1
|
Heo R, Park M, Mun SY, Zhuang W, Jeong J, Park H, Han ET, Han JH, Chun W, Jung WK, Choi IW, Park WS. Vasorelaxant mechanisms of the antidiabetic anagliptin in rabbit aorta: roles of Kv channels and SERCA pump. Acta Diabetol 2025; 62:241-251. [PMID: 39103505 DOI: 10.1007/s00592-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
AIMS The present study investigated the vasorelaxant mechanisms of an oral antidiabetic drug, anagliptin, using phenylephrine (Phe)-induced pre-contracted rabbit aortic rings. METHODS Arterial tone measurement was performed in rabbit thoracic aortic rings. RESULTS Anagliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the classical voltagedependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly decreased the vasorelaxant effect of anagliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and the large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not attenuate the vasorelaxant effect. Furthermore, the vasorelaxant response of anagliptin was effectively inhibited by pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid. Neither cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) nor cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) reduced the vasorelaxant effect of anagliptin. Similarly, the anagliptin-induced vasorelaxation was independent of the endothelium. CONCLUSIONS Based on these results, we suggest that anagliptin-induced vasorelaxation in rabbit aortic smooth muscle occurs by activating Kv channels and the SERCA pump, independent of other vascular K+ channels, cAMP/PKA- or cGMP/PKG-related signaling pathways, and the endothelium.
Collapse
Affiliation(s)
- Ryeon Heo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Minju Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Perumal N, Yurugi H, Dahm K, Rajalingam K, Grus FH, Pfeiffer N, Manicam C. Proteome landscape and interactome of voltage-gated potassium channel 1.6 (Kv1.6) of the murine ophthalmic artery and neuroretina. Int J Biol Macromol 2024; 257:128464. [PMID: 38043654 DOI: 10.1016/j.ijbiomac.2023.128464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The voltage-gated potassium channel 1.6 (Kv1.6) plays a vital role in ocular neurovascular beds and exerts its modulatory functions via interaction with other proteins. However, the interactome and their potential roles remain unknown. Here, the global proteome landscape of the ophthalmic artery (OA) and neuroretina was mapped, followed by the determination of Kv1.6 interactome and validation of its functionality and cellular localization. Microfluorimetric analysis of intracellular [K+] and Western blot validated the native functionality and cellular expression of the recombinant Kv1.6 channel protein. A total of 54, 9 and 28 Kv1.6-interacting proteins were identified in the mouse OA and, retina of mouse and rat, respectively. The Kv1.6-protein partners in the OA, namely actin cytoplasmic 2, alpha-2-macroglobulin and apolipoprotein A-I, were implicated in the maintenance of blood vessel integrity by regulating integrin-mediated adhesion to extracellular matrix and Ca2+ flux. Many retinal protein interactors, particularly the ADP/ATP translocase 2 and cytoskeleton protein tubulin, were involved in endoplasmic reticulum stress response and cell viability. Three common interactors were found in all samples comprising heat shock cognate 71 kDa protein, Ig heavy constant gamma 1 and Kv1.6 channel. This foremost in-depth investigation enriched and identified the elusive Kv1.6 channel and, elucidated its complex interactome.
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Dahm
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Franz H Grus
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Park S, Kang M, Heo R, Mun SY, Park M, Han ET, Han JH, Chun W, Park H, Park WS. Inhibition of voltage-dependent K + channels by antimuscarinic drug fesoterodine in coronary arterial smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:397-404. [PMID: 36039740 PMCID: PMC9437370 DOI: 10.4196/kjpp.2022.26.5.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Fesoterodine, an antimuscarinic drug, is widely used to treat overactive bladder syndrome. However, there is little information about its effects on vascular K+ channels. In this study, voltage-dependent K+ (Kv) channel inhibition by fesoterodine was investigated using the patch-clamp technique in rabbit coronary artery. In whole-cell patches, the addition of fesoterodine to the bath inhibited the Kv currents in a concentration-dependent manner, with an IC50 value of 3.19 ± 0.91 μM and a Hill coefficient of 0.56 ± 0.03. Although the drug did not alter the voltage-dependence of steady-state activation, it shifted the steady-state inactivation curve to a more negative potential, suggesting that fesoterodine affects the voltage-sensor of the Kv channel. Inhibition by fesoterodine was significantly enhanced by repetitive train pulses (1 or 2 Hz). Furthermore, it significantly increased the recovery time constant from inactivation, suggesting that the Kv channel inhibition by fesoterodine is use (state)-dependent. Its inhibitory effect disappeared by pretreatment with a Kv 1.5 inhibitor. However, pretreatment with Kv2.1 or Kv7 inhibitors did not affect the inhibitory effects on Kv channels. Based on these results, we conclude that fesoterodine inhibits vascular Kv channels (mainly the Kv1.5 subtype) in a concentration- and use (state)-dependent manner, independent of muscarinic receptor antagonism.
Collapse
Affiliation(s)
- Seojin Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minji Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Ryeon Heo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| |
Collapse
|
5
|
The antidiabetic drug teneligliptin induces vasodilation via activation of PKG, Kv channels, and SERCA pumps in aortic smooth muscle. Eur J Pharmacol 2022; 935:175305. [DOI: 10.1016/j.ejphar.2022.175305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
|
6
|
Pereira da Silva EA, Martín-Aragón Baudel M, Navedo MF, Nieves-Cintrón M. Ion channel molecular complexes in vascular smooth muscle. Front Physiol 2022; 13:999369. [PMID: 36091375 PMCID: PMC9459047 DOI: 10.3389/fphys.2022.999369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Ion channels that influence membrane potential and intracellular calcium concentration control vascular smooth muscle excitability. Voltage-gated calcium channels (VGCC), transient receptor potential (TRP) channels, voltage (KV), and Ca2+-activated K+ (BK) channels are key regulators of vascular smooth muscle excitability and contractility. These channels are regulated by various signaling cues, including protein kinases and phosphatases. The effects of these ubiquitous signaling molecules often depend on the formation of macromolecular complexes that provide a platform for targeting and compartmentalizing signaling events to specific substrates. This manuscript summarizes our current understanding of specific molecular complexes involving VGCC, TRP, and KV and BK channels and their contribution to regulating vascular physiology.
Collapse
|
7
|
Santos BL, Oliveira AJD, Santos IV, Duarte MC, Cunha PS, dos Santos DM, Silva EAPD, Quintans Júnior LJ, Santos MRVD. Phytochemical screening and cardiovascular effects of the ethanol extract of Erythroxylum passerinum mart. Nat Prod Res 2022; 36:1048-1052. [DOI: 10.1080/14786419.2020.1844690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bianca Leite Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bae H, Kim T, Lim I. Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:25-36. [PMID: 34965993 PMCID: PMC8723981 DOI: 10.4196/kjpp.2022.26.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3- induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
9
|
Seo MS, An JR, Kang M, Heo R, Park H, Han ET, Han JH, Chun W, Park WS. Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci 2021; 287:120101. [PMID: 34715136 DOI: 10.1016/j.lfs.2021.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
AIMS Canagliflozin is an anti-diabetic agent and sodium glucose co-transporter-2 inhibitor. Despite numerous clinical trials demonstrating its beneficial effects on blood pressure, the cellular mechanisms underlying the effects of canagliflozin on vascular reactivity have yet to be clarified. We investigated the vasodilatory effect of canagliflozin on aortic rings isolated from rabbits. MAIN METHODS We used rabbit thoracic aortic rings and its arterial tone was tested by using wire myography system. KEY FINDINGS Canagliflozin caused concentration-dependent vasodilation in aortic rings pre-constricted with phenylephrine or high K+. However, the degree of canagliflozin-induced vasodilation of the aortic rings pre-constricted with high K+ was less than that of rings pre-constricted with phenylephrine. Application of 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, reduced canagliflozin-induced vasodilation. However, pre-incubation of an inwardly rectifying K+ channel inhibitor, a large-conductance Ca2+-activated K+ channel inhibitor, and an ATP-sensitive K+ inhibitor did not modulate the vasodilatory effects of canagliflozin. Indeed, canagliflozin increased Kv currents in aortic smooth muscle cells. Pre-treatment with thapsigargin or cyclopiazonic acid, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors, reduced the vasodilatory effects of canagliflozin. Conversely, pre-treatment with a Ca2+ channel inhibitor, adenylyl cyclase/PKA inhibitors, and guanylyl cyclase/PKG inhibitors did not modulate the vasodilatory effects of canagliflozin. Endothelium removal, and pre-treatment with the nitric oxide synthase inhibitor L-NAME, and small- and intermediate-conductance Ca2+-activated K+ channel inhibitor apamin and TRAM-34, did not diminish the vasodilatory effects of canagliflozin. SIGNIFICANCE Our results indicate that canagliflozin induces vasodilation, which is dependent on the robust SERCA activity and Kv channel activation.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
10
|
Hwang S, Kim JH, Jo SH. Inhibitory effect of the selective serotonin reuptake inhibitor paroxetine on human Kv1.3 channels. Eur J Pharmacol 2021; 912:174567. [PMID: 34662565 DOI: 10.1016/j.ejphar.2021.174567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Paroxetine is one of the most effective selective serotonin reuptake inhibitors used to treat depressive and panic disorders that reduce the viability of human T lymphocytes, in which Kv1.3 channels are highly expressed. We examined whether paroxetine could modulate human Kv1.3 channels acutely and directly with the aim of understanding the biophysical effects and the underlying mechanisms of the drug. Kv1.3 channel proteins were expressed in Xenopus oocytes. Paroxetine rapidly inhibited the steady-state current and peak current of these channels within 6 min in a concentration-dependent manner; IC50s were 26.3 μM and 53.9 μM, respectively, and these effects were partially reversed by washout, which excluded the possibility of genomic regulation. At the same test voltage, paroxetine blockade of the steady-state currents was higher than that of the peak currents, and the inhibition of the steady-state current increased relative to the degree of depolarization. Paroxetine decreased the inactivation time constant in a concentration-dependent manner, but it did not affect the activation time constant, which resulted in the acceleration of intrinsic inactivation without changing ultrarapid activation. Blockade of Kv1.3 channels by paroxetine exhibited more rapid inhibition at higher activation frequencies showing the use-dependency of the blockade. Overall, these results show that paroxetine directly suppresses human Kv1.3 channels in an open state and accelerates the process of steady-state inactivation; thus, we have revealed a biophysical mechanism for possible acute immunosuppressive effects of paroxetine.
Collapse
Affiliation(s)
- Soobeen Hwang
- Department of Physiology, Institute of Bioscience and Biotechnology, Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jong-Hui Kim
- Department of Physiology, Institute of Bioscience and Biotechnology, Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
11
|
Heo R, Seo MS, An JR, Kang M, Park H, Han ET, Han JH, Chun W, Park WS. The anti-diabetic drug trelagliptin induces vasodilation via activation of Kv channels and SERCA pumps. Life Sci 2021; 283:119868. [PMID: 34358551 DOI: 10.1016/j.lfs.2021.119868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
AIMS In this study, we investigated the vasodilatory effects of trelagliptin (a dipeptidyl peptidase-4 inhibitor) and its related mechanisms using rabbit aortic rings. MAIN METHODS Arterial tone measurement was performed in rabbit thoracic aortic rings. KEY FINDINGS Trelagliptin induced vasodilation in a dose-dependent manner. Pretreatment with the ATP-sensitive K+ channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ channel inhibitor paxilline, and inwardly rectifying K+ channel inhibitor Ba2+ did not affect the vasodilatory effect of trelagliptin. However, pretreatment with the voltage-dependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly attenuated the vasodilatory effect of trelagliptin, suggesting that the vasodilatory effect of trelagliptin is associated with Kv channel activation. Although pretreatment with Kv1.5 and Kv2.1 subtype inhibitors did not affect the response to trelagliptin, pretreatment with a Kv7.X subtype inhibitor effectively reduced the vasodilatory effect of trelagliptin. Furthermore, sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors also significantly attenuated the vasodilatory effect of trelagliptin. These effects, however, were not affected by pretreatment with Ca2+ channel inhibitors, adenylyl cyclase/PKA inhibitors, guanylyl cyclase/PKG inhibitors, or removal of the endothelium. SIGNIFICANCE From these results, we concluded that the vasodilatory effect of trelagliptin was associated with the activation of Kv channels (primary the Kv7.X subtype) and SERCA pump regardless of other K+ channels, Ca2+ channels, cAMP/PKA-related or cGMP/PKG-related signaling pathways, and the endothelium. Therefore, caution is required when prescribing trelagliptin to the patients with hypotension and diabetes.
Collapse
Affiliation(s)
- Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
12
|
Kang M, An JR, Seo MS, Jung HS, Heo R, Park H, Song G, Jung WK, Choi IW, Park WS. Atypical antipsychotic olanzapine inhibits voltage-dependent K + channels in coronary arterial smooth muscle cells. Pharmacol Rep 2021; 73:1724-1733. [PMID: 34146337 DOI: 10.1007/s43440-021-00299-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Olanzapine, an FDA-approved atypical antipsychotic, is widely used to treat schizophrenia and bipolar disorder. In this study, the inhibitory effect of olanzapine on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells was investigated. METHODS Electrophysiological recordings were performed in freshly isolated coronary arterial smooth muscle cells. RESULTS Olanzapine inhibited the Kv channels in a concentration-dependent manner with an IC50 value of 7.76 ± 1.80 µM and a Hill coefficient of 0.82 ± 0.09. Although olanzapine did not change the steady-state activation curve, it shifted the inactivation curve to a more negative potential, suggesting that it inhibited Kv currents by affecting the voltage sensor of the Kv channel. Application of 1 or 2 Hz train pulses did not affect the olanzapine-induced inhibition of Kv channels, suggesting that its effect on Kv channels occurs in a use (state)-independent manner. Pretreatment with DPO-1 (Kv1.5 subtype inhibitor) reduced the olanzapine-induced inhibition of Kv currents. In addition, pretreatment with guangxitoxin (Kv2.1 subtype inhibitor) and linopirdine (Kv7 subtype inhibitor) partially decreased the degree of Kv current inhibition. Olanzapine induced membrane depolarization. CONCLUSION From these results, we suggest that olanzapine inhibits the Kv channels in a concentration-dependent, but state-independent, manner by affecting the gating properties of Kv channels. The primary Kv channel target of olanzapine is the Kv1.5 subtype.
Collapse
Affiliation(s)
- Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Geehyun Song
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
13
|
Li H, Zhuang W, Seo MS, An JR, Yang Y, Zha Y, Liang J, Xu ZX, Park WS. Inhibition of voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic agent lorcainide. Eur J Pharmacol 2021; 904:174158. [PMID: 33971179 DOI: 10.1016/j.ejphar.2021.174158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Voltage-dependent K+ (Kv) channels play the role of returning the membrane potential to the resting state, thereby maintaining the vascular tone. Here, we used native smooth-muscle cells from rabbit coronary arteries to investigate the inhibitory effect of lorcainide, a class Ic antiarrhythmic agent, on Kv channels. Lorcainide inhibited Kv channels in a concentration-dependent manner with an IC50 of 4.46 ± 0.15 μM and a Hill coefficient of 0.95 ± 0.01. Although application of lorcainide did not change the activation curve, it shifted the inactivation curve toward a more negative potential, implying that lorcainide inhibits Kv channels by changing the channels' voltage sensors. The recovery time constant from channel inactivation increased in the presence of lorcainide. Furthermore, application of train steps (of 1 or 2 Hz) in the presence of lorcainide progressively augmented the inhibition of Kv currents, implying that lorcainide-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with Kv1.5 or Kv2.1/2.2 inhibitors effectively reduced the amplitude of the Kv current but did not affect the inhibitory effect of lorcainide. Based on these results, we conclude that lorcainide inhibits vascular Kv channels in a concentration and use (state)-dependent manner by changing their inactivation gating properties. Considering the clinical efficacy of lorcainide, and the pathophysiological significance of vascular Kv channels, our findings should be considered when prescribing lorcainide to patients with arrhythmia and vascular disease.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Yongqi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yiwen Zha
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Zheng-Xin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
14
|
An JR, Jung HS, Seo MS, Kang M, Heo R, Park H, Song G, Jung WK, Choi IW, Park WS. The effects of tegaserod, a gastrokinetic agent, on voltage-gated K + channels in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol 2021; 48:748-756. [PMID: 33620095 DOI: 10.1111/1440-1681.13477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
Tegaserod, a gastroprokinetic agent, is used to treat irritable bowel syndrome. Despite its extensive clinical use, little is known about the effects of tegaserod on vascular ion channels, especially K+ channels. Therefore, we examined the effects of tegaserod on voltage-gated K+ (Kv) channels in rabbit coronary arterial smooth muscle cells using the whole-cell patch-clamp technique. Tegaserod inhibited Kv channels in a concentration-dependent manner with an IC50 value of 1.26 ± 0.31 µmol/L and Hill coefficient of 0.81 ± 0.10. Although tegaserod had no effect on the steady-state activation curves of the Kv channels, the steady-state inactivation curve was shifted toward a more negative potential. These results suggest that tegaserod inhibits Kv channels by influencing their voltage sensors. The recovery time constant of channel inactivation was extended in the presence of tegaserod. Furthermore, application of train steps (1 and 2 Hz) in the presence of tegaserod progressively increased the inhibition of Kv currents suggesting that tegaserod-induced Kv channel inhibition is use (state)-dependent. Pretreatment with a Kv1.5 subtype inhibitor suppressed the Kv current. However, additional application of tegaserod did not induce further inhibition. Pretreatment with a Kv2.1 or Kv7 inhibitor did not affect the inhibitory effect of tegaserod on Kv channels. Based on these results, we conclude that tegaserod inhibits vascular Kv channels in a concentration- and use (state)-dependent manner independent of its own functions. Furthermore, the major Kv channel target of tegaserod is the Kv1.5 subtype.
Collapse
Affiliation(s)
- Jin Ryeol An
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hee Seok Jung
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minji Kang
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ryeon Heo
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Geehyun Song
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Centre for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, South Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
15
|
Santos WA, Dourado KMC, Araújo FA, Jesus RLC, Moraes RA, Oliveira SCDS, Alves QL, Simões LO, Casais-E-Silva LL, Costa RS, Velozo ES, Silva DF. Braylin induces a potent vasorelaxation, involving distinct mechanisms in superior mesenteric and iliac arteries of rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:437-446. [PMID: 33034715 DOI: 10.1007/s00210-020-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Arterial hypertension is a risk factor for various cardiovascular and renal diseases, representing a major public health challenge. Although a wide range of treatment options are available for blood pressure control, many hypertensive individuals remain with uncontrolled hypertension. Thus, the search for new substances with antihypertensive potential becomes necessary. Coumarins, a group of polyphenolic compounds derived from plants, have attracted intense interest due to their diverse pharmacological properties, like potent antihypertensive activities. Braylin (6-methoxyseselin) is a coumarin identified in the Zanthoxylum tingoassuiba species, described as a phosphodiesterase-4 (PDE4) inhibitor. Although different coumarin compounds have been described as potent antihypertensive agents, the activity of braylin on the cardiovascular system has yet to be investigated. To investigate the vasorelaxation properties of braylin and its possible mechanisms of action, we performed in vitro studies using superior mesenteric arteries and the iliac arteries isolated from rats. In this study, we demonstrated, for the first time, that braylin induces potent vasorelaxation, involving distinct mechanisms from two different arteries, isolated from rats. A possible inhibition of phosphodiesterase, altering the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase (PKA) pathway, may be correlated with the biological action of braylin in the mesenteric vessel, while in the iliac artery, the biological action of braylin may be correlated with increase of cyclic guanosine monophosphate (cGMP), followed by BKCa, Kir, and Kv channel activation. Together, these results provide evidence that braylin can represent a potential therapeutic use in preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- W A Santos
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - K M C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - F A Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, Bahia, Brazil
| | - R L C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - R A Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - S C D S Oliveira
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - Q L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - L O Simões
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - L L Casais-E-Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil
| | - R S Costa
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - E S Velozo
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - D F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Avenida Reitor Miguel Calmon, Vale do Canela, Salvador, Bahia, 40110-902, Brazil.
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, Bahia, Brazil.
| |
Collapse
|
16
|
Abstract
Aberrant function or expression of potassium channels can be underlying in pathologies such as cardiac arrhythmia, diabetes mellitus, hypertension, preterm birth, and various types of cancer. The expression of potassium channels is altered in many types of diseases. Also, we have previously shown that natural polyphenols, such as resveratrol, and selective synthetic modulators of potassium channels, like pinacidil, can alter their function and lead to the desired outcome. Therefore, targeting potassium channels with substance, which has an influence on their function, is promising access to cancer, diabetes mellitus, preterm birth, or hypertension therapy. In this chapter, we could discuss strategies for targeting different types of potassium channels as potential targets for synthetic and natural molecules therapy.
Collapse
|
17
|
An JR, Seo MS, Jung HS, Heo R, Kang M, Han ET, Park H, Jung WK, Choi IW, Park WS. Inhibition by Imipramine of the Voltage-Dependent K+ Channel in Rabbit Coronary Arterial Smooth Muscle Cells. Toxicol Sci 2020; 178:302-310. [PMID: 33010168 DOI: 10.1093/toxsci/kfaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Imipramine, a tricyclic antidepressant, is used in the treatment of depressive disorders. However, the effect of imipramine on vascular ion channels is unclear. Therefore, using a patch-clamp technique we examined the effect of imipramine on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells. Kv channels were inhibited by imipramine in a concentration-dependent manner, with an IC50 value of 5.55 ± 1.24 µM and a Hill coefficient of 0.73 ± 0.1. Application of imipramine shifted the steady-state activation curve in the positive direction, indicating that imipramine-induced inhibition of Kv channels was mediated by influencing the voltage sensors of the channels. The recovery time constants from Kv-channel inactivation were increased in the presence of imipramine. Furthermore, the application of train pulses (of 1 or 2 Hz) progressively augmented the imipramine-induced inhibition of Kv channels, suggesting that the inhibitory effect of imipramine is use (state) dependent. The magnitude of Kv current inhibition by imipramine was similar during the first, second, and third depolarizing pulses. These results indicate that imipramine-induced inhibition of Kv channels mainly occurs in the closed state. The imipramine-mediated inhibition of Kv channels was associated with the Kv1.5 channel, not the Kv2.1 or Kv7 channel. Inhibition of Kv channels by imipramine caused vasoconstriction. From these results, we conclude that imipramine inhibits vascular Kv channels in a concentration- and use (closed-state)-dependent manner by changing their gating properties regardless of its own function.
Collapse
Affiliation(s)
| | | | | | | | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 48516, South Korea
| | | |
Collapse
|
18
|
Sarkar J, Chakraborti T, Pramanik PK, Ghosh P, Mandal A, Chakraborti S. PKCζ-NADPH Oxidase-PKCα Dependent Kv1.5 Phosphorylation by Endothelin-1 Modulates Nav1.5-NCX1-Cav1.2 Axis in Stimulating Ca 2+ Level in Caveolae of Pulmonary Artery Smooth Muscle Cells. Cell Biochem Biophys 2020; 79:57-71. [PMID: 33095400 DOI: 10.1007/s12013-020-00954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
Endothelin-1 (ET-1) is a potent endogenously derived vasoconstrictor, which increases pulmonary hypertension via stimulation of [Ca2+]i level in pulmonary artery smooth muscle cells (PASMCs). In this communication, we sought to investigate the mechanism by which ET-1 causes stimulation of Ca2+ concentration in caveolae vesicles of bovine PASMCs (BPASMCs). ET-1 activates PKC-α in the caveolae vesicles by O2.- derived from PKCζ-NADPH oxidase dependent pathway. PKC-α phosphorylates Kv1.5 channels leading to a marked stimulation of Na+ and Ca2+ concentration in the caveolae vesicles. The stimulation of Ca2+ concentration in the caveolae vesicles by ET-1 occurs predominantly via Cav1.2 channels. Additionally, an increase in Na+ concentration by ET-1 due to stimulation of Nav1.5 channels marginally increases Ca2+ level in the caveolae vesicles via reverse-mode Na+/Ca2+ exchanger (NCX-1) and also through "slip-mode conductance" Nav1.5 channels. 4-AP, a well-known inhibitor of Kv channels, also increases Ca2+ concentration in the caveolae vesicles via Cav1.2 channels, reverse-mode NCX-1 and Nav1.5 channels by phosphorylation independent modulation of Kv1.5 channels without the involvement of PKCζ-NADPH oxidase-PKCα signaling axis. Overall, PKCζ-NADPH oxidase-PKCα dependent phosphorylation of Kv1.5 by ET-1 modulates Nav1.5-NCX1-Cav1.2 axis for stimulation of Ca2+ concentration in caveolae vesicles of BPASMCs, which provides a crucial mechanism for better understanding of ET-1-mediated modulation of pulmonary vascular tone.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Priyanka Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Amritlal Mandal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
19
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
20
|
The inhibitory effect of ziprasidone on voltage-dependent K+ channels in coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2020; 529:191-197. [DOI: 10.1016/j.bbrc.2020.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
|
21
|
Djokic V, Jankovic S, Labudovic-Borovic M, Rakocevic J, Stanisic J, Rajkovic J, Novakovic R, Kostic M, Djuric M, Gostimirovic M, Gojkovic-Bukarica L. Pregnancy-induced hypertension decreases K v1.3 potassium channel expression and function in human umbilical vein smooth muscle. Eur J Pharmacol 2020; 882:173281. [PMID: 32562800 DOI: 10.1016/j.ejphar.2020.173281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Voltage-gated potassium (Kv) channels are the largest superfamily of potassium (K) channels. A variety of Kv channels are expressed in the vascular smooth muscle cells (SMC). Studies have shown that gestational diabetes mellitus (GDM) and pregnancy-induced hypertension (PIH) cause various changes in the human umbilical vein (HUV). Recently, we have shown that 4-AP, a nonspecific Kv1-4 channel inhibitor, significantly decreases vasorelaxation induced by K channel opener pinacidil in vascular SMCs of the HUVs from normal pregnancies, but not in GDM and PIH. The goal of this study was to provide more detailed insight in the Kv channel subtypes involved in pinacidil-induced vasodilation of HUVs, as well as to investigate potential alterations of their function and expression during GDM and PIH. Margatoxin, a specific blocker of Kv1.2 and Kv1.3 channels, significantly antagonized pinacidil-induced vasorelaxation in normal pregnancy, while in HUVs from GDM and PIH that was not the case, indicating damage of Kv1.2 and Kv1.3 channel function. Immunohistochemistry and Western blot revealed similar expression of Kv1.2 channels in all groups. The expression of Kv1.3 subunit was significantly decreased in PIH, while it remained unchanged in GDM compared to normal pregnancy. Phrixotoxin, specific blocker of Kv4.2 and Kv4.3 channels, did not antagonize response to pinacidil in any of the groups. The major novel findings show that margatoxin antagonized pinacidil-induced relaxation in normal pregnancy, but not in GDM and PIH. Decreased expression of Kv1.3 channels in HUV during PIH may be important pathophysiological mechanism contributing to an increased risk of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Vladimir Djokic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| | - Svetlana Jankovic
- Department of Obstetrics and Gynecology "Narodni Front", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena Rakocevic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena Stanisic
- Vinca Institute of Nuclear Sciences, 11000, Belgrade, Serbia
| | - Jovana Rajkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Radmila Novakovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milan Kostic
- Vinca Institute of Nuclear Sciences, 11000, Belgrade, Serbia
| | - Milos Djuric
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milos Gostimirovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Ljiljana Gojkovic-Bukarica
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
22
|
Jung HS, Seo MS, An JR, Kang M, Heo R, Li H, Jung WK, Choi IW, Cho EH, Park H, Bae YM, Park WS. The vasodilatory effect of gemigliptin via activation of voltage-dependent K + channels and SERCA pumps in aortic smooth muscle. Eur J Pharmacol 2020; 882:173243. [PMID: 32535099 DOI: 10.1016/j.ejphar.2020.173243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the vasodilatory effects and acting mechanism of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. Tests were conducted in aortic rings pre-contracted with phenylephrine. Gemigliptin induced dose-dependent vasodilation of the aortic smooth muscle. Several pre-treatment groups were used to investigate the mechanism of action. While pre-treatment with paxilline, a large-conductance Ca2+-activated K+ channel inhibitor, glibenclamide, an ATP-sensitive K+ channel inhibitor, and Ba2+, an inwardly rectifying K+ channel inhibitor, had no impact on the vasodilatory effect of gemigliptin, pre-treatment with 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, effectively attenuated the vasodilatory action of gemigliptin. In addition, pre-treatment with sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of gemigliptin. cAMP/PKA-related or cGMP/PKG-related signaling pathway inhibitors, including adenylyl cyclase inhibitor SQ 22536, PKA inhibitor KT 5720, guanylyl cyclase inhibitor ODQ, and PKG inhibitor KT 5823 did not alter the vasodilatory effect of gemigliptin. Similarly, elimination of the endothelium and pre-treatment with a nitric oxide (NO) synthase inhibitor (L-NAME) or small- and intermediate-conductance Ca2+-activated K+ channels (apamin and TRAM-34, respectively) did not change the gemigliptin effect. These findings suggested that gemigliptin induces vasodilation through the activation of Kv channels and SERCA pumps independent of cAMP/PKA-related or cGMP/PKG-related signaling pathways and the endothelium. Therefore, caution is required when prescribing gemigliptin to the patients with hypotension and diabetes.
Collapse
Affiliation(s)
- Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Won-Kyo Jung
- Department of Biomedical Engineering, And Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, 48516, South Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
23
|
An JR, Seo MS, Jung HS, Kang M, Heo R, Bae YM, Han ET, Yang SR, Park WS. Inhibition of voltage-dependent K + channels by iloperidone in coronary arterial smooth muscle cells. J Appl Toxicol 2020; 40:1297-1305. [PMID: 32285496 DOI: 10.1002/jat.3986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 11/12/2022]
Abstract
Iloperidone, a second-generation atypical antipsychotic drug, is widely used in the treatment of schizophrenia. However, the side-effects of iloperidone on vascular K+ channels remain to be determined. Therefore, we explored the effect of iloperidone on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells using the whole-cell patch-clamp technique. Iloperidone inhibited vascular Kv channels in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50 ) of 2.11 ± 0.5 μM and a Hill coefficient of 0.68 ± 0.03. Iloperidone had no effect on the steady-state inactivation kinetics. However, it shifted the steady-state activation curve to the right, indicating that iloperidone inhibited Kv channels by influencing the voltage sensors. Application of 20 repetitive depolarizing pulses (1 and 2 Hz) progressively increased the inhibition of the Kv current in the presence of iloperidone. Furthermore, iloperidone increased the recovery time constant from Kv channel inactivation, suggesting that iloperidone-induced inhibition of Kv channels is use (state)-dependent. Pretreatment with a Kv1.5 inhibitor (diphenyl phosphine oxide 1 [DPO-1]) inhibited the Kv current to a level similar to that with iloperidone alone. However, pretreatment with a Kv2.1 or Kv7.X inhibitor (guangxitoxin or linopirdine) did not affect the inhibitory effect of iloperidone on Kv channels. Therefore, iloperidone directly inhibits Kv channels in a concentration- and use (state)-dependent manner independently of its antagonism of serotonin and dopamine receptors. Furthermore, the primary target of iloperidone is the Kv1.5 subtype.
Collapse
Affiliation(s)
- Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
24
|
Silva-Cardoso J, Sheikh O, Nashawi M, Pham S, Gallegos KM, Dinkha LR, Chilton RJ. Cardiorenal protection with SGLT2: Lessons from the cardiovascular outcome trials. J Diabetes 2020; 12:279-293. [PMID: 31688975 DOI: 10.1111/1753-0407.13007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/27/2019] [Accepted: 10/27/2019] [Indexed: 01/03/2023] Open
Abstract
Sodium glucose cotransporter 2 (SGLT2) inhibitors are a class of drugs that were primarily developed for the treatment of type 2 diabetes mellitus. However, these agents have shown to provide additional beneficial effects. We will discuss three main topics regarding the use of SGLT2 inhibitors: noncardiovascular effects, cardiovascular benefits, and novel clinical indications. Multiple clinical trials and preliminary studies across varying disciplines have shown that these agents exhibit cardiorenal-protective benefits, retinoprotective benefits, and may aid in weight loss without causing marked hypoglycemia. Therefore, these agents represent an avenue in clinical practice to manage comorbid conditions in the hyperglycemic patient. Because of their multifaceted effects and robust action, SGLT2 inhibitors represent therapy options for providers that not only provide beneficial clinical results but also reduce total patient drug burden.
Collapse
Affiliation(s)
| | - Omar Sheikh
- Department of Medicine, Division of Cardiology, UT Health San Antonio, San Antonio, Texas
| | - Mouhamed Nashawi
- Department of Medicine, Division of Cardiology, UT Health San Antonio, San Antonio, Texas
| | - Son Pham
- Department of Medicine, Division of Cardiology, UT Health San Antonio, San Antonio, Texas
| | - Kelly M Gallegos
- Department of Medicine, Division of Cardiology, UT Health San Antonio, San Antonio, Texas
| | - Laith R Dinkha
- Department of Medicine, Division of Cardiology, UT Health San Antonio, San Antonio, Texas
| | - Robert J Chilton
- Department of Medicine, Division of Cardiology, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
25
|
An JR, Kang H, Li H, Seo MS, Jung HS, Jung WK, Choi IW, Ryu SW, Park H, Bae YM, Ryu SM, Park WS. Protriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:320-327. [PMID: 32060505 DOI: 10.1093/abbs/gmz159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/19/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we explore the inhibitory effects of protriptyline, a tricyclic antidepressant drug, on voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Protriptyline inhibited the vascular Kv current in a concentration-dependent manner, with an IC50 value of 5.05 ± 0.97 μM and a Hill coefficient of 0.73 ± 0.04. Protriptyline did not affect the steady-state activation kinetics. However, the drug shifted the steady-state inactivation curve to the left, suggesting that protriptyline inhibited the Kv channels by changing their voltage sensitivity. Application of 20 repetitive train pulses (1 or 2 Hz) progressively increased the protriptyline-induced inhibition of the Kv current, suggesting that protriptyline inhibited Kv channels in a use (state)-dependent manner. The extent of Kv current inhibition by protriptyline was similar during the first, second, and third step pulses. These results suggest that protriptyline-induced inhibition of the Kv current mainly occurs principally in the closed state. The increase in the inactivation recovery time constant in the presence of protriptyline also supported use (state)-dependent inhibition of Kv channels by the drug. In the presence of the Kv1.5 inhibitor, protriptyline did not induce further inhibition of the Kv channels. However, pretreatment with a Kv2.1 or Kv7 inhibitor induced further inhibition of Kv current to a similar extent to that observed with protriptyline alone. Thus, we conclude that protriptyline inhibits the vascular Kv channels in a concentration- and use-dependent manner by changing their gating properties. Furthermore, protriptyline-induced inhibition of Kv channels mainly involves the Kv1.5.
Collapse
Affiliation(s)
- Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hojung Kang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hee Seok Jung
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 48516, South Korea
| | - Sook Won Ryu
- Institute of Medical Sciences, Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| |
Collapse
|
26
|
Seo MS, An JR, Jung HS, Jung WK, Choi IW, Na SH, Park H, Bae YM, Park WS. The muscarinic receptor antagonist tolterodine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2020; 870:172921. [DOI: 10.1016/j.ejphar.2020.172921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/03/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
|
27
|
Seo MS, Li H, An JR, Jung ID, Jung WK, Ha KS, Han ET, Hong SH, Choi IW, Park WS. Vildagliptin, an Anti-diabetic Drug of the DPP-4 Inhibitor, Induces Vasodilation via Kv Channel and SERCA Pump Activation in Aortic Smooth Muscle. Cardiovasc Toxicol 2020; 19:244-254. [PMID: 30519910 DOI: 10.1007/s12012-018-9496-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated vildagliptin-induced vasodilation and its related mechanisms using phenylephrine induced precontracted rabbit aortic rings. Vildagliptin induced vasodilation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+-activated K+ channel blocker paxilline, ATP-sensitive K+ channel blocker glibenclamide, and inwardly rectifying K+ channel blocker Ba2+ did not affect the vasodilatory effects of vildagliptin. However, application of the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine significantly reduced the vasodilatory effects of vildagliptin. In addition, application of either of two sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, thapsigargin or cyclopiazonic acid, effectively inhibited the vasodilatory effects of vildagliptin. These vasodilatory effects were not affected by pretreatment with adenylyl cyclase, protein kinase A (PKA), guanylyl cyclase, or protein kinase G (PKG) inhibitors, or by removal of the endothelium. From these results, we concluded that vildagliptin induced vasodilation via activation of Kv channels and the SERCA pump. However, other K+ channels, PKA/PKG-related signaling cascades associated with vascular dilation, and the endothelium were not involved in vildagliptin-induced vasodilation.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - In Duk Jung
- Laboratory of Dendritic Cell Differentiation and Regulation, Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
28
|
Li H, Seo MS, An JR, Jung HS, Ha KS, Han ET, Hong SH, Bae YM, Na SH, Park WS. Dipeptidyl peptidase-4 inhibitor sitagliptin induces vasorelaxation via the activation of Kv channels and PKA. Toxicol Appl Pharmacol 2019; 384:114799. [PMID: 31678606 DOI: 10.1016/j.taap.2019.114799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
The present study investigated the vasorelaxant effects of sitagliptin, which is a dipeptidyl peptidase-4 (DPP-4) inhibitor in aortic rings pre-contracted with phenylephrine (Phe). Sitagliptin induced vasorelaxation in a concentration-dependent manner but the inhibition of voltage-dependent K+ (Kv) channels by pretreatment with 4-aminopyridine (4-AP) effectively reduced this effect. By contrast, the inhibition of inward rectifier K+ (Kir) channels by pretreatment with barium (Ba2+), large-conductance calcium (Ca2+)-activated K+ (BKCa) channels with paxilline, and adenosine triphosphate (ATP)-sensitive K+ (KATP) channels with glibenclamide did not change this effect. Although the application of SQ 22536, which is an adenylyl cyclase inhibitor, also did not change this effect, treatment with KT 5720, a protein kinase A (PKA) inhibitor, effectively reduced the vasorelaxant effects of sitagliptin. ODQ, which is a guanylyl cyclase inhibitor, and KT 5823, a protein kinase G (PKG) inhibitor, did not impact the effect. Furthermore, neither the inhibition of Ca2+ channels by pretreatment with nifedipine nor the inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps by pretreatment with thapsigargin changed the effect. Similarly, the effects of sitagliptin were not altered by eliminating the endothelium, by pretreatment with a nitric oxide (NO) synthase inhibitor (L-NAME), or by inhibition of small- and intermediate-conductance Ca2+-activated K+ channels (SKCa and IKCa) using apamin and TRAM-34. Taken together, these results suggest that sitagliptin induces vasorelaxation by inhibiting both membrane potential (Em)-dependent and -independent vasoconstriction and activating PKA and Kv channels independently of PKG signaling pathways, other K+ channels, SERCA pumps, and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hee Seok Jung
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Seok-Ho Hong
- Institute of Medical Sciences, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
29
|
Soloviev A, Ivanova I, Melnyk M, Dobrelia N, Khromov A. Hypoxic pulmonary vasoconstriction is lacking in rats with type 1 diabetes. Clin Exp Pharmacol Physiol 2019; 46:1022-1029. [PMID: 31314914 DOI: 10.1111/1440-1681.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is the most important feature of intact lung circulation that matches local blood perfusion to ventilation. The main goal of this work was to study the effects of diabetes on the development of HPV in rats. The experimental design comprised diabetes mellitus induction by streptozotocin, video-morphometric measurements of the lumen area of intrapulmonary arteries (iPAs) using perfused lung tissue slices and patch-clamp techniques. It was shown that iPA lumen size was significantly reduced under physical and chemical hypoxia (7-10 mm Hg) in normal iPA, but, on the contrary, it clearly increased in diabetic lung slices. The amplitude of the outward K+ current in diabetic iPAs smooth muscle cells (SMCs) was two-fold greater than that seen in healthy cells. Chemical hypoxia led to significant decrease in the amplitude of the K+ outward current in healthy iPA SMCs while it was without effect in diabetic cells. The data obtained clearly indicate a significant dysregulation of vascular tone in pulmonary circulation under diabetes, ie diabetes damages the adaptive mechanism for regulating blood flow from poorly ventilated to better ventilated regions of the lung under hypoxia. This effect could be clinically important for patients with diabetes who have acute or chronic lung diseases associated with the lack of blood oxygenation.
Collapse
Affiliation(s)
- Anatoly Soloviev
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Irina Ivanova
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Mariia Melnyk
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine.,Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Nataliia Dobrelia
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Alexander Khromov
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| |
Collapse
|
30
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
31
|
Gojkovic-Bukarica L, Markovic-Lipkovski J, Heinle H, Cirovic S, Rajkovic J, Djokic V, Zivanovic V, Bukarica A, Novakovic R. The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Nishijima Y, Korishettar A, Chabowski DS, Cao S, Zheng X, Gutterman DD, Zhang DX. Shaker-related voltage-gated K + channel expression and vasomotor function in human coronary resistance arteries. Microcirculation 2018; 25. [PMID: 29161755 DOI: 10.1111/micc.12431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES KV channels are important regulators of vascular tone, but the identity of specific KV channels involved and their regulation in disease remain less well understood. We determined the expression of KV 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. METHODS HCAs from patients with and without CAD were assessed for mRNA and protein expression of KV 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. RESULTS Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of KV 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general KV blocker 4-AP and the selective KV 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive KV channels. CONCLUSIONS KV 1.5, as a major 4-AP-sensitive KV 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive KV channel function.
Collapse
Affiliation(s)
- Yoshinori Nishijima
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ankush Korishettar
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dawid S Chabowski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sheng Cao
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaodong Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
33
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
34
|
Namgoong H, Cho C, Lee S. The Kv7 channel activator, retigabine, induces vasorelaxation via an endothelial-independent pathway in male mouse aorta. J Exerc Nutrition Biochem 2018; 22:51-55. [PMID: 30343562 PMCID: PMC6199484 DOI: 10.20463/jenb.2018.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Previous studies have indicated that Kv7 channels have an important role in the regulation of blood vessel reactivity, including in the coronary, renal, and cerebral arteries. The present studies examined whether Kv7 channels regulated vascular reactivity in the mouse aorta and investigated the mechanisms involved in the reactivity. METHODS Wild-type (WT) male C57BL/6 mice, between 10 and 15 weeks old, were used in this study. The vascular function of the aorta in WT male mice was assessed by using a pin myography system (Model 620; DMT, Denmark). RESULTS Vasorelaxation by an endothelial-dependent vasodilator, acetylcholine (ACh, 1 nM - 10 μM) and an endothelial-independent vasodilator, sodium nitroprusside (SNP, 1 nM - 10 μM) was induced in the aorta in a dose-dependent manner. Pre-incubation with the nitric oxide synthase inhibitor, L-NAME (100 μM, 20 min), completely abolished ACh-induced vasorelaxation, but did not block retigabine-induced vasorelaxation, which suggested that retigabine caused vasorelaxation in the aorta via smooth muscle activation rather than via endothelial cells. Pre-application of the Kv7 channel blocker, linopirdine (10 μM), resulted in a greater contractile response compared with that induced by vehicle in the aorta. In addition, pre-incubation with linopirdine (10 μM, 20 min) reduced retigabine-induced vasorelaxation (1-50 μM). CONCLUSION This study has provided evidence that Kv7 channels may play a role in the regulation of aortic blood flow via smooth muscle activation.
Collapse
|
35
|
An JR, Kim HW, Li H, Seo MS, Jung WK, Ha KS, Han ET, Hong SH, Firth AL, Choi IW, Park WS. Inhibition of the voltage-dependent K + current by the class Ic antiarrhythmic drug flecainide in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol 2018; 45:1286-1292. [PMID: 30028903 DOI: 10.1111/1440-1681.13015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022]
Abstract
This study examined the inhibitory effect of flecainide, a class 1c antiarrhythmic agent (Na+ channel blocker), on voltage-dependent K+ (Kv) channels in smooth muscle cells isolated from coronary arteries. Flecainide decreased the vascular Kv channel current in a dose-dependent manner with an IC50 value of 5.90 ± 0.87 μmol/L and a Hill coefficient of 0.77 ± 0.06. Although the steady-state activation curve was not affected by flecainide, it shifted the steady-state inactivation curves toward a more negative potential. Application of train pulses such as 1 or 2 Hz did not change the flecainide-induced inhibition of Kv channels, indicating that the inhibitory effect of flecainide was not use-dependent. Using perforated-patch clamp experiments, we found that inhibition of Kv channels by flecainide caused membrane depolarization. Together, these results suggest that flecainide inhibits Kv channels in a concentration-dependent, but not use-dependent manner by changing the inactivation gating properties. Furthermore, Kv channel inhibition by flecainide occurs regardless of Na+ channel inhibition.
Collapse
Affiliation(s)
- Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
36
|
Blockade of voltage-dependent K + current in rabbit coronary arterial smooth muscle cells by the tricyclic antidepressant clomipramine. J Pharmacol Sci 2018; 137:61-66. [PMID: 29752209 DOI: 10.1016/j.jphs.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of the tricyclic antidepressant clomipramine on voltage-dependent K+ (Kv) channels in native rabbit coronary arterial smooth muscle cells. Our results showed that clomipramine inhibited vascular Kv channels in a concentration-dependent manner, with an IC50 value of 8.61 ± 4.86 μM and a Hill coefficient (n) of 0.58 ± 0.07. The application of 10 μM clomipramine did not affect the activation curves of the Kv channels; however, the inactivation curves of the Kv channels were shifted toward a more negative potential. The clomipramine-induced inhibition of Kv currents was not changed by the application of train pulses (1 or 2 Hz), which demonstrated that clomipramine inhibited Kv current in a state (use)-independent manner. Pretreatment with the Kv1.5 and Kv2.1 inhibitors, DPO-1 and guangxitoxin, respectively, partially reduced the clomipramine-induced inhibition of Kv currents. Therefore, we concluded that clomipramine inhibited vascular Kv channels in a concentration-dependent, but state (use)-independent manner, regardless of its own function.
Collapse
|
37
|
Wang L, Ma R, Liu C, Liu H, Zhu R, Guo S, Tang M, Li Y, Niu J, Fu M, Gao S, Zhang D. Salvia miltiorrhiza: A Potential Red Light to the Development of Cardiovascular Diseases. Curr Pharm Des 2018; 23:1077-1097. [PMID: 27748194 PMCID: PMC5421141 DOI: 10.2174/1381612822666161010105242] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Salvia miltiorrhiza Bunge, also known as Danshen in Chinese, has been widely used to treat cardiovascular diseases (CVD) in China and other Asia countries. Here, we summarize literatures of the historical traditional Chinese medicine (TCM) interpretation of the action of Salvia miltiorrhiza, its use in current clinical trials, its main phytochemical constituents and its pharmacological findings by consulting Pubmed, China Knowledge Resource Integrated, China Science and Technology Journal, and the Web of Science Databases. Since 2000, 39 clinical trials have been identified that used S. miltiorrhiza in TCM prescriptions alone or with other herbs for the treatment of patients with CVD. More than 200 individual compounds have been isolated and characterized from S. miltiorrhiza, which exhibited various pharmacological activities targeting different pathways for the treatment of CVD in various animal and cell models. The isolated compounds may provide new perspectives in alternative treatment regimes and reveal novel chemical scaffolds for the development of anti-CVD drugs. Meanwhile, there are also some rising concerns of the potential side effects and drug-drug interactions of this plant. The insights gained from this study will help us to better understanding of the actions of this herb for management of cardiovascular disorders. As an herb of red root, S. miltiorrhiza will act as a potential red light to prevent the development of CVD.
Collapse
Affiliation(s)
- Lili Wang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rufeng Ma
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Haixia Liu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuzhen Guo
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Minke Tang
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yu Li
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianzhao Niu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
38
|
Li H, Shin SE, Seo MS, An JR, Choi IW, Jung WK, Firth AL, Lee DS, Yim MJ, Choi G, Lee JM, Na SH, Park WS. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci 2018; 197:46-55. [PMID: 29409796 DOI: 10.1016/j.lfs.2018.01.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
AIM Considering the clinical efficacy of dapagliflozin in patients with type 2 DM and the pathophysiological relevance of Kv channels for vascular reactivity. We investigate the vasodilatory effect of dapagliflozin and related mechanisms using phenylephrine (Phe)-induced contracted aortic rings. MATERIAL AND METHODS Arterial tone measurement was performed in aortic smooth muscle. KEY FINDINGS Application of dapagliflozin induced vasodilation in a concentration-dependent manner. Pre-treatment with the BKCa channel inhibitor paxilline, the KATP channel inhibitor glibenclamide, and the Kir channel inhibitor Ba2+ did not change dapagliflozin-induced vasodilation. However, application of the Kv channels inhibitor 4-AP effectively inhibited dapagliflozin-induced vasodilation. Application of the Ca2+ channel inhibitor nifedipine and the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin did not alter the vasodilatory effect of dapagliflozin. Moreover, the adenylyl cyclase inhibitor SQ 22536 and the protein kinase A (PKA) inhibitor KT 5720 had no effect on dapagliflozin-induced vasodilation. Although guanylyl cyclase inhibitors, NS 2028 and ODQ, did not reduce the vasodilatory effect of dapagliflozin, the protein kinase G (PKG) inhibitor KT 5823 effectively inhibited dapagliflozin-induced vasodilation. The vasodilatory effect of dapagliflozin was not affected by elimination of the endothelium. Furthermore, pretreatment with the nitric oxide synthase inhibitor L-NAME or the small-conductance Ca2+-activated K (SKCa) channel inhibitor apamin did not change the vasodilatory effect of dapagliflozin. SIGNIFICANCE We concluded that dapagliflozin induced vasodilation via the activation of Kv channels and PKG, and was independent of other K+ channels, Ca2+ channels, intracellular Ca2+, and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Sung Eun Shin
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan 48516, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 608-737, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles CA90033, USA
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Mi-Jin Yim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Grace Choi
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Jeong Min Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Sung Hun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
39
|
Salomonsson M, Brasen JC, Sorensen CM. Role of renal vascular potassium channels in physiology and pathophysiology. Acta Physiol (Oxf) 2017; 221:14-31. [PMID: 28371470 DOI: 10.1111/apha.12882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K+ conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage-operated Ca2+ channels (VOCC) in VSMC. When K+ conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K+ channels leads to depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by endothelium-derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K+ channels have a potential role in the control of fluid homoeostasis and blood pressure as well as in the protection of the renal parenchyma. The main classes of K+ channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare the ambiguous in vitro and in vivo results. We discuss the role of single types of K+ channels and the integrated function of several classes. We also deal with the possible role of renal vascular K+ channels in the pathophysiology of hypertension, diabetes mellitus and sepsis.
Collapse
Affiliation(s)
| | - J. C. Brasen
- Department of Electrical Engineering; Technical University of Denmark; Kgs. Lyngby Denmark
| | - C. M. Sorensen
- Department of Biomedical Sciences; Division of Renal and Vascular Physiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
40
|
The vasorelaxant effect of mitiglinide via activation of voltage-dependent K + channels and SERCA pump in aortic smooth muscle. Life Sci 2017; 188:1-9. [PMID: 28855109 DOI: 10.1016/j.lfs.2017.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023]
Abstract
AIMS The vasorelaxant effects of the anti-diabetic drug, mitiglinide in phenylephrine (Phe)-pre-contracted aortic rings were examined. MATERIALS AND METHODS Arterial tone measurement was performed in aortic smooth muscle cells. KEY FINDINGS Mitiglinide dose-dependently induced vasorelaxation. Application of the large-conductance Ca2+-activated K+ (BKCa) channel blocker paxilline, inwardly rectifying K+ (Kir) channel blocker Ba2+, and ATP-sensitive K+ (KATP) channel blocker glibenclamide did not affect the vasorelaxant effect of mitiglinide. However, application of the voltage-dependent K+ (Kv) channel blocker 4-AP, effectively inhibited mitiglinide-induced vasorelaxation. Although pretreatment with the Ca2+ channel blocker nifedipine did not alter the mitiglinide-induced vasorelaxation, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor thapsigargin and cyclopiazonic acid reduced the vasorelaxant effect of mitiglinide. In addition, the vasorelaxant effect of mitiglinide was not affected by the inhibitors of adenylyl cyclase, protein kinase A, guanylyl cyclase, or protein kinase G. Elimination of the endothelium and inhibition of endothelium-dependent vasorelaxant mechanisms also did not change the vasorelaxant effect of mitiglinide. SIGNIFICANCE We proposed that mitiglinide induces vasorelaxation via activation of Kv channels and SERCA pump. However, the vasorelaxant effects of mitiglinide did not involve other K+ channels, Ca2+ channels, PKA/PKG signaling pathways, or the endothelium.
Collapse
|
41
|
Li H, Kim HW, Shin SE, Seo MS, An JR, Jung WK, Ha KS, Han ET, Hong SH, Bang H, Choi IW, Na SH, Park WS. The vasorelaxant effect of antidiabetic drug nateglinide via activation of voltage-dependent K + channels in aortic smooth muscle. Cardiovasc Ther 2017; 36. [PMID: 28834298 DOI: 10.1111/1755-5922.12299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 08/13/2017] [Indexed: 01/16/2023] Open
Abstract
AIMS We investigated the vasorelaxant effect of nateglinide and its related mechanisms using phenylephrine (Phe)-induced precontracted aortic rings. METHODS Arterial tone measurement was performed in aortic smooth muscle. RESULTS The application of nateglinide induced vasorelaxation in a concentration-dependent manner. Pretreatment with the large-conductance Ca2+ -activated K+ (BKCa ) channel inhibitor paxilline, the inwardly rectifying K+ (Kir) channel inhibitor Ba2+ , and ATP-sensitive K+ (KATP ) channel inhibitor glibenclamide did not affect the vasorelaxant effect of nateglinide. However, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (4-AP) effectively reduced the vasorelaxant effect of nateglinide. Pretreatment with the Ca2+ inhibitor nifedipine and the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin did not change the vasorelaxant effect of nateglinide. Additionally, the vasorelaxant effect of nateglinide was not altered in the presence of an adenylyl cyclase, a protein kinase A, a guanylyl cyclase, or a protein kinase G inhibitor. The vasorelaxant effect of nateglinide was not affected by the elimination of the endothelium. In addition, pretreatment with a nitric oxide synthase inhibitor, L-NAME, and a small-conductance Ca2+ -activated K+ (SKCa ) channel inhibitor, apamin, did not change the vasorelaxant effect of nateglinide. CONCLUSION Nateglinide induced vasorelaxation via the activation of the Kv channel independent of other K+ channels, Ca2+ channels, intracellular Ca2+ ([Ca2+ ]i ), and the endothelium.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, South Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
42
|
Li H, Shin SE, Seo MS, An JR, Jung WK, Ha KS, Han ET, Hong SH, Bang H, Bae YM, Firth AL, Choi IW, Park WS. The PPARα activator fenofibrate inhibits voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2017; 812:155-162. [PMID: 28716724 DOI: 10.1016/j.ejphar.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 11/29/2022]
Abstract
We examined the effects of the PPARα activator fenofibrate on voltage-dependent K+ (Kv) channels using a patch clamp technique in native rabbit coronary arterial smooth muscle cells. Kv current was inhibited by application of fenofibrate in a concentration-dependent manner, with an apparent IC50 value of 6.39 ± 0.53μM and a slope value (Hill coefficient) of 1.63 ± 0.10. Fenofibrate accelerated the decay rate of Kv channel inactivation. The rate constants of association and dissociation for fenofibrate were 0.81± 0.05μM-1s-1 and 4.70 ± 0.47s-1, respectively. Although fenofibrate did not affect the steady-state activation curves, fenofibrate shifted the inactivation curves toward a more negative potential. Application of train pulses (1 or 2Hz) progressively increased the fenofibrate-induced inhibition of the Kv channel, and the recovery time constant from inactivation was increased in the presence of fenofibrate, which suggested that the inhibitory effect of fenofibrate is use-dependent. Another PPARα activator, bezafibrate and PPARα inhibitor, GW 6471, did not affect the Kv current and also did not change the inhibitory effect of fenofibrate on the Kv current. From these results, we suggest that fenofibrate inhibited Kv current in a state-, time-, and use-dependent manner, completely independent of PPARα activation.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Sung Eun Shin
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Mi Seon Seo
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Jin Ryeol An
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 608-737, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Seok-Ho Hong
- Institute of Medical Sciences, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 380-701, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan 614-735, South Korea.
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea.
| |
Collapse
|
43
|
Kim HS, Li H, Kim HW, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Firth AL, Choi IW, Park WS. The selective serotonin reuptake inhibitor dapoxetine inhibits voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol 2017; 44:480-487. [PMID: 28058743 DOI: 10.1111/1440-1681.12723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/18/2016] [Accepted: 12/30/2016] [Indexed: 11/30/2022]
Abstract
We investigated the inhibitory effect of dapoxetine, a selective serotonin reuptake inhibitor (SSRI), on voltage-dependent K+ (Kv) channels using native smooth muscle cells from rabbit coronary arteries. Dapoxetine inhibited Kv channel currents in a concentration-dependent manner, with an IC50 value of 2.68±0.94 μmol/L and a slope value (Hill coefficient) of 0.63±0.11. Application of 10 μmol/L dapoxetine accelerated the rate of inactivation of Kv currents. Although dapoxetine did not modify current activation kinetics, it caused a significant negative shift in the inactivation curves. Application of train step (1 or 2 Hz) progressively increased the inhibitory effect of dapoxetine on Kv channels. In addition, the recovery time constant was extended in its presence, suggesting that the longer recovery time constant from inactivation underlies a use-dependent inhibition of the channel. From these results, we conclude that dapoxetine inhibits Kv channels in a dose-, time-, use-, and state (open)-dependent manner, independent of serotonin reuptake inhibition.
Collapse
Affiliation(s)
- Han Sol Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongliang Li
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Won Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung Eun Shin
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seok-Ho Hong
- Institute of Medical Sciences, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
44
|
Senbel AM, Abd Elmoneim HM, Sharabi FM, Mohy El-Din MM. Neuronal Voltage Gated Potassium Channels May Modulate Nitric Oxide Synthesis in Corpus Cavernosum. Front Pharmacol 2017; 8:297. [PMID: 28603495 PMCID: PMC5445172 DOI: 10.3389/fphar.2017.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/10/2017] [Indexed: 11/24/2022] Open
Abstract
Potassium channels (K+Ch) in corpus cavernosum play an important role in the regulation of erection. Nitric oxide (NO) acts through opening of K+Ch leading to hyperpolarization and relaxation. Aim : This study aims to update knowledge about the role of voltage-gated K+Ch (KV) channels in erectile machinery and investigate their role in the control of NO action &/or synthesis in the corpus cavernosum. Methods : Tension studies using isolated rabbit corpus cavernosum (CC) strips and rat anococcygeus muscle were conducted. Results are expressed as mean ± SEM. Results : Electric field stimulation (EFS, 2–16 Hz) evoked frequency-dependent relaxations of the PE (phenylephrine)-precontracted CC strips. At 2 Hz, EFS-induced relaxation amounted to 73.17 ± 2.55% in presence 4-AP (10−3 M) compared to 41.98 ± 1.45% as control. None of the other selective K+Ch blockers tested inhibited EFS-induced relaxation. 4-AP (10−3M) significantly attenuated ACh-induced relaxation of rabbit CC where dose-response curve was clearly shifted upward, and attenuated SNP- induced relaxation, for example, to 49.28 ± 4.52% compared to 65.53 ± 3.01% as control at 10−6 M SNP. The potentiatory effect of 4-AP on EFS was abolished or reversed in presence of NG-nitro-L-arginine (L-NNA, non-selective nitric oxide synthase inhibitor, 10−5M, and 2 × 10−4M). Same results were observed in rat anococcygeus muscle which is a part of the erectile machinery in rats. Conclusion : This study provides evidence for the presence of prejunctional voltage-gated K+Ch in CC, the blockade of which may increase the neuronal synthesis of NO.
Collapse
Affiliation(s)
- Amira M Senbel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Heba M Abd Elmoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Fouad M Sharabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| |
Collapse
|
45
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
46
|
Kim HS, Li H, Kim HW, Shin SE, Choi IW, Firth AL, Bang H, Bae YM, Park WS. Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. J Biosci 2017; 41:659-666. [PMID: 27966486 DOI: 10.1007/s12038-016-9645-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Sertraline decreased the Kv channel current in a dose-dependent manner, with an IC50 value of 0.18 mu M and a slope value (Hill coefficient) of 0.61. Although the application of 1 mu M sertraline did not affect the steady-state activation curves, sertraline caused a significant, negative shift in the inactivation curves. Pretreatment with another SSRI, paroxetine, had no significant effect on Kv currents and did not alter the inhibitory effects of sertraline on Kv currents. From these results, we concluded that sertraline dose-dependently inhibited Kv currents independently of serotonin reuptake inhibition by shifting inactivation curves to a more negative potential.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of Physiology, Kangwon National University School of Medicine Chuncheon 200-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shin SE, Li H, Kim HS, Kim HW, Seo MS, Ha KS, Han ET, Hong SH, Firth AL, Choi IW, Bae YM, Park WS. Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K + channels in coronary arterial smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:225-232. [PMID: 28280416 PMCID: PMC5343056 DOI: 10.4196/kjpp.2017.21.2.225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 11/30/2022]
Abstract
We demonstrated the effect of nortriptyline, a tricyclic antidepressant drug and serotonin reuptake inhibitor, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Nortriptyline inhibited Kv currents in a concentration-dependent manner, with an apparent IC50 value of 2.86±0.52 µM and a Hill coefficient of 0.77±0.1. Although application of nortriptyline did not change the activation curve, nortriptyline shifted the inactivation current toward a more negative potential. Application of train pulses (1 or 2 Hz) did not change the nortriptyline-induced Kv channel inhibition, suggesting that the effects of nortiprtyline were not use-dependent. Preincubation with the Kv1.5 and Kv2.1/2.2 inhibitors, DPO-1 and guangxitoxin did not affect nortriptyline inhibition of Kv channels. From these results, we concluded that nortriptyline inhibited Kv channels in a concentration-dependent and state-independent manner independently of serotonin reuptake.
Collapse
Affiliation(s)
- Sung Eun Shin
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hongliang Li
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Han Sol Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Hye Won Kim
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Amy L Firth
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033, USA
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan 48516, Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| |
Collapse
|
48
|
Comparison of Voltage Gated K + Currents in Arterial Myocytes with Heterologously Expressed K v Subunits. Cell Biochem Biophys 2016; 74:499-511. [PMID: 27638047 DOI: 10.1007/s12013-016-0763-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/31/2016] [Indexed: 01/06/2023]
Abstract
We have shown that three components contribute to functional voltage gated K+ (K v) currents in rat small mesenteric artery myocytes: (1) Kv1.2 plus Kv1.5 with Kvβ1.2 subunits, (2) Kv2.1 probably associated with Kv9.3 subunits, and (3) Kv7.4 subunits. To confirm and address subunit stoichiometry of the first two, we have compared the biophysical properties of K v currents in small mesenteric artery myocytes with those of Kv subunits heterologously expressed in HEK293 cells using whole cell voltage clamp methods. Selective inhibitors of Kv1 (correolide, COR) and Kv2 (stromatoxin, ScTx) channels were used to separate these K v current components. Conductance-voltage and steady state inactivation data along with time constants of activation, inactivation, and deactivation of native K v components were generally well represented by those of Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels. The slope of the steady state inactivation-voltage curve (availability slope) proved to be the most sensitive measure of accessory subunit presence. The availability slope curves exhibited a single peak for both native K v components. Availability slope curves for Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels expressed in human embryonic kidney cells also exhibited a single peak that shifted to more depolarized voltages with increasing accessory to α subunit transfection ratio. Availability slope curves for SxTc-insensitive currents were similar to those of Kv1.2-1.5 expressed with Kvβ1.2 at a 1:5 molar ratio while curves for COR-insensitive currents closely resembled those of Kv2.1 expressed with Kv9.3 at a 1:1 molar ratio. These results support the suggested Kv subunit combinations in small mesenteric artery, and further suggest that Kv1 α and Kvβ1.2 but not Kv2.1 and Kv9.3 subunits are present in a saturated (4:4) stoichiometry.
Collapse
|
49
|
Maffei A, Di Mauro V, Catalucci D, Lembo G. MiR-153/Kv7.4: a novel molecular axis in the regulation of hypertension. Cardiovasc Res 2016; 112:530-531. [DOI: 10.1093/cvr/cvw208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
50
|
Kim HW, Li H, Kim HS, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Choi IW, Park WS. Cisapride, a selective serotonin 5-HT4-receptor agonist, inhibits voltage-dependent K(+) channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 2016; 478:1423-8. [PMID: 27569285 DOI: 10.1016/j.bbrc.2016.08.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
We investigated the effect of cisapride, a selective serotonin 5-HT4-receptor agonist, on voltage-dependent K(+) (Kv) channels using freshly isolated smooth muscle cells from the coronary arteries of rabbits. The amplitude of Kv currents was reduced by cisapride in a concentration-dependent manner, with an IC50 value of 6.77 ± 6.01 μM and a Hill coefficient of 0.51 ± 0.18. The application of cisapride shifted the steady-state inactivation curve toward a more negative potential, but had no significant effect on the steady-state activation curve. This suggested that cisapride inhibited the Kv channel in a closed state by changing the voltage sensitivity of Kv channels. The application of another selective serotonin 5-HT4-receptor agonist, prucalopride, did not affect the basal Kv current and did not alter the inhibitory effect of cisapride on Kv channels. From these results, we concluded that cisapride inhibited vascular Kv current in a concentration-dependent manner by shifting the steady-state inactivation curve, independent of its own function as a selective serotonin 5-HT4-receptor agonist.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Hongliang Li
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Han Sol Kim
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Sung Eun Shin
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 608-737, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University, College of Medicine, Busan, 614-735, South Korea.
| | - Won Sun Park
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, 200-701, South Korea.
| |
Collapse
|