenges. Although improved cuticle-associated traits are aimed at the wheat breeding programs, the mechanism governing wheat cuticular wax biosynthesis remains to be elucidated. Herein, wheat WW domain-containing protein TaCFL1 is characterized as a negative regulator of wax biosynthesis. The knockdown of TaCFL1 expression results in a 15% increase in wax accumulation and decreased leaf cuticle permeability in bread wheat. Furthermore, wheat class IV homeodomain transcription factors TaHDG1.1 and TaHDG1.2 are identified as partially redundant activators of wax biosynthesis. The silencing of TaHDG1.1 or TaHDG1.2 expression leads to an 11% reduction in epidermal wax accumulation and an increase in leaf cuticle permeability wax, while the co-silencing of TaHDG1.1 and TaHDG1.2 results in a 31% reduction in epidermal wax accumulation and a further increase in wax in the leaf cuticle permeability. Moreover, wheat 3-Ketoacyl-CoA synthase TaKCS10 is isolated as an essential component of the wax biosynthetic machinery. The silencing of TaKCS10 expression results in a 22% reduction in wax accumulation and increased leaf cuticle permeability. In addition, we demonstrated that the TaKCS10 expression is activated by TaHDG1.1 and TaHDG1.2, and that TaCFL1 attenuates the TaHDG1-mediated transcriptional activation of TaKCS10. This evidence supports that the WW domain-containing protein TaCFL1 negatively regulates wax biosynthesis via attenuating the transcriptional activation of the TaKCS10 gene mediated by HD-ZIP IV transcription factor TaHDG1.
Collapse
Affiliation(s)
- Wanzhen Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lang Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Zhi P, Chen W, Zhang W, Ge P, Chang C. Wheat Topoisomerase VI Positively Regulates the Biosynthesis of Cuticular Wax and Cutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25560-25573. [PMID: 39527756 DOI: 10.1021/acs.jafc.4c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lipophilic cuticles mainly composed of wax mixtures and cutin matrices seal the plant epidermis and control plant development and environmental adaptation. Although cuticle-associated traits have been selected in the breeding of agronomically important cereal bread wheat, the biosynthesis of wheat cuticular wax and cutin remains poorly understood. Herein, wheat topoisomerase VI was characterized as an essential activator of cuticular wax and cutin biosynthesis. Knock-down of wheat TaTOP6A, TaTOP6B, TaRHL1, or TaBIN4 gene encoding component of topoisomerase VI resulted in decreased loads of leaf cuticular wax and cutin, as well as increased leaf cuticle permeability. Moreover, TaCYP86A2 was identified as a key component of the wheat cutin biosynthetic machinery. Reduction of wheat TaCYP86A2 expression led to decreased cutin accumulation and enhanced cuticle permeability. In addition, TaTOP6A, TaTOP6B, TaRHL1, or TaBIN4 was shown to enrich at the promoter regions of the wax biosynthesis gene TaKCS1 and the cutin biosynthesis gene TaCYP86A2. Importantly, chromatin at TaKCS1 and TaCYP86A2 promoters is marked by high nucleosome occupancy and low histone acetylation in TaTOP6A-, TaTOP6B-, TaRHL1-, or TaBIN4-silenced wheat leaves. These results collectively support that wheat topoisomerase VI positively regulates the biosynthesis of cuticular wax and cutin probably via maintaining a permissive chromatin state at TaKCS1 and TaCYP86A2 genes.
Collapse
Affiliation(s)
- Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wanzhen Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wenhui Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Pengkun Ge
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Wang X, Chen W, Zhi P, Chang C. Wheat Transcription Factor TaMYB60 Modulates Cuticular Wax Biosynthesis by Activating TaFATB and TaCER1 Expression. Int J Mol Sci 2024; 25:10335. [PMID: 39408665 PMCID: PMC11477597 DOI: 10.3390/ijms251910335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cuticular wax mixtures cover the epidermis of land plants and shield plant tissues from abiotic and biotic stresses. Although cuticular wax-associated traits are employed to improve the production of bread wheat, regulatory mechanisms underlying wheat cuticular wax biosynthesis remain poorly understood. In this research, partially redundant transcription factors TaMYB60-1 and TaMYB60-2 were identified as positive regulators of wheat cuticular wax biosynthesis. Knock-down of wheat TaMYB60-1 and TaMYB60-2 genes by virus-induced gene silencing resulted in attenuated wax accumulation and enhanced cuticle permeability. The roles of wheat fatty acyl-ACP thioesterase genes TaFATB1 and TaFATB2 in cuticular wax biosynthesis were characterized. Silencing wheat TaFATB1 and TaFATB2 genes led to reduced wax accumulation and increased cuticle permeability, suggesting that TaFATB1 and TaFATB2 genes positively contribute to wheat cuticular wax biosynthesis. Importantly, transcription factors TaMYB60-1 and TaMYB60-2 exhibit transcriptional activation ability and could stimulate the expression of wax biosynthesis genes TaFATB1, TaFATB2, and ECERIFERUM 1 (TaCER1). These findings support that transcription factor TaMYB60 positively regulates wheat cuticular wax biosynthesis probably by activating transcription of TaFATB1, TaFATB2, and TaCER1 genes.
Collapse
Affiliation(s)
| | | | | | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Wang X, Fu Y, Liu X, Chang C. Wheat MIXTA-like Transcriptional Activators Positively Regulate Cuticular Wax Accumulation. Int J Mol Sci 2024; 25:6557. [PMID: 38928263 PMCID: PMC11204111 DOI: 10.3390/ijms25126557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
MIXTA-like transcription factors AtMYB16 and AtMYB106 play important roles in the regulation of cuticular wax accumulation in dicot model plant Arabidopsis thaliana, but there are very few studies on the MIXTA-like transcription factors in monocot plants. Herein, wheat MIXTA-like transcription factors TaMIXTA1 and TaMIXTA2 were characterized as positive regulators of cuticular wax accumulation. The virus-induced gene silencing experiments showed that knock-down of wheat TaMIXTA1 and TaMIXTA2 expressions resulted in the decreased accumulation of leaf cuticular wax, increased leaf water loss rate, and potentiated chlorophyll leaching. Furthermore, three wheat orthologous genes of ECERIFERUM 5 (TaCER5-1A, 1B, and 1D) and their function in cuticular wax deposition were reported. The silencing of TaCER5 by BSMV-VIGS led to reduced loads of leaf cuticular wax and enhanced rates of leaf water loss and chlorophyll leaching, indicating the essential role of the TaCER5 gene in the deposition of wheat cuticular wax. In addition, we demonstrated that TaMIXTA1 and TaMIXTA2 function as transcriptional activators and could directly stimulate the transcription of wax biosynthesis gene TaKCS1 and wax deposition gene TaCER5. The above results strongly support that wheat MIXTA-Like transcriptional activators TaMIXTA1 and TaMIXTA2 positively regulate cuticular wax accumulation via activating TaKCS1 and TaCER5 gene transcription.
Collapse
Affiliation(s)
| | | | | | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Wang J, Zhu H, Huang R, Xu J, Huang L, Yang J, Chen W. CIP1, a CIPK23-interacting transporter, is implicated in Cd tolerance and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134276. [PMID: 38640682 DOI: 10.1016/j.jhazmat.2024.134276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Ru'nan Huang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China.
| | - Weiwei Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
10
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
11
|
Nguyen LTD, Groth N, Mondloch K, Cahoon EB, Jones K, Busta L. Project ChemicalBlooms: Collaborating with citizen scientists to survey the chemical diversity and phylogenetic distribution of plant epicuticular wax blooms. PLANT DIRECT 2024; 8:e588. [PMID: 38766509 PMCID: PMC11099751 DOI: 10.1002/pld3.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Plants use chemistry to overcome diverse challenges. A particularly striking chemical trait that some plants possess is the ability to synthesize massive amounts of epicuticular wax that accumulates on the plant's surfaces as a white coating visible to the naked eye. The ability to synthesize basic wax molecules appears to be shared among virtually all land plants, and our knowledge of ubiquitous wax compound synthesis is reasonably advanced. However, the ability to synthesize thick layers of visible epicuticular crystals ("wax blooms") is restricted to specific lineages, and our knowledge of how wax blooms differ from ubiquitous wax layers is less developed. Here, we recruited the help of citizen scientists and middle school students to survey the wax bloom chemistry of 78 species spanning dicot, monocot, and gymnosperm lineages. Using gas chromatography-mass spectrometry, we found that the major wax classes reported from bulk wax mixtures can be present in wax bloom crystals, with fatty acids, fatty alcohols, and alkanes being present in many species' bloom crystals. In contrast, other compounds including aldehydes, ketones, secondary alcohols, and triterpenoids were present in only a few species' wax bloom crystals. By mapping the 78 wax bloom chemical profiles onto a phylogeny and using phylogenetic comparative analyses, we found that secondary alcohol and triterpenoid-rich wax blooms were present in lineage-specific patterns that would not be expected to arise by chance. That finding is consistent with reports that secondary alcohol biosynthesis enzymes are found only in certain lineages but was a surprise for triterpenoids, which are intracellular components in virtually all plant lineages. Thus, our data suggest that a lineage-specific mechanism other than biosynthesis exists that enables select species to generate triterpenoid-rich surface wax crystals. Overall, our study outlines a general mode in which research scientists can collaborate with citizen scientists as well as middle and high school classrooms not only to enhance data collection and generate testable hypotheses but also to directly involve classrooms in the scientific process and inspire future STEM workers.
Collapse
Affiliation(s)
- Le Thanh Dien Nguyen
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota USA
| | - Nicole Groth
- Department of Biology University of Minnesota Duluth Duluth Minnesota USA
| | - Kylie Mondloch
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota USA
| | - Edgar B Cahoon
- Department of Biochemistry University of Nebraska Lincoln Lincoln Nebraska USA
- Center for Plant Science Innovation University of Nebraska Lincoln Lincoln Nebraska USA
| | - Keith Jones
- McDonald County R-1 School District Anderson Missouri USA
| | - Lucas Busta
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota USA
| |
Collapse
|
12
|
A L, J K. At the root of plant symbioses: Untangling the genetic mechanisms behind mutualistic associations. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102448. [PMID: 37758591 DOI: 10.1016/j.pbi.2023.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
Mutualistic interactions between plants and microorganisms shape the continuous evolution and adaptation of plants such as to the terrestrial environment that was a founding event of subsequent life on land. Such interactions also play a central role in the natural and agricultural ecosystems and are of primary importance for a sustainable future. To boost plant's productivity and resistance to biotic and abiotic stresses, new approaches involving associated symbiotic organisms have recently been explored. New discoveries on mutualistic symbioses evolution and the interaction between partners will be key steps to enhance plant potential.
Collapse
Affiliation(s)
- Lebreton A
- INRAE, Aix-Marseille Université, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, 13288 Marseille, France.
| | - Keller J
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
13
|
Zhang L, Sasaki-Sekimoto Y, Kosetsu K, Aoyama T, Murata T, Kabeya Y, Sato Y, Koshimizu S, Shimojima M, Ohta H, Hasebe M, Ishikawa M. An ABCB transporter regulates anisotropic cell expansion via cuticle deposition in the moss Physcomitrium patens. THE NEW PHYTOLOGIST 2024; 241:665-675. [PMID: 37865886 DOI: 10.1111/nph.19337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Anisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion. However, the molecular machinery that deposits cuticle materials in the appropriate spatiotemporal manner to accommodate cell and tissue expansion remains elusive. Here, we report that PpABCB14, an ATP-binding cassette transporter in the moss Physcomitrium patens, regulates the anisotropy of cell expansion. PpABCB14 localized to expanding regions of leaf cells. Deletion of PpABCB14 resulted in impaired anisotropic cell expansion. Unexpectedly, the cuticle proper was reduced in the mutants, and the cuticular lipid components decreased. Moreover, induced PpABCB14 expression resulted in deformed leaf cells with increased cuticle lipid accumulation on the cell surface. Taken together, PpABCB14 regulates the anisotropy of cell expansion via cuticle deposition, revealing a regulatory mechanism for cell expansion in addition to the mechanisms acting on cell wall polysaccharides.
Collapse
Affiliation(s)
- Liechi Zhang
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ken Kosetsu
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Aoyama
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takashi Murata
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yukiko Kabeya
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yoshikatsu Sato
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Masaki Ishikawa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| |
Collapse
|
14
|
Nawkar GM, Legris M, Goyal A, Schmid-Siegert E, Fleury J, Mucciolo A, De Bellis D, Trevisan M, Schueler A, Fankhauser C. Air channels create a directional light signal to regulate hypocotyl phototropism. Science 2023; 382:935-940. [PMID: 37995216 DOI: 10.1126/science.adh9384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anupama Goyal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- SIB, Swiss Institute for Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Fleury
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Biophore Building University of Lausanne, 1015 Lausanne, Switzerland
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Schueler
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Wu M, Tu A, Feng H, Guo Y, Xu G, Shi J, Chen J, Yang J, Zhong K. Genome-Wide Identification and Analysis of the ABCF Gene Family in Triticum aestivum. Int J Mol Sci 2023; 24:16478. [PMID: 38003668 PMCID: PMC10671407 DOI: 10.3390/ijms242216478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The ATP-binding cassette (ABC) superfamily of proteins is a group of evolutionarily conserved proteins. The ABCF subfamily is involved in ribosomal synthesis, antibiotic resistance, and transcriptional regulation. However, few studies have investigated the role of ABCF in wheat (Triticum aestivum) immunity. Here, we identified 18 TaABCFs and classified them into four categories based on their domain characteristics. Functional similarity between Arabidopsis and wheat ABCF genes was predicted using phylogenetic analysis. A comprehensive genome-wide analysis of gene structure, protein motifs, chromosomal location, and cis-acting elements was also performed. Tissue-specific analysis and expression profiling under temperature, hormonal, and viral stresses were performed using real-time quantitative reverse transcription polymerase chain reaction after randomly selecting one gene from each group. The results revealed that all TaABCF genes had the highest expression at 25 °C and responded to methyl jasmonate induction. Notably, TaABCF2 was highly expressed in all tissues except the roots, and silencing it significantly increased the accumulation of Chinese wheat mosaic virus or wheat yellow mosaic virus in wheat leaves. These results indicated that TaABCF may function in response to viral infection, laying the foundation for further studies on the mechanisms of this protein family in plant defence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Yang W, Yao D, Duan H, Zhang J, Cai Y, Lan C, Zhao B, Mei Y, Zheng Y, Yang E, Lu X, Zhang X, Tang J, Yu K, Zhang X. VAMP726 from maize and Arabidopsis confers pollen resistance to heat and UV radiation by influencing lignin content of sporopollenin. PLANT COMMUNICATIONS 2023; 4:100682. [PMID: 37691288 PMCID: PMC10721520 DOI: 10.1016/j.xplc.2023.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Sporopollenin in the pollen cell wall protects male gametophytes from stresses. Phenylpropanoid derivatives, including guaiacyl (G) lignin units, are known to be structural components of sporopollenin, but the exact composition of sporopollenin remains to be fully resolved. We analyzed the phenylpropanoid derivatives in sporopollenin from maize and Arabidopsis by thioacidolysis coupled with nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The NMR and GC-MS results confirmed the presence of p-hydroxyphenyl (H), G, and syringyl (S) lignin units in sporopollenin from maize and Arabidopsis. Strikingly, H units account for the majority of lignin monomers in sporopollenin from these species. We next performed a genome-wide association study to explore the genetic basis of maize sporopollenin composition and identified a vesicle-associated membrane protein (ZmVAMP726) that is strongly associated with lignin monomer composition of maize sporopollenin. Genetic manipulation of VAMP726 affected not only lignin monomer composition in sporopollenin but also pollen resistance to heat and UV radiation in maize and Arabidopsis, indicating that VAMP726 is functionally conserved in monocot and dicot plants. Our work provides new insight into the lignin monomers that serve as structural components of sporopollenin and characterizes VAMP726, which affects sporopollenin composition and stress resistance in pollen.
Collapse
Affiliation(s)
- Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dongdong Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China; National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaling Cai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yong Mei
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Erbing Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoduo Lu
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou 450002, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
17
|
Hassani D, Lu Y, Ni B, Zhu RL, Zhao Q. The endomembrane system: how does it contribute to plant secondary metabolism? TRENDS IN PLANT SCIENCE 2023; 28:1222-1236. [PMID: 37211450 DOI: 10.1016/j.tplants.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
New organelle acquisition through neofunctionalization of the endomembrane system (ES) with respect to plant secondary metabolism is a key evolutionary strategy for plant adaptation, which is overlooked due to the complexity of angiosperms. Bryophytes produce a broad range of plant secondary metabolites (PSMs), and their simple cellular structures, including unique organelles, such as oil bodies (OBs), highlight them as suitable model to investigate the contribution of the ES to PSMs. In this opinion, we review latest findings on the contribution of the ES to PSM biosynthesis, with a specific focus on OBs, and propose that the ES provides organelles and trafficking routes for PSM biosynthesis, transportation, and storage. Therefore, future research on ES-derived organelles and trafficking routes will provide essential knowledge for synthetic applications.
Collapse
Affiliation(s)
- Danial Hassani
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Lu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
18
|
Liu L, Li H, Wang X, Chang C. Transcription Factor TaMYB30 Activates Wheat Wax Biosynthesis. Int J Mol Sci 2023; 24:10235. [PMID: 37373378 DOI: 10.3390/ijms241210235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The waxy cuticle covers a plant's aerial surface and contributes to environmental adaptation in land plants. Although past decades have seen great advances in understanding wax biosynthesis in model plants, the mechanisms underlying wax biosynthesis in crop plants such as bread wheat remain to be elucidated. In this study, wheat MYB transcription factor TaMYB30 was identified as a transcriptional activator positively regulating wheat wax biosynthesis. The knockdown of TaMYB30 expression using virus-induced gene silencing led to attenuated wax accumulation, increased water loss rates, and enhanced chlorophyll leaching. Furthermore, TaKCS1 and TaECR were isolated as essential components of wax biosynthetic machinery in bread wheat. In addition, silencing TaKCS1 and TaECR resulted in compromised wax biosynthesis and potentiated cuticle permeability. Importantly, we showed that TaMYB30 could directly bind to the promoter regions of TaKCS1 and TaECR genes by recognizing the MBS and Motif 1 cis-elements, and activate their expressions. These results collectively demonstrated that TaMYB30 positively regulates wheat wax biosynthesis presumably via the transcriptional activation of TaKCS1 and TaECR.
Collapse
Affiliation(s)
- Lang Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
19
|
Ito E, Munakata R, Yazaki K. Letter to the Editor: Gromwell, a Purple Link between Traditional Japanese Culture and Plant Science. PLANT & CELL PHYSIOLOGY 2023:7167862. [PMID: 37196028 DOI: 10.1093/pcp/pcad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Emi Ito
- Institute for Women's Education in Science, Technology, Engineering, Arts, and Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
- Institute for Human Life Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-0012 Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| |
Collapse
|
20
|
Dague AL, Valeeva LR, McCann NM, Sharipova MR, Valentovic MA, Bogomolnaya LM, Shakirov EV. Identification and Analysis of Antimicrobial Activities from a Model Moss Ceratodon purpureus. Metabolites 2023; 13:350. [PMID: 36984790 PMCID: PMC10057591 DOI: 10.3390/metabo13030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence of bacterial drug resistance is often viewed as the next great health crisis of our time. While more antimicrobial agents are urgently needed, very few new antibiotics are currently in the production pipeline. Here, we aim to identify and characterize novel antimicrobial natural products from a model dioicous moss, Ceratodon purpureus. We collected secreted moss exudate fractions from two C. purpureus strains, male R40 and female GG1. Exudates from the female C. purpureus strain GG1 did not exhibit inhibitory activity against any tested bacteria. However, exudates from the male moss strain R40 exhibited strong inhibitory properties against several species of Gram-positive bacteria, including Staphylococcus aureus and Enterococcus faecium, though they did not inhibit the growth of Gram-negative bacteria. Antibacterial activity levels in C. purpureus R40 exudates significantly increased over four weeks of moss cultivation in liquid culture. Size fractionation experiments indicated that the secreted bioactive compounds have a relatively low molecular weight of less than 1 kDa. Additionally, the R40 exudate compounds are thermostable and not sensitive to proteinase K treatment. Overall, our results suggest that the bioactive compounds present in C. purpureus R40 exudates can potentially add new options for treating infections caused by antibiotic-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Ashley L. Dague
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lia R. Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Natalie M. McCann
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Margarita R. Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Monica A. Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lydia M. Bogomolnaya
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Eugene V. Shakirov
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
21
|
Nicolas-Espinosa J, Garcia-Ibañez P, Lopez-Zaplana A, Yepes-Molina L, Albaladejo-Marico L, Carvajal M. Confronting Secondary Metabolites with Water Uptake and Transport in Plants under Abiotic Stress. Int J Mol Sci 2023; 24:ijms24032826. [PMID: 36769147 PMCID: PMC9917477 DOI: 10.3390/ijms24032826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Phenolic compounds and glucosinolates are secondary plant metabolites that play fundamental roles in plant resistance to abiotic stress. These compounds have been found to increase in stress situations related to plant adaptive capacity. This review assesses the functions of phenolic compounds and glucosinolates in plant interactions involving abiotic stresses such as drought, salinity, high temperature, metals toxicity, and mineral deficiency or excess. Furthermore, their relation with water uptake and transport mediated through aquaporins is reviewed. In this way, the increases of phenolic compounds and glucosinolate synthesis have been related to primary responses to abiotic stress and induction of resistance. Thus, their metabolic pathways, root exudation, and external application are related to internal cell and tissue movement, with a lack of information in this latter aspect.
Collapse
|
22
|
Demurtas OC, Nicolia A, Diretto G. Terpenoid Transport in Plants: How Far from the Final Picture? PLANTS (BASEL, SWITZERLAND) 2023; 12:634. [PMID: 36771716 PMCID: PMC9919377 DOI: 10.3390/plants12030634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Contrary to the biosynthetic pathways of many terpenoids, which are well characterized and elucidated, their transport inside subcellular compartments and the secretion of reaction intermediates and final products at the short- (cell-to-cell), medium- (tissue-to-tissue), and long-distance (organ-to-organ) levels are still poorly understood, with some limited exceptions. In this review, we aim to describe the state of the art of the transport of several terpene classes that have important physiological and ecological roles or that represent high-value bioactive molecules. Among the tens of thousands of terpenoids identified in the plant kingdom, only less than 20 have been characterized from the point of view of their transport and localization. Most terpenoids are secreted in the apoplast or stored in the vacuoles by the action of ATP-binding cassette (ABC) transporters. However, little information is available regarding the movement of terpenoid biosynthetic intermediates from plastids and the endoplasmic reticulum to the cytosol. Through a description of the transport mechanisms of cytosol- or plastid-synthesized terpenes, we attempt to provide some hypotheses, suggestions, and general schemes about the trafficking of different substrates, intermediates, and final products, which might help develop novel strategies and approaches to allow for the future identification of terpenoid transporters that are still uncharacterized.
Collapse
Affiliation(s)
- Olivia Costantina Demurtas
- Biotechnology and Agro-Industry Division, Biotechnology Laboratory, Casaccia Research Center, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| | - Alessandro Nicolia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Gianfranco Diretto
- Biotechnology and Agro-Industry Division, Biotechnology Laboratory, Casaccia Research Center, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
23
|
Sun N, Li C, Jiang X, Gai Y. Transcriptomic Insights into Functions of LkABCG36 and LkABCG40 in Nicotiana tabacum. PLANTS (BASEL, SWITZERLAND) 2023; 12:227. [PMID: 36678941 PMCID: PMC9860546 DOI: 10.3390/plants12020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ATP-binding cassette transporters (ABC transporters) play crucial physiological roles in plants, such as being involved in the growth and development of organs, nutrient acquisition, response to biotic and abiotic stress, disease resistance, and the interaction of the plant with its environment. The ABCG subfamily of proteins are involved in the process of plant vegetative organ development. In contrast, the functions of the ABCG36 and ABCG40 transporters have received considerably less attention. Here, we investigated changes in the transcriptomic data of the stem tissue of transgenic tobacco (Nicotiana tabacum) with LkABCG36 and LkABCG40 (Larix kaempferi) overexpression, and compared them with those of the wild type (WT). Compared with the WT, we identified 1120 and 318 differentially expressed genes (DEGs) in the LkABCG36 and LkABCG40 groups, respectively. We then annotated the function of the DEGs against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results showed enrichment in cell wall biogenesis and hormone signal transduction functional classes in transgenic LkABCG36 tobacco. In transgenic LkABCG40 tobacco, the enrichment was involved in metabolic and biosynthetic processes, mainly those related to environmental adaptation. In addition, among these DEGs, many auxin-related genes were significantly upregulated in the LkABCG36 group, and we found key genes involved in environmental adaptation in the LkABCG40 group, including an encoding resistance protein and a WRKY transcription factor. These results suggest that LkABCG36 and LkABCG40 play important roles in plant development and environmental adaptation. LkABCG36 may promote plant organ growth and development by increasing auxin transport, whereas LkABCG40 may inhibit the expression of WRKY to improve the resistance of transgenic tobacco. Our results are beneficial to researchers pursuing further study of the functions of ABCG36 and ABCG40.
Collapse
Affiliation(s)
- Nan Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Can Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
24
|
Wang X, Chang C. Exploring and exploiting cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1064390. [PMID: 36438119 PMCID: PMC9685406 DOI: 10.3389/fpls.2022.1064390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Wheat and barley are widely distributed cereal crops whose yields are adversely affected by environmental stresses such as drought, salinity, extreme temperatures, and attacks of pathogens and pests. As the interphase between aerial plant organs and their environments, hydrophobic cuticle largely consists of a cutin matrix impregnated and sealed with cuticular waxes. Increasing evidence supports that the cuticle plays a key role in plant adaptation to abiotic and biotic stresses, which could be harnessed for wheat and barley improvement. In this review, we highlighted recent advances in cuticle biosynthesis and its multifaceted roles in abiotic and biotic stress tolerance of wheat and barley. Current strategies, challenges, and future perspectives on manipulating cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley are discussed.
Collapse
|
25
|
Kameoka H, Gutjahr C. Functions of Lipids in Development and Reproduction of Arbuscular Mycorrhizal Fungi. PLANT & CELL PHYSIOLOGY 2022; 63:1356-1365. [PMID: 35894593 PMCID: PMC9620820 DOI: 10.1093/pcp/pcac113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with most land plants. The symbiosis is based on the exchange of nutrients: AMF receive photosynthetically fixed carbon from the plants and deliver mineral nutrients in return. Lipids are important players in the symbiosis. They act as components of the plant-derived membrane surrounding arbuscules, as carbon sources transferred from plants to AMF, as a major form of carbon storage in AMF and as triggers of developmental responses in AMF. In this review, we describe the role of lipids in arbuscular mycorrhizal symbiosis and AMF development.
Collapse
Affiliation(s)
- Hiromu Kameoka
- *Corresponding authors: Hiromu Kameoka, E-mail, ; Caroline Gutjahr, E-mail,
| | - Caroline Gutjahr
- *Corresponding authors: Hiromu Kameoka, E-mail, ; Caroline Gutjahr, E-mail,
| |
Collapse
|
26
|
Comprehensive Analyses of Simple Sequence Repeat (SSR) in Bamboo Genomes and Development of SSR Markers with Peroxidase Genes. Genes (Basel) 2022; 13:genes13091518. [PMID: 36140687 PMCID: PMC9498332 DOI: 10.3390/genes13091518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/21/2022] Open
Abstract
Simple sequence repeats (SSRs) are one of the most important molecular markers, which are widespread in plants. Bamboos are important forest resources worldwide. Here, the comprehensive identification and comparative analysis of SSRs were performed in three woody and two herbaceous bamboo species. Altogether 567,175 perfect SSRs and 71,141 compound SSRs were identified from 5737.8 Mb genome sequences of five bamboo species. Di-nucleotide SSRs were the most predominant type, with an average of ~50,152.2 per species. Most SSRs were located in intergenic regions, while those located in genic regions were relatively less. Moreover, the results of annotation distribution indicated that terms with P450, peroxidase and ATP-binding cassette transporter related to lignin biosynthesis might play important roles in woody and herbaceous bamboos under the mediation of SSRs. Furthermore, the peroxidase gene family consisted of a large number of genes containing SSRs was selected for the evolutionary relationship analysis and SSR markers development. Fifteen SSR markers derived from peroxidase family genes of Phyllostachys edulis were identified as polymorphic in 34 accessions belonging to seven genera in Bambusoideae. These results provided a comprehensive insight of SSR markers into bamboo genomes, which would facilitate bamboo research related to comparative genomics, evolution and marker-assisted selection.
Collapse
|
27
|
Li H, Matsuda H, Tsuboyama A, Munakata R, Sugiyama A, Yazaki K. Inventory of ATP-binding cassette proteins in Lithospermum erythrorhizon as a model plant producing divergent secondary metabolites. DNA Res 2022; 29:6596041. [PMID: 35640979 PMCID: PMC9195045 DOI: 10.1093/dnares/dsac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) proteins are the largest membrane transporter family in plants. In addition to transporting organic substances, these proteins function as ion channels and molecular switches. The development of multiple genes encoding ABC proteins has been associated with their various biological roles. Plants utilize many secondary metabolites to adapt to environmental stresses and to communicate with other organisms, with many ABC proteins thought to be involved in metabolite transport. Lithospermum erythrorhizon is regarded as a model plant for studying secondary metabolism, as cells in culture yielded high concentrations of meroterpenes and phenylpropanoids. Analysis of the genome and transcriptomes of L. erythrorhizon showed expression of genes encoding 118 ABC proteins, similar to other plant species. The number of expressed proteins in the half-size ABCA and full-size ABCB subfamilies was ca. 50% lower in L. erythrorhizon than in Arabidopsis, whereas there was no significant difference in the numbers of other expressed ABC proteins. Because many ABCG proteins are involved in the export of organic substances, members of this subfamily may play important roles in the transport of secondary metabolites that are secreted into apoplasts.
Collapse
Affiliation(s)
- Hao Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Hinako Matsuda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Ai Tsuboyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Ryosuke Munakata
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Kazufumi Yazaki
- To whom correspondence should be addressed. Tel. +81 774 38 3617.
| |
Collapse
|