1
|
Yan Z, Pu X, Chang X, Liu Z, Liu R. Genetic basis and causal relationship between atrial fibrillation and sinus node dysfunction: Evidence from comprehensive genetic analysis. Int J Cardiol 2024; 418:132609. [PMID: 39389108 DOI: 10.1016/j.ijcard.2024.132609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) and sinus node dysfunction (SND) are commonly observed together clinically. However, little is known about the genetic background and causal relationship between the two. METHODS Firstly, we investigated the global and local genetic correlations between AF and SND using LDSC and HESS. Then, we identified shared "Novel SNPs" between AF and SND through two complementary cross-trait meta-analyses and mapped the "pleiotropic genes" behind these SNPs, validated by colocalization analysis. Additionally, we explored the degree of genetic enrichment of SNPs in specific tissues using LDSC-SEG and MAGMA, and identified potential functional genes in tissues using summary data-based Mendelian randomization (SMR). Finally, two-sample Mendelian randomization (TSMR) and multivariable Mendelian randomization (MVMR) were used to explore the causal relationship between AF and SND. RESULTS Both global and local genetic correlation analyses revealed a high positive genetic correlation between AF and SND. HESS identified 9 shared loci, with chr4(q25-q26) and chr11(p11.12-q11) being prominent. Cross-trait meta-analysis and colocalization analysis identified ENPEP and PITX2 as novel pleiotropic genes. MAGMA revealed genetic enrichment of SNPs for AF and SND in the "Heart Left Ventricle" and "Heart Atrial Appendage" tissues, with CEP68 and BEST3 identified as potential functional genes through SMR. MR analysis indicated that AF increases the risk of SND, even after adjusting for confounding factors. CONCLUSION This study provides genetic evidence for the increased risk of SND associated with AF, identifying multiple shared risk loci and enriched tissues, and discovering 2 novel pleiotropic genes and 2 new functional genes.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Heriot-Watt University, Edinburgh, United Kingdom
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Hermida A, Jedraszak G, Ader F, Denjoy I, Fressart V, Maury P, Beyls C, Bloch A, Clerici G, Daire E, Defaye P, Dupin-Deguine D, Garçon L, Klug D, Ginglinger E, Hermida JS, Jesel L, Khraiche D, Kubala M, Lacotte J, Laredo M, Leenhardt A, Le Guillou X, Lesaffre F, Maltret A, Magnin-Poull I, Marijon E, Nambot S, Neyroud N, Ninni S, Palmyre A, Pasquie JL, Proukhnitzky J, Reant P, Richard P, Rollin A, Rooryck C, Sacher F, Schaefer E, Vernier A, Winum PF, Wahbi K, Waintraub X, Waldmann V, Weber S, Zouaghi A, Charron P, Extramiana F, Gandjbakhch E. Systematic analysis of SCN5A variants associated with inherited cardiac diseases. Heart Rhythm 2024:S1547-5271(24)03136-9. [PMID: 39134129 DOI: 10.1016/j.hrthm.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
BACKGROUND SCN5A variants are associated with a spectrum of cardiac electrical disorders with clear phenotypes. However, they may also be associated with complex phenotypic traits like overlap syndromes or pleiotropy, which have not been systematically described. In addition, the involvement of SCN5A in dilated cardiomyopathies (DCMs) remains controversial. OBJECTIVE We aimed to evaluate the different phenotypes associated with pathogenic (P)/likely pathogenic (LP) SCN5A variants and to determine the prevalence of pleiotropy in a large multicentric cohort of P/LP SCN5A variant carriers. METHODS The DNA of 13,510 consecutive probands (9960 with cardiomyopathies) was sequenced with a custom panel of genes. Individuals carrying a heterozygous single P/LP SCN5A variant were selected and phenotyped. RESULTS The study included 170 P/LP variants found in 495 patients. Of them, 119 (70%) were exclusively associated with a single well-established phenotype: 91 with Brugada syndrome, 15 with type 3 long QT syndrome, 6 with progressive cardiac conduction disease, 4 with multifocal ectopic Purkinje-related premature contractions, and 3 with sick sinus syndrome. Thirty-two variants (19%) were associated with overlap syndromes or pleiotropy. The 19 remaining variants (11%) were associated with atypical or unclear phenotypes. Of those, 8 were carried by 8 patients presenting with DCM with a debatable causative genotype/phenotype link. CONCLUSION Most P/LP SCN5A variants were found in patients with primary electrical disorders, mainly Brugada syndrome. Nearly 20% were associated with overlap syndromes or pleiotropy, underscoring the need for comprehensive phenotypic evaluation. The concept of SCN5A variants causing DCM is extremely rare (8/9960) if not questionable.
Collapse
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France; EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France; Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital, Paris, France.
| | - Guillaume Jedraszak
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France; Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France
| | - Flavie Ader
- Unité Pédagogique de Biochimie, Département des Sciences Biologiques et Médicales, UFR de Pharmacie-Faculté de Santé, Paris, France; Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP Sorbonne Université, Pitié-Salpêtrière-Charles Foix, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Isabelle Denjoy
- Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France; CNMR Maladies Cardiaques Héréditaires Rares, APHP, Hôpital Bichat, Paris, France
| | - Véronique Fressart
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP Sorbonne Université, Pitié-Salpêtrière-Charles Foix, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Phillipe Maury
- Service de Cardiologie, Centre hospitalier universitaire, Toulouse, France
| | - Christophe Beyls
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Adrien Bloch
- Unité Pédagogique de Biochimie, Département des Sciences Biologiques et Médicales, UFR de Pharmacie-Faculté de Santé, Paris, France; Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP Sorbonne Université, Pitié-Salpêtrière-Charles Foix, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Gaël Clerici
- Service de Cardiologie, Centre Hospitalier Universitaire, Saint Pierre, La Réunion, France
| | - Elise Daire
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France; Service de Pédiatrie, CHU Amiens, Amiens, France
| | - Pascal Defaye
- Service de Cardiologie, Centre Hospitalier Universitaire, Grenoble, France
| | | | - Loic Garçon
- EA4666 HEMATIM, University of Picardie-Jules Verne, Amiens, France; Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France
| | - Didier Klug
- Service de Cardiologie, France CHU Lille, Inserm UMR1011, Institut Pasteur de Lille, Lille, France
| | | | - Jean-Sylvain Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Laurence Jesel
- Service de Cardiologie, CHU Strasbourg, Strasbourg, France
| | | | - Maciej Kubala
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France
| | - Jérôme Lacotte
- Service de Cardiologie, Institut Jacques Cartier, Massy, France
| | - Mikael Laredo
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Antoine Leenhardt
- Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France; CNMR Maladies Cardiaques Héréditaires Rares, APHP, Hôpital Bichat, Paris, France
| | | | | | - Alice Maltret
- Service de Cardiopathie Congénitale, GHPSJ Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | | | - Eloi Marijon
- Service de Cardiologie, Hôpital Européen Georges Pompidou, APHP, France; Université Paris Cité, INSERM, PARCC, Paris, France
| | - Sophie Nambot
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France
| | - Nathalie Neyroud
- Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Sandro Ninni
- Service de Cardiologie, France CHU Lille, Inserm UMR1011, Institut Pasteur de Lille, Lille, France
| | - Aurélien Palmyre
- Department of Genetics and Referral center for cardiac hereditary cardiac diseases, APHP, Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Jean Luc Pasquie
- Service de Cardiologie, CHU Montpellier, Montpellier, France; PHYMEDEXP-CNRS UMR9214, Inserm U1046, Université de Montpellier et CHU de Montpellier, Montpellier, France
| | - Julie Proukhnitzky
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Patricia Reant
- Service de Cardiologie, LIRYC Institute, Bordeaux University Hospital, University of Bordeaux, Referral center for rare and inherited cardiomyopathies, Bordeaux, France
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP Sorbonne Université, Pitié-Salpêtrière-Charles Foix, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| | - Anne Rollin
- Service de Cardiologie, Centre hospitalier universitaire, Toulouse, France
| | | | - Frédéric Sacher
- Service de Rythmologie, LIRYC Institute, Bordeaux University Hospital, CRMR Cardiogen, ERN Guard-Heart, INSERM 1045 University of Bordeaux, Bordeaux, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, CHU Strasbourg, Strasbourg, France
| | | | | | - Karim Wahbi
- Service de Cardiologie, CHU Cochin, APHP, France
| | - Xavier Waintraub
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital, Paris, France
| | - Victor Waldmann
- Service de Cardiologie, Hôpital Européen Georges Pompidou, APHP, France; Université Paris Cité, INSERM, PARCC, Paris, France
| | - Sacha Weber
- Service de Génétique, CHU Caen, Caen, France
| | - Amir Zouaghi
- Service de Cardiologie, CH d'Antibes, Antibes, France
| | - Philippe Charron
- Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France; Department of Genetics and Referral center for cardiac hereditary cardiac diseases, APHP, Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Fabrice Extramiana
- Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France; CNMR Maladies Cardiaques Héréditaires Rares, APHP, Hôpital Bichat, Paris, France; Université Paris Cité, Paris, France
| | - Estelle Gandjbakhch
- Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, APHP, Pitié-Salpêtrière Hospital, Paris, France; Research Unit on Cardiovascular and Metabolic Diseases, Sorbonne Université, Inserm, UMRS-1166, Paris, France
| |
Collapse
|
3
|
Martin S, Jenewein T, Geisen C, Scheiper-Welling S, Kauferstein S. "Re-evaluation of variants of uncertain significance in patients with hereditary arrhythmogenic disorders". BMC Cardiovasc Disord 2024; 24:390. [PMID: 39068400 PMCID: PMC11282671 DOI: 10.1186/s12872-024-04065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Genetic diagnostics support the diagnosis of hereditary arrhythmogenic diseases, but variants of uncertain significance (VUS) complicate matters, emphasising the need for regular reassessment. Our study aims to reanalyse rare variants in different genes in order to decrease VUS diagnoses and thus improve risk stratification and personalized treatment for patients with arrhythmogenic disorders. METHODS Genomic DNA was analysed using Sanger sequencing and next-generation sequencing (NGS). The Data was evaluated using various databases and in silico prediction tools and classified according to current ACMG standards by two independent experts. RESULTS We identified 53 VUS in 30 genes, of which 17 variants (32%) were reclassified. 13% each were downgraded to likely benign (LB) and benign (B) and 6% were upgraded to likely pathogenic (LP). Reclassifications mainly occurred among variants initially classified in 2017-2019, with rates ranging from 50 to 60%. CONCLUSION The results support the assumption that regular reclassification of VUS is important, as it provides new insights for genetic diagnostics, that benefit patients and guide therapeutic approach.
Collapse
Affiliation(s)
- Sarah Martin
- Centre for Sudden Cardiac Death and Familial Arrhythmias, Institute of Legal Medicine, University Hospital Frankfurt, Goethe-University, Frankfurt/Main, Germany.
| | - Tina Jenewein
- Centre for Sudden Cardiac Death and Familial Arrhythmias, Institute of Legal Medicine, University Hospital Frankfurt, Goethe-University, Frankfurt/Main, Germany
- German Red Cross Blood Center, Institute of Transfusion Medicine and Immunohaematology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christof Geisen
- German Red Cross Blood Center, Institute of Transfusion Medicine and Immunohaematology, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefanie Scheiper-Welling
- Centre for Sudden Cardiac Death and Familial Arrhythmias, Institute of Legal Medicine, University Hospital Frankfurt, Goethe-University, Frankfurt/Main, Germany
| | - Silke Kauferstein
- Centre for Sudden Cardiac Death and Familial Arrhythmias, Institute of Legal Medicine, University Hospital Frankfurt, Goethe-University, Frankfurt/Main, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
| |
Collapse
|
4
|
Park NK, Choi SW, Park SJ, Woo J, Kim HJ, Kim WK, Moon SH, Park HJ, Kim SJ. Requirement of β subunit for the reduced voltage-gated Na + current of a Brugada syndrome patient having novel double missense mutation (p.A385T/R504T) of SCN5A. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:313-322. [PMID: 38926839 PMCID: PMC11211759 DOI: 10.4196/kjpp.2024.28.4.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
Mutations within the SCN5A gene, which encodes the α-subunit 5 (NaV1.5) of the voltage-gated Na+ channel, have been linked to three distinct cardiac arrhythmia disorders: long QT syndrome type 3, Brugada syndrome (BrS), and cardiac conduction disorder. In this study, we have identified novel missense mutations (p.A385T/R504T) within SCN5A in a patient exhibiting overlap arrhythmia phenotypes. This study aims to elucidate the functional consequences of SCN5A mutants (p.A385T/R504T) to understand the clinical phenotypes. Whole-cell patch-clamp technique was used to analyze the NaV1.5 current (INa) in HEK293 cells transfected with the wild-type and mutant SCN5A with or without SCN1B co-expression. The amplitude of INa was not altered in mutant SCN5A (p.A385T/R504T) alone. Furthermore, a rightward shift of the voltage-dependent inactivation and faster recovery from inactivation was observed, suggesting a gain-of-function state. Intriguingly, the coexpression of SCN1B with p.A385T/R504T revealed significant reduction of INa and slower recovery from inactivation, consistent with the loss-of-function in Na+ channels. The SCN1B dependent reduction of INa was also observed in a single mutation p.R504T, but p.A385T co-expressed with SCN1B showed no reduction. In contrast, the slower recovery from inactivation with SCN1B was observed in A385T while not in R504T. The expression of SCN1B is indispensable for the electrophysiological phenotype of BrS with the novel double mutations; p.A385T and p.R504T contributed to the slower recovery from inactivation and reduced current density of NaV1.5, respectively.
Collapse
Affiliation(s)
- Na Kyeong Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Soon-Jung Park
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - JooHan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Uijeonbu St.Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Physiology & Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
5
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
6
|
Marques LP, Santos-Miranda A, Joviano-Santos JV, Teixeira-Fonseca JL, Alcântara FDS, Sarmento JO, Roman-Campos D. The fungicide tebuconazole modulates the sodium current of human Na V1.5 channels expressed in HEK293 cells. Food Chem Toxicol 2023; 180:113992. [PMID: 37633639 DOI: 10.1016/j.fct.2023.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The fungicide Tebuconazole is a widely used pesticide in agriculture and may cause cardiotoxicity. In our present investigation the effect of Tebuconazole on the sodium current (INa) of human cardiac sodium channels (NaV1.5) was studied using a heterologous expression system and whole-cell patch-clamp techniques. Tebuconazole reduced the amplitude of the peak INa in a concentration- and voltage-dependent manner. At the holding potential of -120 mV the IC50 was estimated at 204.1 ± 34.3 μM, while at -80 mV the IC50 was 0.3 ± 0.1 μM. The effect of the fungicide is more pronounced at more depolarized potentials, indicating a state-dependent interaction. Tebuconazole caused a negative shift in the half-maximal inactivation voltage and delayed recovery from fast inactivation of INa. Also, it enhanced closed-state inactivation, exhibited use-dependent block in a voltage-dependent manner. Furthermore, Tebuconazole reduced the increase in late sodium current induced by the pyrethroid insecticide β-Cyfluthrin. These results suggest that Tebuconazole can interact with NaV1.5 channels and modulate INa. The observed effects may lead to decreased cardiac excitability through reduced INa availability, which could be a new mechanism of cardiotoxicity to be attributed to the fungicide.
Collapse
Affiliation(s)
- Leisiane Pereira Marques
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Artur Santos-Miranda
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fabiana da Silva Alcântara
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jaqueline Oliveira Sarmento
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Miller JA, Moise N, Weinberg SH. Modeling incomplete penetrance in long QT syndrome type 3 through ion channel heterogeneity: an in silico population study. Am J Physiol Heart Circ Physiol 2023; 324:H179-H197. [PMID: 36487185 PMCID: PMC10072004 DOI: 10.1152/ajpheart.00430.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Many cardiac diseases are characterized by an increased late sodium current, including heart failure, hypertrophic cardiomyopathy, and inherited long QT syndrome type 3 (LQT3). The late sodium current in LQT3 is caused by a gain-of-function mutation in the voltage-gated sodium channel Nav1.5. Despite a well-defined genetic cause of LQT3, treatment remains inconsistent because of incomplete penetrance of the mutation and variability of antiarrhythmic efficacy. Here, we investigate the relationship between LQT3-associated mutation incomplete penetrance and variability in ion channel expression, simulating a population of 1,000 individuals with the O'Hara-Rudy model of the human ventricular myocyte. We first simulate healthy electrical activity (i.e., in the absence of a mutation) and then incorporate heterozygous expression for three LQT3-associated mutations (Y1795C, I1768V, and ΔKPQ), to directly compare the effects of each mutation on individuals across a diverse population. For all mutations, we find that susceptibility, defined by either the presence of an early afterdepolarization (EAD) or prolonged action potential duration (APD), primarily depends on the balance between the conductance of IKr and INa, for which individuals with a higher IKr-to-INa ratio are less susceptible. Furthermore, we find distinct differences across the population, observing individuals susceptible to zero, one, two, or all three mutations. Individuals tend to be less susceptible with an appropriate balance of repolarizing currents, typically via increased IKs or IK1. Interestingly, the more critical repolarizing current is mutation specific. We conclude that the balance between key currents plays a significant role in mutant-specific presentation of the disease phenotype in LQT3.NEW & NOTEWORTHY An in silico population approach investigates the relationship between variability in ion channel expression and gain-of-function mutations in the voltage-gated sodium channel associated with the congenital disorder long QT syndrome type 3 (LQT3). We find that ion channel variability can contribute to incomplete penetrance of the mutation, with mutant-specific differences in ion channel conductances leading to susceptibility to proarrhythmic action potential duration prolongation or early afterdepolarizations.
Collapse
Affiliation(s)
- Jacob A Miller
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
8
|
Erdogan MA, Yuca E, Ashour A, Gurbuz N, Sencan S, Ozpolat B. SCN5A promotes the growth and lung metastasis of triple-negative breast cancer through EF2-kinase signaling. Life Sci 2023; 313:121282. [PMID: 36526045 DOI: 10.1016/j.lfs.2022.121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mumin Alper Erdogan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Erkan Yuca
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sevide Sencan
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Nanomedicine, Innovative Cancer Therapeutics, Dr. Marr and Roy Neil Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Magnano M, Bissolino A, Budano C, Abdirashid M, Devecchi C, Oriente D, Matta M, Occhetta E, Gaita F, Rametta F. Catheter ablation for treatment of bradycardia-tachycardia syndrome: is it time to consider it the therapy of choice? A systematic review and meta-analysis. J Cardiovasc Med (Hagerstown) 2022; 23:646-654. [PMID: 36099071 DOI: 10.2459/jcm.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Atrial fibrillation catheter ablation (AFCA) should be considered as a strategy to avoid pacemaker (PM) implantation for patients with bradycardia-tachycardia syndrome (BTS), but lack of evidence is remarkable. METHODS Our aim was to conduct a random-effects model meta-analysis on safety and efficacy data from controlled trials and observational studies. We compared atrial fibrillation (AF) recurrence, AF progression, procedural complication, additional procedure, cardiovascular death, cardiovascular hospitalization, heart failure and stroke in patients undergoing AFCA vs. PM implantation. RESULTS PubMed/MEDLINE, Cochrane Database and Google Scholar were screened, and four retrospective studies were selected. A total of 776 patients (371 in the AFCA group, 405 in the PM group) were included. After a median follow-up of 67.5 months, lower AF recurrence [odds ratio (OR) 0.06, confidence interval (CI) 0.02-0.18, I2 = 82.42%, P < 0.001], AF progression (OR 0.12, CI 0.06-0.26, I2 = 0%, P < 0.001), heart failure (OR 0.12, CI 0.04-0.34, I2 = 0%, P < 0.001), and stroke (OR 0.30, CI 0.15-0.61, I2 = 0%, P = 0.001) were observed in the AFCA group. No differences were observed in cardiovascular death and hospitalization (OR 0.48, CI 0.10-2.28, I2 = 0%, P = 0.358 and OR 0.43, CI 0.14-1.29, I2 = 87.52%, P = 0.134, respectively). Higher need for additional procedures in the AFCA group was highlighted (OR 3.65, CI 1.51-8.84, I2 = 53.75%, P < 0.001). PM implantation was avoided in 91% of BTS patients undergoing AFCA. CONCLUSIONS AFCA in BTS patients seems to be more effective than PM implantation in reducing AF recurrence and PM implantation may be waived in most BTS patients treated by AFCA. Need for additional procedures in AFCA patients is balanced by long-term benefit in clinical end points.
Collapse
Affiliation(s)
| | | | - Carlo Budano
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | | | | | | | - Mario Matta
- Cardiology Department, St. Andrea Hospital, Vercelli
| | | | | | | |
Collapse
|
10
|
vom Dahl C, Müller CE, Berisha X, Nagel G, Zimmer T. Coupling the Cardiac Voltage-Gated Sodium Channel to Channelrhodopsin-2 Generates Novel Optical Switches for Action Potential Studies. MEMBRANES 2022; 12:907. [PMID: 36295666 PMCID: PMC9607247 DOI: 10.3390/membranes12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Voltage-gated sodium (Na+) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na+ influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na+ channel (Nav1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Nav1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K+ channels on the AP shape, we co-expressed either Kv1.2 or hERG with one of the Nav1.5-ChR2 fusions. As expected, both delayed rectifier K+ channels shortened AP duration significantly. Kv1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na+ current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na+ channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering.
Collapse
Affiliation(s)
- Christian vom Dahl
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Christoph Emanuel Müller
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Xhevat Berisha
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Georg Nagel
- Institute of Physiology—Neurophysiology, Julius Maximilians University, 97070 Wuerzburg, Germany
| | - Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| |
Collapse
|
11
|
Moon RY, Carlin RF, Hand I. Evidence Base for 2022 Updated Recommendations for a Safe Infant Sleeping Environment to Reduce the Risk of Sleep-Related Infant Deaths. Pediatrics 2022; 150:188305. [PMID: 35921639 DOI: 10.1542/peds.2022-057991] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Every year in the United States, approximately 3500 infants die of sleep-related infant deaths, including sudden infant death syndrome (SIDS) (International Statistical Classification of Diseases and Related Health Problems 10th Revision [ICD-10] R95), ill-defined deaths (ICD-10 R99), and accidental suffocation and strangulation in bed (ICD-10 W75). After a substantial decline in sleep-related deaths in the 1990s, the overall death rate attributable to sleep-related infant deaths have remained stagnant since 2000, and disparities persist. The triple risk model proposes that SIDS occurs when an infant with intrinsic vulnerability (often manifested by impaired arousal, cardiorespiratory, and/or autonomic responses) undergoes an exogenous trigger event (eg, exposure to an unsafe sleeping environment) during a critical developmental period. The American Academy of Pediatrics recommends a safe sleep environment to reduce the risk of all sleep-related deaths. This includes supine positioning; use of a firm, noninclined sleep surface; room sharing without bed sharing; and avoidance of soft bedding and overheating. Additional recommendations for SIDS risk reduction include human milk feeding; avoidance of exposure to nicotine, alcohol, marijuana, opioids, and illicit drugs; routine immunization; and use of a pacifier. New recommendations are presented regarding noninclined sleep surfaces, short-term emergency sleep locations, use of cardboard boxes as a sleep location, bed sharing, substance use, home cardiorespiratory monitors, and tummy time. In addition, additional information to assist parents, physicians, and nonphysician clinicians in assessing the risk of specific bed-sharing situations is included. The recommendations and strength of evidence for each recommendation are published in the accompanying policy statement, which is included in this issue.
Collapse
Affiliation(s)
- Rachel Y Moon
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rebecca F Carlin
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York City, New York
| | - Ivan Hand
- Department of Pediatrics, SUNY-Downstate College of Medicine, NYC Health + Hospitals, Kings County, Brooklyn, New York
| | | |
Collapse
|
12
|
Zhang F, Xue Y, Su J, Xu X, Zhao Y, Liu Y, Hu H, Hao L. Binding characteristics of calpastatin domain L to NaV1.5 sodium channel and its IQ motif mutants. Biochem Biophys Res Commun 2022; 627:39-44. [DOI: 10.1016/j.bbrc.2022.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
|
13
|
Dizon MLV, deRegnier RAO, Weiner SJ, Varner MW, Rouse DJ, Costantine MM, Wapner RJ, Thorp JM, Blackwell SC, Ayala NK, Saad AF, Caritis SN. Differential Gene Expression in Cord Blood of Infants Diagnosed with Cerebral Palsy: A Pilot Analysis of the Beneficial Effects of Antenatal Magnesium Cohort. Dev Neurosci 2022; 44:412-425. [PMID: 35705018 PMCID: PMC9474611 DOI: 10.1159/000525483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
The Beneficial Effects of Antenatal Magnesium clinical trial was conducted between 1997 and 2007, and demonstrated a significant reduction in cerebral palsy (CP) in preterm infants who were exposed to peripartum magnesium sulfate (MgSO4). However, the mechanism by which MgSO4 confers neuroprotection remains incompletely understood. Cord blood samples from this study were interrogated during an era when next-generation sequencing was not widely accessible and few gene expression differences or biomarkers were identified between treatment groups. Our goal was to use bulk RNA deep sequencing to identify differentially expressed genes comparing the following four groups: newborns who ultimately developed CP treated with MgSO4 or placebo, and controls (newborns who ultimately did not develop CP) treated with MgSO4 or placebo. Those who died after birth were excluded. We found that MgSO4 upregulated expression of SCN5A only in the control group, with no change in gene expression in cord blood of newborns who ultimately developed CP. Regardless of MgSO4 exposure, expression of NPBWR1 and FTO was upregulated in cord blood of newborns who ultimately developed CP compared with controls. These data support that MgSO4 may not exert its neuroprotective effect through changes in gene expression. Moreover, NPBWR1 and FTO may be useful as biomarkers and may suggest new mechanistic pathways to pursue in understanding the pathogenesis of CP. The small number of cases ultimately available for this secondary analysis, with male predominance and mild CP phenotype, is a limitation of the study. In addition, differentially expressed genes were not validated by qRT-PCR.
Collapse
Affiliation(s)
- Maria L V Dizon
- The Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | | | - Steven J Weiner
- The George Washington University Biostatistics Center, Washington, District of Columbia, USA
| | - Michael W Varner
- The Departments of Obstetrics and Gynecology of the University of Utah, Salt Lake City, Utah, USA
| | - Dwight J Rouse
- The Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maged M Costantine
- The Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Ronald J Wapner
- The Department of Obstetrics and Gynecology, Thomas Jefferson University and Drexel University, Philadelphia, Pennsylvania, USA
- The Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - John M Thorp
- The Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean C Blackwell
- University of Texas Health Science Center at Houston-Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Nina K Ayala
- The Department of Obstetrics and Gynecology, Brown University, Providence, Rhode Island, USA
| | - Antonio F Saad
- The Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steve N Caritis
- The Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Kang PW, Chakouri N, Diaz J, Tomaselli GF, Yue DT, Ben-Johny M. Elementary mechanisms of calmodulin regulation of Na V1.5 producing divergent arrhythmogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:e2025085118. [PMID: 34021086 PMCID: PMC8166197 DOI: 10.1073/pnas.2025085118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.
Collapse
Affiliation(s)
- Po Wei Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Gordon F Tomaselli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Manu Ben-Johny
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| |
Collapse
|
15
|
Chen Y, Huang Y, Bai J, Liu C, Ma S, Li J, Lu X, Fu Z, Fang L, Li Y, Zhang J. Effects of Allicin on Late Sodium Current Caused by ΔKPQ-SCN5A Mutation in HEK293 Cells. Front Physiol 2021; 12:636485. [PMID: 33854440 PMCID: PMC8039306 DOI: 10.3389/fphys.2021.636485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022] Open
Abstract
Aim The aim was to study the effect of Allitridum (Allicin) on the heterologous expression of the late sodium current on the ΔKPQ-SCN5A mutations in HEK293 cells, with a view to screening new drugs for the treatment of long QT syndrome type 3 (LQT3). Methods and Results The ΔKPQ-SCN5A plasmid was transiently transferred into HEK293 cells by liposome technology and administered by extracellular perfusion, and the sodium current was recorded by whole-cell patch-clamp technology. Application of Allicin 30 μM reduced the late sodium current (INa,L) of the Nav1.5 channel current encoded by ΔKPQ-SCN5A from 1.92 ± 0.12 to 0.65 ± 0.03 pA/pF (P < 0.01, n = 15), which resulted in the decrease of INa,L/INa,P (from 0.94% ± 0.04% to 0.32% ± 0.02%). Furthermore, treatment with Allicin could move the steady-state inactivation of the channel to a more negative direction, resulting in an increase in channel inactivation at the same voltage, which reduced the increase in the window current and further increased the inactivation of the channel intermediate state. However, it had no effect on channel steady-state activation (SSA), inactivation mechanics, and recovery dynamics after inactivation. What’s more, the Nav1.5 channel protein levels of membrane in the ΔKPQ-SCN5A mutation were enhanced from 0.49% ± 0.04% to 0.76% ± 0.02% with the effect of 30 mM Allicin, close to 0.89% ± 0.02% of the WT. Conclusion Allicin reduced the late sodium current of ΔKPQ-SCN5A, whose mechanism may be related to the increase of channel steady-state inactivation (SSI) and intermediate-state inactivation (ISI) by the drug, thus reducing the window current.
Collapse
Affiliation(s)
- Yating Chen
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Yun Huang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Bai
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Chuanbin Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Shanshan Ma
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiaxin Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Lu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Zihao Fu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lihua Fang
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Yang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiancheng Zhang
- Department of Cardiology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Carreras D, Martinez-Moreno R, Pinsach-Abuin M, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ, Pagans S. Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22052755. [PMID: 33803193 PMCID: PMC7963191 DOI: 10.3390/ijms22052755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The SCN5A gene encodes the α-subunit of the voltage-gated cardiac sodium channel (NaV1.5), a key player in cardiac action potential depolarization. Genetic variants in protein-coding regions of the human SCN5A have been largely associated with inherited cardiac arrhythmias. Increasing evidence also suggests that aberrant expression of the SCN5A gene could increase susceptibility to arrhythmogenic diseases, but the mechanisms governing SCN5A expression are not yet well understood. To gain insights into the molecular basis of SCN5A gene regulation, we used rat gastrocnemius muscle four days following denervation, a process well known to stimulate Scn5a expression. Our results show that denervation of rat skeletal muscle induces the expression of the adult cardiac Scn5a isoform. RNA-seq experiments reveal that denervation leads to significant changes in the transcriptome, with Scn5a amongst the fifty top upregulated genes. Consistent with this increase in expression, ChIP-qPCR assays show enrichment of H3K27ac and H3K4me3 and binding of the transcription factor Gata4 near the Scn5a promoter region. Also, Gata4 mRNA levels are significantly induced upon denervation. Genome-wide analysis of H3K27ac by ChIP-seq suggest that a super enhancer recently described to regulate Scn5a in cardiac tissue is activated in response to denervation. Altogether, our experiments reveal that similar mechanisms regulate the expression of Scn5a in denervated muscle and cardiac tissue, suggesting a conserved pathway for SCN5A expression among striated muscles.
Collapse
Affiliation(s)
- David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Manel M. Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, 43003 Reus, Spain;
| | - Pol Gomà
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Hospital Josep Trueta, 17007 Girona, Spain
| | - Fabiana S. Scornik
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Guillermo J. Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Sara Pagans
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| |
Collapse
|
17
|
Föhr KJ, Nastos A, Fauler M, Zimmer T, Jungwirth B, Messerer DAC. Block of Voltage-Gated Sodium Channels by Atomoxetine in a State- and Use-dependent Manner. Front Pharmacol 2021; 12:622489. [PMID: 33732157 PMCID: PMC7959846 DOI: 10.3389/fphar.2021.622489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Atomoxetine, a neuroactive drug, is approved for the treatment of attention-deficit/hyperactivity disorder (ADHD). It is primarily known as a high affinity blocker of the noradrenaline transporter, whereby its application leads to an increased level of the corresponding neurotransmitter in different brain regions. However, the concentrations used to obtain clinical effects are much higher than those which are required to block the transporter system. Thus, off-target effects are likely to occur. In this way, we previously identified atomoxetine as blocker of NMDA receptors. As many psychotropic drugs give rise to sudden death of cardiac origin, we now tested the hypothesis whether atomoxetine also interacts with voltage-gated sodium channels of heart muscle type in clinically relevant concentrations. Electrophysiological experiments were performed by means of the patch-clamp technique at human heart muscle sodium channels (hNav1.5) heterogeneously expressed in human embryonic kidney cells. Atomoxetine inhibited sodium channels in a state- and use-dependent manner. Atomoxetine had only a weak affinity for the resting state of the hNav1.5 (Kr: ∼ 120 µM). The efficacy of atomoxetine strongly increased with membrane depolarization, indicating that the inactivated state is an important target. A hallmark of this drug was its slow interaction. By use of different experimental settings, we concluded that the interaction occurs with the slow inactivated state as well as by slow kinetics with the fast-inactivated state. Half-maximal effective concentrations (2–3 µM) were well within the concentration range found in plasma of treated patients. Atomoxetine also interacted with the open channel. However, the interaction was not fast enough to accelerate the time constant of fast inactivation. Nevertheless, when using the inactivation-deficient hNav1.5_I408W_L409C_A410W mutant, we found that the persistent late current was blocked half maximal at about 3 µM atomoxetine. The interaction most probably occurred via the local anesthetic binding site. Atomoxetine inhibited sodium channels at a similar concentration as it is used for the treatment of ADHD. Due to its slow interaction and by inhibiting the late current, it potentially exerts antiarrhythmic properties.
Collapse
Affiliation(s)
- Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Ariadni Nastos
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Michael Fauler
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Thomas Zimmer
- Institute of Physiology, University Hospital Jena, Jena, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
18
|
Lorenzini M, Burel S, Lesage A, Wagner E, Charrière C, Chevillard PM, Evrard B, Maloney D, Ruff KM, Pappu RV, Wagner S, Nerbonne JM, Silva JR, Townsend RR, Maier LS, Marionneau C. Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites. J Gen Physiol 2021; 153:211660. [PMID: 33410863 PMCID: PMC7797897 DOI: 10.1085/jgp.202012646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.
Collapse
Affiliation(s)
- Maxime Lorenzini
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Sophie Burel
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Adrien Lesage
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Emily Wagner
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Camille Charrière
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Pierre-Marie Chevillard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Bérangère Evrard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Dan Maloney
- Bioinformatics Solutions Inc., Waterloo, Ontario, Canada
| | - Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Stefan Wagner
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO.,Department of Medicine, Washington University Medical School, St. Louis, MO
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - R Reid Townsend
- Department of Medicine, Washington University Medical School, St. Louis, MO.,Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - Lars S Maier
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Céline Marionneau
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| |
Collapse
|
19
|
Yakupoglu HY, Baran T, Baumann F, Eriksson U, Krasniqi N. Recurrent syncope after a finger injury and induced monomorphic ventricular tachycardia: Really Brugada syndrome? J Electrocardiol 2020; 63:120-123. [PMID: 33186878 DOI: 10.1016/j.jelectrocard.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 11/27/2022]
Abstract
Brugada syndrome is an arrhythmogenic disease with often fatal outcome in otherwise healthy and young individuals. Anamnesis and ECG are cornerstones in a syncope workup. In our case, a 27-year-old male presented to the emergency department due to recurrent syncope. Repeated 12‑lead-ECGs revealed a type 2 Brugada pattern. A positive drug challenge suggested a Brugada syndrome and electrophysiological testing reproducibly induced monomorphic ventricular tachycardia. Consequently, an ICD was implanted for secondary prevention. On 2-year follow-up, the patient remained free from other arrhythmic events or ICD interventions.
Collapse
Affiliation(s)
- H Yakup Yakupoglu
- Cardiology Division, Department of Medicine, GZO Regional Health Center, Wetzikon, Switzerland; Royal Brompton and Harefield NHS Trust, Sydney Street, SW3 6NP, UK, London, United Kingdom.
| | - Tomas Baran
- Cardiology Division, Department of Medicine, GZO Regional Health Center, Wetzikon, Switzerland
| | - Flavia Baumann
- Cardiology Division, Department of Medicine, GZO Regional Health Center, Wetzikon, Switzerland
| | - Urs Eriksson
- Cardiology Division, Department of Medicine, GZO Regional Health Center, Wetzikon, Switzerland
| | - Nazmi Krasniqi
- Cardiology Division, Department of Medicine, GZO Regional Health Center, Wetzikon, Switzerland
| |
Collapse
|
20
|
Dong W, Jin SC, Allocco A, Zeng X, Sheth AH, Panchagnula S, Castonguay A, Lorenzo LÉ, Islam B, Brindle G, Bachand K, Hu J, Sularz A, Gaillard J, Choi J, Dunbar A, Nelson-Williams C, Kiziltug E, Furey CG, Conine S, Duy PQ, Kundishora AJ, Loring E, Li B, Lu Q, Zhou G, Liu W, Li X, Sierant MC, Mane S, Castaldi C, López-Giráldez F, Knight JR, Sekula RF, Simard JM, Eskandar EN, Gottschalk C, Moliterno J, Günel M, Gerrard JL, Dib-Hajj S, Waxman SG, Barker FG, Alper SL, Chahine M, Haider S, De Koninck Y, Lifton RP, Kahle KT. Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia. iScience 2020; 23:101552. [PMID: 33083721 PMCID: PMC7554653 DOI: 10.1016/j.isci.2020.101552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl− channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis. Genomic analysis of trigeminal neuralgia (TN) using exome sequencing Rare mutations in GABA signaling and ion transport genes are enriched in TN cases Generation of a genetic TN mouse model engineered with a patient-specific mutation
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - August Allocco
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Amar H Sheth
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Annie Castonguay
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | | | - Barira Islam
- University College London, School of Pharmacy, London, England
| | | | - Karine Bachand
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Jamie Hu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Agata Sularz
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA.,Department of Biomedical Sciences, Korea University College of Medicine, 02841 Seoul, Korea
| | - Ashley Dunbar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sierra Conine
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Erin Loring
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Geyu Zhou
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Xinyue Li
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Michael C Sierant
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, West Haven, CT, USA
| | | | | | | | - Raymond F Sekula
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York
| | | | | | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jason L Gerrard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Stephen G Waxman
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Fred G Barker
- Harvard Medical School, Boston, MA, USA.,Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohamed Chahine
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Medicine, Université Laval, Québec, QC, Canada
| | - Shozeb Haider
- University College London, School of Pharmacy, London, England
| | - Yves De Koninck
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Alvarez-Collazo J, López-Requena A, Alvarez JL, Talavera K. The Citrus Flavonoid Hesperetin Has an Inadequate Anti-Arrhythmic Profile in the ΔKPQ Na V1.5 Mutant of the Long QT Type 3 Syndrome. Biomolecules 2020; 10:biom10060952. [PMID: 32599724 PMCID: PMC7355927 DOI: 10.3390/biom10060952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
Type 3 long QT syndromes (LQT3) are associated with arrhythmogenic gain-of-function mutations in the cardiac voltage-gated Na+ channel (hNaV1.5). The citrus flavanone hesperetin (HSP) was previously suggested as a template molecule to develop new anti-arrhythmic drugs, as it blocks slowly-inactivating currents carried by the LQT3-associated hNaV1.5 channel mutant R1623Q. Here we investigated whether HSP also has potentially beneficial effects on another LQT3 hNaV1.5 channel variant, the ΔKPQ, which is associated to lethal ventricular arrhythmias. We used whole-cell patch-clamp to record Na+ currents (INa) in HEK293T cells transiently expressing hNaV1.5 wild type or ΔKPQ mutant channels. HSP blocked peak INa and the late INa carried by ΔKPQ mutant channels with an effective concentration of ≈300 μM. This inhibition was largely voltage-independent and tonic. HSP decreased the rate of inactivation of ΔKPQ channels and, consequently, was relatively weak in reducing the intracellular Na+ load in this mutation. We conclude that, although HSP has potential value for the treatment of the R1623Q LQT3 variant, this compound is inadequate to treat the LQT3 associated to the ΔKPQ genetic variant. Our results underscore the precision medicine rationale of better understanding the basic pathophysiological and pharmacological mechanisms to provide phenotype- genotype-directed individualization of treatment.
Collapse
|
22
|
Wang Y, Du Y, Luo L, Hu P, Yang G, Li T, Han X, Ma A, Wang T. Alterations of Nedd4-2-binding capacity in PY-motif of Na V 1.5 channel underlie long QT syndrome and Brugada syndrome. Acta Physiol (Oxf) 2020; 229:e13438. [PMID: 31900993 DOI: 10.1111/apha.13438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIMS Pathogenic variants of the SCN5A gene can cause Brugada syndrome (BrS) and long QT syndrome (LQTS), which predispose individuals to potentially fatal ventricular arrhythmias and sudden cardiac death. SCN5A encodes the NaV 1.5 protein, the pore forming α-subunit of the voltage-dependent cardiac Na+ channel. Using a WW domain, the E3 ubiquitin ligase Nedd4-2 binds to the PY-motif ([L/P]PxY) within the C-terminus of NaV 1.5, which results in decreased protein expression and current through NaV 1.5 ubiquitination. Here, we investigate the role of E3 ubiquitin ligase Nedd4-2-mediated NaV 1.5 degradation in the pathological mechanisms of the BrS-associated variant SCN5A-p.L1239P and LQTS-associated variant SCN5A-p.Y1977N. METHODS AND RESULTS Using a combination of molecular biology, biochemical and electrophysiological approaches, we examined the expression, function and Nedd4-2 interactions of SCN5A-p.L1239P and SCN5A-p.Y1977N. SCN5A-p.L1239P is characterized as a loss-of-function, whereas SCN5A-p.Y1977N is a gain-of-function variant of the NaV 1.5 channel. Sequence alignment shows that BrS-associated SCN5A-p.L1239P has a new Nedd4-2-binding site (from LLxY to LPxY). This new Nedd4-2-binding site increases the interaction between NaV 1.5 and Nedd4-2, enhancing ubiquitination and degradation of the NaV 1.5 channel. Disruption of the new Nedd4-2-binding site of SCN5A-p.L1239P restores NaV 1.5 expression and function. However, the LQTS-associated SCN5A-p.Y1977N disrupts the usual Nedd4-2-binding site (from PPxY to PPxN). This decreases NaV 1.5-Nedd4-2 interaction, preventing ubiquitination and degradation of NaV 1.5 channels. CONCLUSIONS Our data suggest that the PY-motif plays an essential role in modifying the expression/function of NaV 1.5 channels through Nedd4-2-mediated ubiquitination. Alterations of NaV 1.5-Nedd4-2 interaction represent a novel pathological mechanism for NaV 1.5 channel diseases caused by SCN5A variants.
Collapse
Affiliation(s)
- Ya Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Yuan Du
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Ling Luo
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Peijing Hu
- Department of Cardiovascular Medicine Second Affiliated Hospital of Xi'an Medical College Xi'an Shaanxi P. R. China
| | - Guodong Yang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Tao Li
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiu Han
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Aiqun Ma
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- Key Laboratory of Molecular Cardiology Xi'an Shaanxi P. R. China
- Key Laboratory of Environment and Genes Related to Diseases Xi'an Jiaotong University Ministry of Education Xi'an Shaanxi P. R. China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- Key Laboratory of Molecular Cardiology Xi'an Shaanxi P. R. China
- Key Laboratory of Environment and Genes Related to Diseases Xi'an Jiaotong University Ministry of Education Xi'an Shaanxi P. R. China
| |
Collapse
|
23
|
Barake W, Giudicessi JR, Asirvatham SJ, Ackerman MJ. Purkinje system hyperexcitability and ventricular arrhythmia risk in type 3 long QT syndrome. Heart Rhythm 2020; 17:1768-1776. [PMID: 32454217 DOI: 10.1016/j.hrthm.2020.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Gain-of-function variants in the SCN5A-encoded Nav1.5 sodium channel cause type 3 long QT syndrome (LQT3) and multifocal ectopic Purkinje-related premature contractions. Although the Purkinje system is uniquely sensitive to the action potential-prolonging effects of LQT3-causative variants, the existence of additional Purkinje phenotype(s) in LQT3 is unknown. OBJECTIVE The purpose of this study was to determine the prevalence and clinical implications of frequent fascicular/Purkinje-related premature ventricular contractions (PVCs) and short-coupled ventricular arrhythmias (VAs), suggestive of Purkinje system hyperexcitability (PSH), in a single-center LQT3 cohort. METHODS A retrospective analysis of 177 SCN5A-positive patients was performed to identify individuals with a LQT3 phenotype. Available electrocardiographic, electrophysiology study, device, and genetic data from 91 individuals with LQT3 were reviewed for evidence of presumed fascicular PVCs and short-coupled VAs. The relationship between PSH and ventricular fibrillation events was assessed by Kaplan-Meier and Cox regression analyses. RESULTS Overall, 30 of 91 patients with LQT3 (33%) exhibited evidence of presumed PSH (fascicular PVCs 30 of 30 [100%]; short-coupled VAs 17 of 30 [56%]). Kaplan-Meier and Cox regression analyses demonstrated an increased risk of ventricular fibrillation events in individuals with LQT3 and PSH (log-rank, P < .03; hazard ratio 3.95; 95% confidence interval 1.15-15.7; P = .03). Interestingly, variants in the voltage-sensing domain regions of Nav1.5 were more frequently observed in patients with LQT3 and PSH than those without (19 of 30 [63%] vs 9 of 61 [15%]; P < .0001). CONCLUSION This study demonstrates that a discernible Purkinje phenotype is present in one-third of LQT3 cases and increases the risk of potentially lethal VAs. Further study is needed to determine whether a distinct cellular electrophysiology phenotype underlies this phenomenon.
Collapse
Affiliation(s)
- Walid Barake
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - John R Giudicessi
- Clinician Investigator Training Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
24
|
Walther F, Feind D, Vom Dahl C, Müller CE, Kukaj T, Sattler C, Nagel G, Gao S, Zimmer T. Action potentials in Xenopus oocytes triggered by blue light. J Gen Physiol 2020; 152:151581. [PMID: 32211871 PMCID: PMC7201882 DOI: 10.1085/jgp.201912489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/24/2020] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated sodium (Na+) channels are responsible for the fast upstroke of the action potential of excitable cells. The different α subunits of Na+ channels respond to brief membrane depolarizations above a threshold level by undergoing conformational changes that result in the opening of the pore and a subsequent inward flux of Na+. Physiologically, these initial membrane depolarizations are caused by other ion channels that are activated by a variety of stimuli such as mechanical stretch, temperature changes, and various ligands. In the present study, we developed an optogenetic approach to activate Na+ channels and elicit action potentials in Xenopus laevis oocytes. All recordings were performed by the two-microelectrode technique. We first coupled channelrhodopsin-2 (ChR2), a light-sensitive ion channel of the green alga Chlamydomonas reinhardtii, to the auxiliary β1 subunit of voltage-gated Na+ channels. The resulting fusion construct, β1-ChR2, retained the ability to modulate Na+ channel kinetics and generate photosensitive inward currents. Stimulation of Xenopus oocytes coexpressing the skeletal muscle Na+ channel Nav1.4 and β1-ChR2 with 25-ms lasting blue-light pulses resulted in rapid alterations of the membrane potential strongly resembling typical action potentials of excitable cells. Blocking Nav1.4 with tetrodotoxin prevented the fast upstroke and the reversal of the membrane potential. Coexpression of the voltage-gated K+ channel Kv2.1 facilitated action potential repolarization considerably. Light-induced action potentials were also obtained by coexpressing β1-ChR2 with either the neuronal Na+ channel Nav1.2 or the cardiac-specific isoform Nav1.5. Potential applications of this novel optogenetic tool are discussed.
Collapse
Affiliation(s)
- Florian Walther
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Dominic Feind
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christian Vom Dahl
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christoph Emanuel Müller
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Taulant Kukaj
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christian Sattler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Georg Nagel
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Shiqiang Gao
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
25
|
Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Sci Rep 2019; 9:12997. [PMID: 31506521 PMCID: PMC6736863 DOI: 10.1038/s41598-019-49450-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogenic variants in the human SCN5A gene encoding the a-subunit of the principle Na+ channel (Nav1.5) are associated with long QT syndrome (LQTS) 3. LQT3 patients display variable responses to Na+ channel blockers demanding for the development of variant-specific therapeutic strategies. Here we performed a combined electrophysiological analysis with in silico simulation of variant channel to elucidate mechanisms of therapeutic responsiveness. We identified a novel SCN5A variant (A1656D) in a LQTS patient with a distinct response to mexiletine resulting in suppression of non-sustained ventricular tachycardia and manifestation of premature atrial contraction. Patch clamp analysis revealed that A1656D variant exerted gain-of-function effects including hyperpolarizing shift of the voltage-dependence of activation, depolarizing shift in the voltage-dependence of inactivation, and slowing of fast inactivation. Among ranolazine, flecainide, and mexiletine, only mexiletine restored inactivation kinetics of A1656D currents. In silico simulation to assess the effect of A1656D variant on ventricular cardiac cell excitation predicted a prolonged action potential which is consistent with the prolonged QT and non-sustained ventricular tachycardia of the patient. It also predicted that only mexiletine suppressed the prolonged action potential of human ventricular myocytes expressing A1656D. These data elucidate the underlying mechanism of the distinct response to mexiletine in this patient.
Collapse
|
26
|
Hu RM, Tester DJ, Li R, Sun T, Peterson BZ, Ackerman MJ, Makielski JC, Tan BH. Mexiletine rescues a mixed biophysical phenotype of the cardiac sodium channel arising from the SCN5A mutation, N406K, found in LQT3 patients. Channels (Austin) 2019; 12:176-186. [PMID: 29983085 PMCID: PMC6104686 DOI: 10.1080/19336950.2018.1475794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Individual mutations in the SCN5A-encoding cardiac sodium channel α-subunit usually cause a single cardiac arrhythmia disorder, some cause mixed biophysical or clinical phenotypes. Here we report an infant, female patient harboring a N406K mutation in SCN5A with a marked and mixed biophysical phenotype and assess pathogenic mechanisms. Methods and Results: A patient suffered from recurrent seizures during sleep and torsades de pointes with a QTc of 530 ms. Mutational analysis identified a N406K mutation in SCN5A. The mutation was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells. After 48 hours incubation with and without mexiletine, macroscopic voltage-gated sodium current (INa) was measured with standard whole-cell patch clamp techniques. SCN5A-N406K elicited both a significantly decreased peak INa and a significantly increased late INa compared to wide-type (WT) channels. Furthermore, mexiletine both restored the decreased peak INa of the mutant channel and inhibited the increased late INa of the mutant channel. Conclusion: SCN5A-N406K channel displays both “gain-of-function” in late INa and “loss-of-function” in peak INa density contributing to a mixed biophysical phenotype. Moreover, our finding may provide the first example that mexiletine exerts a dual rescue of both “gain-of-function” and “loss-of-function” of the mutant sodium channel.
Collapse
Affiliation(s)
- Rou-Mu Hu
- a Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital , Capital Medical University , Beijing , China.,b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA
| | - David J Tester
- c Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Ryan Li
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Tianyu Sun
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Blaise Z Peterson
- d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Michael J Ackerman
- c Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Jonathan C Makielski
- b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA
| | - Bi-Hua Tan
- b Division of Cardiovascular Medicine, Department of Medicine , University of Wisconsin , Madison , Wisconsin , USA.,d Departments of Pediatrics, and Cellular & Molecular Physiology , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
27
|
Guo D, Jenkinson S. Simultaneous assessment of compound activity on cardiac Nav1.5 peak and late currents in an automated patch clamp platform. J Pharmacol Toxicol Methods 2019; 99:106575. [PMID: 30999054 DOI: 10.1016/j.vascn.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION High throughput in vitro profiling of the cardiac Nav1.5 peak sodium current (INa) is widely used in cardiac safety screening. However, there is no standardized high throughput method to measure late INa. This study assessed the pharmacological and biophysical properties of veratridine and ATX-II, as well as the channel mutation (Nav1.5-∆KPQ) on the late INa. We describe a method for simultaneous measurement of both peak and late INa. METHODS The planar patch clamp technique (QPatch) was applied to record the peak and late INa. RESULTS The Nav1.5-∆KPQ mutant produced a small late INa (41.9 ± 5.4 pA) not large enough to enable compound profiling. In contrast in wild type Nav1.5 expressing cells veratridine (100 μM) and ATX-II (100 nM) enhanced concentration-dependent increases in the late INa (maximum responses of 1162.2 ± 258.5 pA and 392.4 ± 71.3 pA, respectively). Veratridine inhibited, whereas, ATX-II had a minimal effect, on the peak INa and preserved the current-voltage curve. Peak and late INa inhibition was characterized for 25 clinical INa blockers in the presence of ATX-II. Compound IC50 values for peak INa generated in the absence or presence of ATX-II correlated. The potency of the late INa block was found to be dependent on whether it was measured at the end of the depolarizing pulse or during the ramp. DISCUSSION In the presence of ATX-II, both peak and late INa could be assessed simultaneously. Late INa may be best assessed using the maximum response obtained during the ramp of the voltage protocol.
Collapse
Affiliation(s)
- Donglin Guo
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America.
| | - Stephen Jenkinson
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America
| |
Collapse
|
28
|
Alvarez‐Collazo J, López‐Requena A, Galán L, Talavera A, Alvarez JL, Talavera K. The citrus flavanone hesperetin preferentially inhibits slow-inactivating currents of a long QT syndrome type 3 syndrome Na + channel mutation. Br J Pharmacol 2019; 176:1090-1105. [PMID: 30650182 PMCID: PMC6451064 DOI: 10.1111/bph.14577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The citrus flavanone hesperetin has been proposed for the treatment of several human pathologies, but its cardiovascular actions remain largely unexplored. Here, we evaluated the effect of hesperetin on cardiac electrical and contractile activities, on aortic contraction, on the wild-type voltage-gated NaV 1.5 channel, and on a channel mutant (R1623Q) associated with lethal ventricular arrhythmias in the long QT syndrome type 3 (LQT3). EXPERIMENTAL APPROACH We used cardiac surface ECG and contraction force recordings to evaluate the effects of hesperetin in rat isolated hearts and aortic rings. Whole-cell patch clamp was used to record NaV 1.5 currents (INa ) in rat ventricular cardiomyocytes and in HEK293T cells expressing hNaV 1.5 wild-type or mutant channels. KEY RESULTS Hesperetin increased the QRS interval and heart rate and decreased the corrected QT interval and the cardiac and aortic contraction forces at concentrations equal or higher than 30 μmol·L-1 . Hesperetin blocked rat and human NaV 1.5 channels with an effective inhibitory concentration of ≈100 μmol·L-1 . This inhibition was enhanced at depolarized holding potentials and higher stimulation frequency and was reduced by the disruption of the binding site for local anaesthetics. Hesperetin increased the rate of inactivation and preferentially inhibited INa during the slow inactivation phase, these effects being more pronounced in the R1623Q mutant. CONCLUSIONS AND IMPLICATIONS Hesperetin preferentially inhibits the slow inactivation phase of INa , more markedly in the mutant R1623Q. Hesperetin could be used as a template to develop drugs against lethal cardiac arrhythmias in LQT3.
Collapse
Affiliation(s)
- Julio Alvarez‐Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López‐Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Loipa Galán
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Ariel Talavera
- Laboratory of Microscopy, Center for Microscopy and Molecular ImagingUniversité Libre de BruxellesGosseliesBelgium
| | - Julio L. Alvarez
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
29
|
Dharmawan T, Nakajima T, Iizuka T, Tamura S, Matsui H, Kaneko Y, Kurabayashi M. Enhanced closed-state inactivation of mutant cardiac sodium channels (SCN5A N1541D and R1632C) through different mechanisms. J Mol Cell Cardiol 2019; 130:88-95. [PMID: 30935997 DOI: 10.1016/j.yjmcc.2019.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND SCN5A variants can be associated with overlapping phenotypes such as Brugada syndrome (BrS), sinus node dysfunction and supraventricular tachyarrhythmias. Our genetic screening of SCN5A in 65 consecutive BrS probands revealed two patients with overlapping phenotypes: one carried an SCN5A R1632C (in domain IV-segment 4), which we have previously reported, the other carried a novel SCN5A N1541D (in domain IV-segment 1). OBJECTIVE We sought to reveal whether or not these variants are associated with the same biophysical defects. METHODS Wild-type (WT) or mutant SCN5A was expressed in tsA201-cells, and whole-cell sodium currents (hNav1.5/INa) were recorded using patch-clamp techniques. RESULTS The N1541D-INa density, when assessed from a holding potential of -150 mV, was not different from WT-INa as with R1632C-INa, indicating that SCN5A N1541D did not cause trafficking defects. The steady-state inactivation curve of N1541D-INa was markedly shifted to hyperpolarizing potentials in comparison to WT-INa (V1/2-WT: -82.3 ± 0.9 mV, n = 15; N1541D: -108.8 ± 1.6 mV, n = 26, P < .01) as with R1632C-INa. Closed-state inactivation (CSI) was evaluated using prepulses of -90 mV for 1460 ms. Residual N1541D-INa and R1632C-INa were markedly reduced in comparison to WT-INa (WT: 63.8 ± 4.6%, n = 18; N1541D: 15.1 ± 2.3%, n = 19, P < .01 vs WT; R1632C: 5.3 ± 0.5%, n = 15, P < .01 vs WT). Entry into CSI of N1541D-INa was markedly accelerated, and that of R1632C-INa was weakly accelerated in comparison to WT-INa (tau-WT: 65.8 ± 7.4 ms, n = 18; N1541D: 13.7 ± 1.1 ms, n = 19, P < .01 vs WT; R1632C: 39.5 ± 2.9 ms, n = 15, P < .01 vs WT and N1541D). Although N1541D-INa recovered from closed-state fast inactivation at the same rate as WT-INa, R1632C-INa recovered very slowly (tau-WT: 1.90 ± 0.16 ms, n = 10; N1541D: 1.72 ± 0.12 ms, n = 10, P = .41 vs WT; R1632C: 53.0 ± 2.5 ms, n = 14, P < .01 vs WT and N1541D). CONCLUSIONS Both N1541D-INa and R1632C-INa exhibited marked enhancement of CSI, but through different mechanisms. The data provided a novel understanding of the mechanisms of CSI of INa. Clinically, the enhanced CSI of N1541D-INa leads to a severe loss-of-function of INa at voltages near the physiological resting membrane potential (~-90 mV) of cardiac myocytes; this can be attributable to the patient's phenotypic manifestations.
Collapse
Affiliation(s)
- Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Takashi Iizuka
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
30
|
Ghorayeb N, Stein R, Daher DJ, Silveira ADD, Ritt LEF, Santos DFPD, Sierra APR, Herdy AH, Araújo CGSD, Colombo CSSDS, Kopiler DA, Lacerda FFRD, Lazzoli JK, Matos LDNJD, Leitão MB, Francisco RC, Alô ROB, Timerman S, Carvalho TD, Garcia TG. The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine Updated Guidelines for Sports and Exercise Cardiology - 2019. Arq Bras Cardiol 2019; 112:326-368. [PMID: 30916199 PMCID: PMC6424031 DOI: 10.5935/abc.20190048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nabil Ghorayeb
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
- Programa de Pós-Graduação em Medicina do Esporte da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brazil
- Instituto de Assistência Médica ao Servidor Público Estadual (IAMSPE), São Paulo, SP - Brazil
| | - Ricardo Stein
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (HCPA/UFRGS), Porto Alegre, RS - Brazil
- Vitta Centro de Bem Estar Físico, Porto Alegre, RS - Brazil
| | - Daniel Jogaib Daher
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| | - Anderson Donelli da Silveira
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (HCPA/UFRGS), Porto Alegre, RS - Brazil
- Vitta Centro de Bem Estar Físico, Porto Alegre, RS - Brazil
| | - Luiz Eduardo Fonteles Ritt
- Hospital Cárdio Pulmonar, Salvador, BA - Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brazil
| | | | | | - Artur Haddad Herdy
- Instituto de Cardiologia de Santa Catarina, Florianópolis, SC - Brazil
- Clínica Cardiosport de Prevenção e Reabilitação, Florianópolis, SC - Brazil
| | | | - Cléa Simone Sabino de Souza Colombo
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
- Sports Cardiology, Cardiology Clinical Academic Group - St George's University of London,14 London - UK
| | - Daniel Arkader Kopiler
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brazil
| | - Filipe Ferrari Ribeiro de Lacerda
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil
| | - José Kawazoe Lazzoli
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
- Federação Internacional de Medicina do Esporte (FIMS), Lausanne - Switzerland
| | | | - Marcelo Bichels Leitão
- Sociedade Brasileira de Medicina do Esporte e do Exercício (SBMEE), São Paulo, SP - Brazil
| | - Ricardo Contesini Francisco
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| | - Rodrigo Otávio Bougleux Alô
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital Geral de São Mateus, São Paulo, SP - Brazil
| | - Sérgio Timerman
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (InCor-FMUSP), São Paulo, SP - Brazil
- Universidade Anhembi Morumbi, Laureate International Universities, São Paulo, SP - Brazil
| | - Tales de Carvalho
- Clínica Cardiosport de Prevenção e Reabilitação, Florianópolis, SC - Brazil
- Departamento de Ergometria e Reabilitação Cardiovascular da Sociedade Brasileira de Cardiologia (DERC/SBC), Rio de Janeiro, RJ - Brazil
- Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC - Brazil
| | - Thiago Ghorayeb Garcia
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil
- Hospital do Coração (HCor), Associação do Sanatório Sírio, São Paulo, SP - Brazil
| |
Collapse
|
31
|
De Ponti R, Marazzato J, Bagliani G, Leonelli FM, Padeletti L. Sick Sinus Syndrome. Card Electrophysiol Clin 2019; 10:183-195. [PMID: 29784479 DOI: 10.1016/j.ccep.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sick sinus syndrome includes symptoms and signs related to sinus node dysfunction. This can be caused by intrinsic abnormal impulse formation and/or propagation from the sinus node or, in some cases, by extrinsic reversible causes. Careful evaluation of symptoms and of the electrocardiogram is of crucial importance, because diagnosis is mainly based on these 2 elements. In some cases, the pathophysiologic mechanism that induces sinus node dysfunction also favors the onset of atrial arrhythmias, which results in a more complex clinical condition, known as "bradycardia-tachycardia syndrome."
Collapse
Affiliation(s)
- Roberto De Ponti
- Department of Cardiology, School of Medicine, University of Insubria, Viale Borri, 57, Varese, Varese 21100, Italy.
| | - Jacopo Marazzato
- Department of Cardiology, School of Medicine, University of Insubria, Viale Borri, 57, Varese, Varese 21100, Italy
| | - Giuseppe Bagliani
- Arrhythmology Unit, Cardiology Department, Foligno General Hospital, Via Massimo Arcamone, Foligno, Perugia 06034, Italy; Cardiovascular Disease Department, University of Perugia, Piazza Menghini 1, Perugia, Perugia 06129, Italy
| | - Fabio M Leonelli
- Cardiology Department, James A. Haley Veterans' Hospital, University of South Florida, 13000 Bruce B Down Boulevard, Tampa, FL 33612, USA
| | - Luigi Padeletti
- Heart and Vessels Department, University of Florence, Largo Brambilla, 3, Florence, Florence 50134, Italy; Cardiology Department, IRCCS Multimedica, Via Milanese, 300, Sesto San Giovanni, Milan 20099, Italy
| |
Collapse
|
32
|
Tsukakoshi T, Lin L, Murakami T, Shiono J, Izumi I, Horigome H. Persistent QT Prolongation in a Child with Gitelman Syndrome and SCN5A H558R Polymorphism. Int Heart J 2018; 59:1466-1468. [PMID: 30305584 DOI: 10.1536/ihj.17-686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gitelman syndrome (GS) is an inherited renal tubular disorder characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and low urinary calcium excretion. While it is considered a benign disease, severe ventricular arrhythmia and sudden cardiac death related to the prolongation of the QT interval have been reported in rare cases. Herein we report a 13-year-old girl with GS who presented with persistent prolongation of the QT interval, even after being treated for hypokalemia and hypomagnesemia. Genetic analysis identified SCN5A H558R polymorphism, which modulates the function of myocardial sodium channel, and SLC12A3 A588V mutation, which causes GS. The SCN5A polymorphism and GS-related electrolyte disturbance might have contributed to the persistent QT prolongation in this patient. Although no ventricular arrhythmias were recorded in this case, careful cardiac surveillance should be applied for avoiding life-threatening cardiac events.
Collapse
Affiliation(s)
| | - Lisheng Lin
- Department of Pediatric Cardiology, Ibaraki Children's Hospital.,Department of Child Health, University of Tsukuba
| | | | - Junko Shiono
- Department of Pediatric Cardiology, Ibaraki Children's Hospital
| | - Isho Izumi
- Department of Pediatrics, Ibaraki Children's Hospital
| | - Hitoshi Horigome
- Department of Pediatric Cardiology, Ibaraki Children's Hospital.,Department of Child Health, University of Tsukuba
| |
Collapse
|
33
|
Niu J, Dick IE, Yang W, Bamgboye MA, Yue DT, Tomaselli G, Inoue T, Ben-Johny M. Allosteric regulators selectively prevent Ca 2+-feedback of Ca V and Na V channels. eLife 2018; 7:35222. [PMID: 30198845 PMCID: PMC6156082 DOI: 10.7554/elife.35222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Calmodulin (CaM) serves as a pervasive regulatory subunit of CaV1, CaV2, and NaV1 channels, exploiting a functionally conserved carboxy-tail element to afford dynamic Ca2+-feedback of cellular excitability in neurons and cardiomyocytes. Yet this modularity counters functional adaptability, as global changes in ambient CaM indiscriminately alter its targets. Here, we demonstrate that two structurally unrelated proteins, SH3 and cysteine-rich domain (stac) and fibroblast growth factor homologous factors (fhf) selectively diminish Ca2+/CaM-regulation of CaV1 and NaV1 families, respectively. The two proteins operate on allosteric sites within upstream portions of respective channel carboxy-tails, distinct from the CaM-binding interface. Generalizing this mechanism, insertion of a short RxxK binding motif into CaV1.3 carboxy-tail confers synthetic switching of CaM regulation by Mona SH3 domain. Overall, our findings identify a general class of auxiliary proteins that modify Ca2+/CaM signaling to individual targets allowing spatial and temporal orchestration of feedback, and outline strategies for engineering Ca2+/CaM signaling to individual targets.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Ivy E Dick
- Department of Physiology, University of Maryland, Baltimore, United States
| | - Wanjun Yang
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | | | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Gordon Tomaselli
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States.,Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, United States
| |
Collapse
|
34
|
Predicting changes to I Na from missense mutations in human SCN5A. Sci Rep 2018; 8:12797. [PMID: 30143662 PMCID: PMC6109095 DOI: 10.1038/s41598-018-30577-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/23/2018] [Indexed: 11/08/2022] Open
Abstract
Mutations in SCN5A can alter the cardiac sodium current INa and increase the risk of potentially lethal conditions such as Brugada and long-QT syndromes. The relation between mutations and their clinical phenotypes is complex, and systems to predict clinical severity of unclassified SCN5A variants perform poorly. We investigated if instead we could predict changes to INa, leaving the link from INa to clinical phenotype for mechanistic simulation studies. An exhaustive list of nonsynonymous missense mutations and resulting changes to INa was compiled. We then applied machine-learning methods to this dataset, and found that changes to INa could be predicted with higher sensitivity and specificity than most existing predictors of clinical significance. The substituted residues’ location on the protein correlated with channel function and strongly contributed to predictions, while conservedness and physico-chemical properties did not. However, predictions were not sufficiently accurate to form a basis for mechanistic studies. These results show that changes to INa, the mechanism through which SCN5A mutations create cardiac risk, are already difficult to predict using purely in-silico methods. This partly explains the limited success of systems to predict clinical significance of SCN5A variants, and underscores the need for functional studies of INa in risk assessment.
Collapse
|
35
|
Han D, Tan H, Sun C, Li G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood) 2018; 243:852-863. [PMID: 29806494 DOI: 10.1177/1535370218777972] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The voltage-gated sodium channel 1.5 (Nav1.5), encoded by the SCN5A gene, is responsible for the rising phase of the action potential of cardiomyocytes. The sodium current mediated by Nav1.5 consists of peak and late components (INa-P and INa-L). Mutant Nav1.5 causes alterations in the peak and late sodium current and is associated with an increasingly wide range of congenital arrhythmias. More than 400 mutations have been identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to a variety of arrhythmias can be classified according to the alteration of INa-P and INa-L as gain-of-function, loss-of-function and both, few researchers have summarized the mechanisms in this way before. In this review article, we aim to review the mechanisms underlying dysfunctional Nav1.5 due to SCN5A mutations and to provide some new insights into further approaches in the treatment of arrhythmias. Impact statement The field of ion channelopathy caused by dysfunctional Nav1.5 due to SCN5A mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of various arrhythmias develops. In this review, we focus on the dysfunctional Nav1.5 related to arrhythmias and the underlying mechanisms. We update SCN5A mutations in a precise way since 2013 and presents novel classifications of SCN5A mutations responsible for the dysfunction of the peak (INa-P) and late (INa-L) sodium channels based on their phenotypes, including loss-, gain-, and coexistence of gain- and loss-of function mutations in INa-P, INa-L, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying arrhythmias from cell to bedside, promoting the management of various arrhythmias in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Hui Tan
- 2 Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chaofeng Sun
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guoliang Li
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
36
|
Wu J, Wu Q, Dai W, Kong J, Lv J, Yu X, Wang X, Wang D. Serum lipid feature and potential biomarkers of lethal ventricular tachyarrhythmia (LVTA) induced by myocardial ion channel diseases: a rat model study. Int J Legal Med 2018; 132:439-448. [PMID: 29063180 DOI: 10.1007/s00414-017-1710-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023]
Abstract
To determine the cause of death in myocardial ion channel diseases (MICD)-induced sudden cardiac death (SCD) cases is a difficulty in forensic identification practices. The majority of MICD-induced SCD cases would experience lethal ventricular tachyarrhythmia (LVTA) before deaths; thus, confirming the occurrence of LVTA in bodies can offer a key evidence to identify these cases. Several lipids in the myocardia were found disturbed after LVTA; yet, whether serum lipidome would be disrupted by LVTA is not clear. Therefore, we aimed to screen lipid feature and related diagnostic markers of LVTA in serum here. An aconitine-induced LVTA-SCD rat model was produced. Blood samples before LVTA and immediately after LVTA were retrieved and related serum specimens were used for ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based lipidomics analyses. On the basis of the defined differential lipids, a lipid-related metabolic pathway network was constructed and potential biomarkers were screened. Twelve aconitine-induced LVTA rats were produced. Totally, 188 lipids in serum were disrupted during the LVTA-SCD process, which belong to 11 lipid classes. Most of the differential lipids were correlated, suggesting that they were interacted and that the changes were holistic during LVTA process. Ten lipid pathways were activated during LVTA process; the main lipid classes involved in these pathways were ceramide, sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Phosphatidylcholine O-40:4, sphingomyelin d46:5, and phosphatidylethanolamine 40:4 were tested as potential diagnostic markers of LVTA-SCD event in serum. The current results indicate a substantial change in serum lipidome after LVTA-SCD; lipidomics holds promise to identify MICD-induced SCDs in forensic practices.
Collapse
Affiliation(s)
- Jiayan Wu
- Department of Forensic Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China
| | - WenTao Dai
- Shanghai Center for Bioinformation Technology, Shanghai, 201203, China
| | - Jing Kong
- Department of Forensic Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Junyao Lv
- Department of Forensic Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Xiaojun Yu
- Department of Forensic Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Xingxing Wang
- 2nd Affiliated Hospital, Shantou University Medical College, Shantou, 515041, China
| | - Dian Wang
- Department of Forensic Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China.
| |
Collapse
|
37
|
Bang S, Yoo J, Gong X, Liu D, Han Q, Luo X, Chang W, Chen G, Im ST, Kim YH, Strong JA, Zhang MZ, Zhang JM, Lee SY, Ji RR. Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies. Neurosci Bull 2018; 34:22-41. [PMID: 29333591 PMCID: PMC5799132 DOI: 10.1007/s12264-018-0203-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
The voltage-gated Na+ channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na+ currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na+ currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na+ currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.
Collapse
Affiliation(s)
- Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Jiho Yoo
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Xingrui Gong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - Di Liu
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Qingjian Han
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Xin Luo
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Wonseok Chang
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
- Department of Physiology and Biophysics, College of Medicine, Eulji University, 143-5 Yongdu-Dong, Jung-Gu, Daejeon, 34824, Korea
| | - Gang Chen
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
| | - Sang-Taek Im
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA
| | - Ma-Zhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA.
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle St, Durham, NC, 27710, USA.
| |
Collapse
|
38
|
Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:665-674. [PMID: 28825121 PMCID: PMC5599482 DOI: 10.1007/s00249-017-1246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation.
Collapse
|
39
|
Van Niekerk C, Van Deventer BS, du Toit-Prinsloo L. Long QT syndrome and sudden unexpected infant death. J Clin Pathol 2017; 70:808-813. [PMID: 28663329 DOI: 10.1136/jclinpath-2016-204199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
Long QT syndrome (LQTS) is an inheritable primary electric disease of the heart characterised by abnormally long QT intervals and a propensity to develop atrial and ventricular tachyarrhythmias. It is caused by an inherited channelopathy responsible for sudden cardiac death in individuals with structurally normal hearts. Long QT syndrome can present early in life, and some studies suggest that it may be associated with up to 20% of sudden unexplained infant death (SUID), particularly when associated with external stressors such as asphyxia, which is commonly seen in many infant death scenes. With an understanding of the genetic defects, it has now been possible to retrospectively analyse samples from infants who have presented to forensic pathology services with a history of unexplained sudden death, which may, in turn, enable the implementation of preventative treatment for siblings previously not known to have pathogenic genetic variations. In this viewpoint article, we will discuss SUID, LQTS and postmortem genetic analysis.
Collapse
Affiliation(s)
- Chantal Van Niekerk
- Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, Gauteng, South Africa.,Department of Chemical Pathology, University of Pretoria, Pretoria, South Africa
| | | | | |
Collapse
|
40
|
Jenewein T, Beckmann BM, Rose S, Osterhues HH, Schmidt U, Wolpert C, Miny P, Marschall C, Alders M, Bezzina CR, Wilde AAM, Kääb S, Kauferstein S. Genotype-phenotype dilemma in a case of sudden cardiac death with the E1053K mutation and a deletion in the SCN5A gene. Forensic Sci Int 2017; 275:187-194. [PMID: 28391114 DOI: 10.1016/j.forsciint.2017.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/13/2017] [Accepted: 02/23/2017] [Indexed: 12/19/2022]
Abstract
Mutations in the cardiac sodium channel gene SCN5A may result in various arrhythmia syndromes such as long QT syndrome type 3 (LQTS), Brugada syndrome (BrS), sick sinus syndrome (SSS), cardiac conduction diseases (CCD) and possibly dilated cardiomyopathy (DCM). In most of these inherited cardiac arrhythmia syndromes the phenotypical expression may range from asymptomatic phenotypes to sudden cardiac death (SCD). A 16-year-old female died during sleep. Autopsy did not reveal any explanation for her death and a genetic analysis was performed. A variant in the SCN5A gene (E1053K) that was previously described as disease causing was detected. Family members are carriers of the same E1053K variant, some even in a homozygous state, but surprisingly did not exhibit any pathological cardiac phenotype. Due to the lack of genotype-phenotype correlation further genetic studies were performed. A novel deletion in the promoter region of SCN5A was identified in the sudden death victim but was absent in other family members. These findings demonstrate the difficulties in interpreting the results of a family-based genetic screening and underline the phenotypic variability of SCN5A mutations.
Collapse
Affiliation(s)
- T Jenewein
- Institute of Legal Medicine, University of Frankfurt, Frankfurt am Main, Germany
| | - B M Beckmann
- University Hospital Munich, Department of Medicine I, Ludwig Maximilians University, Munich, Germany; German Cardiovascular Research Center (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - S Rose
- Institute of Legal Medicine, University of Frankfurt, Frankfurt am Main, Germany
| | - H H Osterhues
- District Hospital Loerrach, Medical Clinic, Loerrach, Germany
| | - U Schmidt
- Institute of Legal Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - C Wolpert
- Klinik für Innere Medizin, Cardiology Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - P Miny
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - C Marschall
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - M Alders
- Department of Clinical Genetics, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - C R Bezzina
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A A M Wilde
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| | - S Kääb
- University Hospital Munich, Department of Medicine I, Ludwig Maximilians University, Munich, Germany; German Cardiovascular Research Center (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - S Kauferstein
- Institute of Legal Medicine, University of Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Exome Sequencing Identifies Compound Heterozygous Mutations in SCN5A Associated with Congenital Complete Heart Block in the Thai Population. DISEASE MARKERS 2016; 2016:3684965. [PMID: 28018021 PMCID: PMC5149683 DOI: 10.1155/2016/3684965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Background. Congenital heart block is characterized by blockage of electrical impulses from the atrioventricular node (AV node) to the ventricles. This blockage can be caused by ion channel impairment that is the result of genetic variation. This study aimed to investigate the possible causative variants in a Thai family with complete heart block by using whole exome sequencing. Methods. Genomic DNA was collected from a family consisting of five family members in three generations in which one of three children in generation III had complete heart block. Whole exome sequencing was performed on one complete heart block affected child and one unaffected sibling. Bioinformatics was used to identify annotated and filtered variants. Candidate variants were validated and the segregation analysis of other family members was performed. Results. This study identified compound heterozygous variants, c.101G>A and c.3832G>A, in the SCN5A gene and c.28730C>T in the TTN gene. Conclusions. Compound heterozygous variants in the SCN5A gene were found in the complete heart block affected child but these two variants were found only in the this affected sibling and were not found in other unaffected family members. Hence, these variants in the SCN5A gene were the most possible disease-causing variants in this family.
Collapse
|
42
|
Abstract
Although sinus node dysfunction (SND) and atrial arrhythmias frequently coexist and interact, the putative mechanism linking the 2 remain unclear. Although SND is accompanied by atrial myocardial structural changes in the right atrium, atrial fibrillation (AF) is a disease of variable interactions between left atrial triggers and substrate most commonly of left atrial origin. Significant advances have been made in our understanding of the genetic and pathophysiologic mechanism underlying the development and progression of SND and AF. Although some patients manifest SND as a result of electric remodeling induced by periods of AF, others develop progressive atrial structural remodeling that gives rise to both conditions together. The treatment strategy will thus vary according to the predominant disease phenotype. Although catheter ablation will benefit patients with predominantly AF and secondary SND, cardiac pacing may be the mainstay of therapy for patients with predominant fibrotic atrial cardiomyopathy. This contemporary review summarizes current knowledge on sinus node pathophysiology with the broader goal of yielding insights into the complex relationship between sinus node disease and atrial arrhythmias.
Collapse
Affiliation(s)
- Roy M John
- From Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Saurabh Kumar
- From Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Tarradas A, Pinsach-Abuin ML, Mackintosh C, Llorà-Batlle O, Pérez-Serra A, Batlle M, Pérez-Villa F, Zimmer T, Garcia-Bassets I, Brugada R, Beltran-Alvarez P, Pagans S. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. J Mol Cell Cardiol 2016; 102:74-82. [PMID: 27894866 DOI: 10.1016/j.yjmcc.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/12/2023]
Abstract
Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease.
Collapse
Affiliation(s)
- Anna Tarradas
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Mel Lina Pinsach-Abuin
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Carlos Mackintosh
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Oriol Llorà-Batlle
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Alexandra Pérez-Serra
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Montserrat Batlle
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Félix Pérez-Villa
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Thomas Zimmer
- Institute for Physiology II, University Hospital, 07743 Jena, Germany
| | - Ivan Garcia-Bassets
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Ramon Brugada
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; Hospital Universitari Dr. Josep Trueta, 17001 Girona, Spain
| | - Pedro Beltran-Alvarez
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Biological, Biomedical, and Environmental Sciences, University of Hull, HU6 7RX, Hull, UK.
| | - Sara Pagans
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain.
| |
Collapse
|
44
|
Evans DS, Avery CL, Nalls MA, Li G, Barnard J, Smith EN, Tanaka T, Butler AM, Buxbaum SG, Alonso A, Arking DE, Berenson GS, Bis JC, Buyske S, Carty CL, Chen W, Chung MK, Cummings SR, Deo R, Eaton CB, Fox ER, Heckbert SR, Heiss G, Hindorff LA, Hsueh WC, Isaacs A, Jamshidi Y, Kerr KF, Liu F, Liu Y, Lohman KK, Magnani JW, Maher JF, Mehra R, Meng YA, Musani SK, Newton-Cheh C, North KE, Psaty BM, Redline S, Rotter JI, Schnabel RB, Schork NJ, Shohet RV, Singleton AB, Smith JD, Soliman EZ, Srinivasan SR, Taylor HA, Van Wagoner DR, Wilson JG, Young T, Zhang ZM, Zonderman AB, Evans MK, Ferrucci L, Murray SS, Tranah GJ, Whitsel EA, Reiner AP, Sotoodehnia N. Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans. Hum Mol Genet 2016; 25:4350-4368. [PMID: 27577874 PMCID: PMC5291202 DOI: 10.1093/hmg/ddw284] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10-14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10-4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10-8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10-9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10-7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.
Collapse
Affiliation(s)
- Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA .
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California at San Diego, School of Medicine, La Jolla, CA, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anne M Butler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah G Buxbaum
- Center of Excellence in Minority Health and Health Disparities, Jackson State University, Jackson, MS, USA
- Department of Epidemiology and Biostatistics, Jackson State University School of Public Health (Initiative), Jackson, MS, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald S Berenson
- Department of Medicine and Cardiology, Tulane University, New Orleans, LA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven Buyske
- Department of Statistics and Biostatistics and Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Cara L Carty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Rajat Deo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B Eaton
- Departments of Family Medicine and Epidemiology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Ervin R Fox
- Department of Medicine, Division of Cardiovascular Disease, University of Mississippi Medical Center, Jackson, MS, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lucia A Hindorff
- National Institutes of Health, National Human Genome Research Institute, Office of Population Genomics, Bethesda, MD, USA
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Dept. of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Yalda Jamshidi
- Cardiogenetics Lab, Institute of Cardiovascular and Cell Sciences, St George's University of London, UK
| | - Kathleen F Kerr
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Felix Liu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Kurt K Lohman
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Jared W Magnani
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph F Maher
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Reena Mehra
- Program for Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan A Meng
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Solomon K Musani
- Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston,MA, USA
| | - Christopher Newton-Cheh
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
- Department of Medicine, Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Redline
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Departments of Medicine and Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- University Heart Center Hamburg and German Center for Cardiovascular Research, Hamburg, Germany
| | | | - Nicholas J Schork
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Ralph V Shohet
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Smith
- Epidemiological Cardiology Research Center (EPICARE), Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elsayed Z Soliman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Herman A Taylor
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - David R Van Wagoner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James G Wilson
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Taylor Young
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhu-Ming Zhang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alan B Zonderman
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michele K Evans
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Sarah S Murray
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Membership of the CHARGE QRS Consortium is provided in the acknowledgements and
| | - Alex P Reiner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nona Sotoodehnia
- Department of Epidemiology, University of Washington, Seattle, WA, USA .
- Division of Cardiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Physiology and Pathophysiology of Sodium Channel Inactivation. CURRENT TOPICS IN MEMBRANES 2016; 78:479-509. [PMID: 27586293 DOI: 10.1016/bs.ctm.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications.
Collapse
Affiliation(s)
- M-R Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - K Aimar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R Ghadiry-Tavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - A Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
46
|
Zeng Z, Xie Q, Huang Y, Zhao Y, Li W, Huang Z. p.D1690N sodium voltage-gated channel α subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome. Mol Med Rep 2016; 13:5216-22. [PMID: 27108952 DOI: 10.3892/mmr.2016.5162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited primary arrhythmia disorder, leading to sudden cardiac death due to ventricular tachyarrhythmia, but does not exhibit clinical cardiac abnormalities. The sodium voltage-gated channel α subunit 5 (SCN5A) gene, which encodes the α subunit of the cardiac sodium channel, Nav1.5, is the most common pathogenic gene, although ≥22 BrS‑susceptibility genes have previously been identified. In the present study, a novel genetic variant (p.D1690N) localized in the S5‑S6 linker of domain IV of the Nav1.5 channels was identified in a Chinese Han family. Wild‑type (WT) and p.D1690N Nav1.5 channels were transiently over‑expressed in HEK293 cells and analyzed via the whole-cell patch clamp technique. The p.D1690N mutation significantly reduced the peak sodium current density to 23% of WT (at ‑20 mV; P<0.01), shifted steady‑state activation by 7 mV to increasingly positive potentials (P<0.01). Furthermore, prolonging of the recovery from inactivation was observed in the p.D1690N mutant. No significant change was identified in steady‑state inactivation. Thus, the mutant‑induced changes contributed to the loss of function of Nav1.5 channels, which indicates that the p.D1690N variant may have a pathogenic role in BrS.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of The Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yuan Huang
- Key Laboratory of Molecular Biophysics of The Ministry of Education, Cardio‑X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of The Ministry of Education, Cardio‑X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Weihua Li
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
47
|
Liu M, Yang KC, Dudley SC. Cardiac Sodium Channel Mutations: Why so Many Phenotypes? CURRENT TOPICS IN MEMBRANES 2016; 78:513-59. [PMID: 27586294 DOI: 10.1016/bs.ctm.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- M Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - K-C Yang
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - S C Dudley
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
48
|
Kinoshita K, Takahashi H, Hata Y, Nishide K, Kato M, Fujita H, Yoshida S, Murai K, Mizumaki K, Nishida K, Yamaguchi Y, Kano M, Tabata T, Nishida N. SCN5A(K817E), a novel Brugada syndrome-associated mutation that alters the activation gating of NaV1.5 channel. Heart Rhythm 2016; 13:1113-1120. [PMID: 26776555 DOI: 10.1016/j.hrthm.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited lethal arrhythmic disorder characterized by syncope and sudden cardiac death from ventricular tachyarrhythmias. Here we identified a novel K817E mutation of SCN5A gene in a man with type 1 BrS electrocardiogram pattern using next-generation sequencing targeted for 73 cardiac disorder-related genes. SCN5A encodes the α-subunit of NaV1.5 voltage-gated Na(+) channel, and some of its mutations are linked to BrS. The proband had no mutation in any of the other arrhythmia-related genes sequenced. OBJECTIVE We investigated whether the K817E mutation causes a functional change of NaV1.5 channel responsible for the BrS phenotype. METHODS We compared the electrophysiological properties of the whole-cell currents mediated by wild-type and mutant channels heterologously expressed in human embryonic kidney 293 cells by using a voltage-clamp technique. RESULTS The K817E mutation reduced the Na(+) current density by 39.0%-91.4% at membrane potentials from -55 to -5 mV. This reduction resulted from a ~24-mV positive shift in the voltage dependence of activation. The mutation also decelerated recovery from both fast and intermediate inactivation, whereas it had little effect on the cell surface expression, single-channel conductance, voltage-dependence of fast inactivation, entry into intermediate inactivation, use-dependent loss of channel availability, or closed-state inactivation. CONCLUSION The K817E mutation of SCN5A gene leads to loss of function of NaV1.5 channel and may underlie the BrS phenotype of the proband.
Collapse
Affiliation(s)
- Koshi Kinoshita
- Department of Legal Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, Japan
| | - Hiroyuki Takahashi
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Yukiko Hata
- Department of Legal Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, Japan
| | - Kohki Nishide
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Mario Kato
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Hiroki Fujita
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Sho Yoshida
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Kazutaka Murai
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Koichi Mizumaki
- Clinical Research and Ethics Center, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, Japan
| | - Kunihiro Nishida
- Second Department of Internal Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, Japan
| | - Yoshiaki Yamaguchi
- Second Department of Internal Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Toshihide Tabata
- Laboratory for Neural Information Technology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, Japan
| | - Naoki Nishida
- Department of Legal Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama, Japan.
| |
Collapse
|
49
|
Alkaloids from Veratrum taliense Exert Cardiovascular Toxic Effects via Cardiac Sodium Channel Subtype 1.5. Toxins (Basel) 2015; 8:toxins8010012. [PMID: 26729167 PMCID: PMC4728534 DOI: 10.3390/toxins8010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022] Open
Abstract
Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels NaV1.3–1.5 and exhibited the strongest ability to inhibit NaV1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the NaV1.5 channel. The effects of VAs on NaV1.3 and NaV1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Progressive cardiac conduction disorder (PCCD) is an inherited cardiac disease that may present as a primary electrical disease or be associated with structural heart disease. In this brief review, we present recent clinical, genetic, and molecular findings relating to PCCD. RECENT FINDINGS Inherited PCCD in structurally normal hearts has been found to be linked to genetic variants in the ion channel genes SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17, as well as in genes coding for cardiac connexin proteins. In addition, several SCN5A mutations lead to 'cardiac sodium channelopathy overlap syndrome'. Other genes coding for cardiac transcription factors, such as NKX2.5 and TBX5, are involved in the development of the cardiac conduction system and in the morphogenesis of the heart. Mutations in these two genes have been shown to cause cardiac conduction disorders associated with various congenital heart defects. SUMMARY PCCD is a hereditary syndrome, and genetic variants in multiple genes have been described to date. Genetic screening and identification of the causal mutation are crucial for risk stratification and family counselling.
Collapse
|