1
|
Maiorov I, Bagrov K, Efraim R, Ankri Eliyahu G, Livneh A, Landesberg A. MMP-8 causes leftward shift in end-diastolic pressure-volume relationship and may explain the development of diastolic dysfunction in septic cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H1098-H1111. [PMID: 39178029 DOI: 10.1152/ajpheart.00240.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Septic cardiomyopathy (SCM) with diastolic dysfunction carries a poor prognosis, and the mechanisms underlying the development of diastolic dysfunction remain unclear. Matrix metalloproteinase-8 (MMP-8) is released from neutrophils and degrades collagen I. MMP-8 levels correlate with SCM severity. We scrutinized, for the first time, the direct impact of MMP-8 on cardiac systolic and diastolic functions. Isolated rat hearts were perfused with Krebs-Henseleit solution in a Langendorff setup with computer-controlled filling pressures of both ventricles in an isovolumetric regime. The end-diastolic pressure (EDP) varied periodically between 3 and 20 mmHg. After baseline recordings, MMP-8 (100 µg/mL) was added to the perfusion. Short-axis views of both ventricles were continuously acquired by echocardiography. MMP-8 perfusion resulted in a progressive decline in peak systolic pressures (Psys) in both ventricles, but without significant changes in their end-systolic pressure-area relationships (ESPARs). Counterintuitively, conspicuous leftward shifts of the end-diastolic pressure-area relationships (EDPARs) were observed in both ventricles. The left ventricle (LV) end-diastolic area (EDA) decreased by 32.8 ± 5.7% (P = 0.008) at an EDP of 10.5 ± 0.4 mmHg, when LV Psys dropped by 20%. The decline of Psys was primarily due to the decrease in EDA, and restoring the baseline EDA by increasing EDP recovered 81.33 ± 5.87% of the pressure drop. Collagen I generates tensile (eccentric) stress, and its degradation by MMP-8 causes end-diastolic pressure-volume relationship (EDPVR) leftward shift, resulting in diastolic and systolic dysfunctions. The diastolic dysfunction explains the clinically observed fluid unresponsiveness, whereas the decrease in end-diastolic volume (EDV) diminishes the systolic functions. MMP-8 can explain the development of SCM with diastolic dysfunction.NEW & NOTEWORTHY MMP-8, released from activated neutrophils and macrophages, is markedly elevated in sepsis, correlating with sepsis severity and mortality. MMP-8 targets collagen I of the cardiac ECM and induces diastolic dysfunction with fluid unresponsiveness, associated with decreased EDV, reduced sarcomere length, and diminished systolic function. Unlike other MMPs that predominantly cleave collagen-III and contribute to cardiac dilatation, thereby increasing sarcomere length, MMP-8 leads to a leftward shift in the EDPVR, resulting in diastolic and systolic dysfunctions.
Collapse
Affiliation(s)
- Ida Maiorov
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Konstantin Bagrov
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Roy Efraim
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Galit Ankri Eliyahu
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Amit Livneh
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Amir Landesberg
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| |
Collapse
|
2
|
Wang X, Wang D, Hao B. Role and Mechanism of Lamellar Derived Growth Factor /AKT Pathway in Ventricular Remodeling Induced by Pressure Overload. Cell Biochem Biophys 2024:10.1007/s12013-024-01531-2. [PMID: 39304644 DOI: 10.1007/s12013-024-01531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
This study aimed to investigate the role and underlying mechanisms of the platelet-derived growth factor (PDGF)/protein kinase B (AKT) signaling pathway in pressure overload-induced ventricular remodeling. Ventricular remodeling, a critical pathological process in heart failure, is commonly triggered by pressure overload. While PDGF is known to promote cell proliferation and growth, the AKT pathway is crucial for cell growth, survival, and metabolism. However, the specific role of the PDGF/AKT pathway in pressure overload-induced ventricular remodeling remains unclear. Thus, this study aimed to elucidate the precise mechanisms of PDGF/AKT involvement in this process using animal models and cell experiments. 45 female C57BL/6 mice were utilized, randomly divided into three groups: model group (M group, n = 15), control group (C group, n = 15), and experimental group (E group, n = 15). M group mice underwent thoracotomy without aortic constriction (AC). C group mice received phosphate-buffered saline (PBS) and dimethyl sulfoxide (DMSO) treatment following AC surgery. E group mice were treated with the PDGF receptor inhibitor AG1296 and PBS solution after AC surgery. Additionally, 293 T cells were categorized into three groups: PDGF shRNA transfected group (downregulating PDGF expression, D group), PDGF overexpression group (B group), and control group (NV group). Left ventricular end-systolic volume (LVESV) and ejection fraction (FS) of the mice were measured via echocardiography. Western blot analysis was conducted to assess the expression levels of p-AKT and t-AKT in myocardial tissues. Furthermore, myocardial cell area was measured using hematoxylin and eosin (HE) staining and image analysis software. The LVESV in the C group was significantly higher than in the M and E groups (48.32 ± 3.08 mL vs. 18.24 ± 3.19 mL and 25.44 ± 3.12 mL, P < 0.05). The FS in the C group was significantly lower compared to the M and E groups (21.18 ± 2.99% vs. 42.45 ± 3.02% and 26.89 ± 2.54%, P < 0.05). Western blot analysis revealed that p-AKT and t-AKT levels were significantly elevated in the C group and PDGF overexpression group (B group) compared to the M and PDGF shRNA groups (D group) (P < 0.05). HE staining showed a significant increase in myocardial cell cross-sectional area in the C and D groups, with the most pronounced enlargement in the D group (P < 0.05). PDGF facilitates pressure overload-induced ventricular remodeling and myocardial fibrosis. Inhibition of the PDGF/AKT signaling pathway effectively mitigates myocardial cell hypertrophy and ventricular remodeling. These findings offer novel potential targets and therapeutic strategies for the treatment of pressure overload-related heart failure.
Collapse
Affiliation(s)
- Xiqian Wang
- First Department of Cardiology, West Hospital, Zibo Central Hospital, Zibo, 255000, Shandong Province, China
| | - Dejin Wang
- First Department of Cardiology, West Hospital, Zibo Central Hospital, Zibo, 255000, Shandong Province, China
| | - Bin Hao
- Department of Cardiovascular Surgery, West Hospital, Zibo Central Hospital, Zibo, 255000, Shandong Province, China.
| |
Collapse
|
3
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
4
|
Holmes JB, Lemieux ME, Stelzer JE. Torsional and strain dysfunction precede overt heart failure in a mouse model of dilated cardiomyopathy pathogenesis. Am J Physiol Heart Circ Physiol 2023; 325:H449-H467. [PMID: 37417875 PMCID: PMC10538988 DOI: 10.1152/ajpheart.00130.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Detailed assessments of whole heart mechanics are crucial for understanding the consequences of sarcomere perturbations that lead to cardiomyopathy in mice. Echocardiography offers an accessible and cost-effective method of obtaining metrics of cardiac function, but the most routine imaging and analysis protocols might not identify subtle mechanical deficiencies. This study aims to use advanced echocardiography imaging and analysis techniques to identify previously unappreciated mechanical deficiencies in a mouse model of dilated cardiomyopathy (DCM) before the onset of overt systolic heart failure (HF). Mice lacking muscle LIM protein expression (MLP-/-) were used to model DCM-linked HF pathogenesis. Left ventricular (LV) function of MLP-/- and wild-type (WT) controls were studied at 3, 6, and 10 wk of age using conventional and four-dimensional (4-D) echocardiography, followed by speckle-tracking analysis to assess torsional and strain mechanics. Mice were also studied with RNA-seq. Although 3-wk-old MLP-/- mice showed normal LV ejection fraction (LVEF), these mice displayed abnormal torsional and strain mechanics alongside reduced β-adrenergic reserve. Transcriptome analysis showed that these defects preceded most molecular markers of HF. However, these markers became upregulated as MLP-/- mice aged and developed overt systolic dysfunction. These findings indicate that subtle deficiencies in LV mechanics, undetected by LVEF and conventional molecular markers, may act as pathogenic stimuli in DCM-linked HF. Using these analyses in future studies will further help connect in vitro measurements of the sarcomere function to whole heart function.NEW & NOTEWORTHY A detailed study of how perturbations to sarcomere proteins impact whole heart mechanics in mouse models is a major yet challenging step in furthering our understanding of cardiovascular pathophysiology. This study uses advanced echocardiographic imaging and analysis techniques to reveal previously unappreciated subclinical whole heart mechanical defects in a mouse model of cardiomyopathy. In doing so, it offers an accessible set of measurements for future studies to use when connecting sarcomere and whole heart function.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States
| | | | - Julian E Stelzer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
5
|
Pattnaik A, Sanket AS, Pradhan S, Sahoo R, Das S, Pany S, Douglas TEL, Dandela R, Liu Q, Rajadas J, Pati S, De Smedt SC, Braeckmans K, Samal SK. Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials 2023; 296:122078. [PMID: 36921442 DOI: 10.1016/j.biomaterials.2023.122078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.
Collapse
Affiliation(s)
- Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - A Swaroop Sanket
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pradhan
- Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | - Rajashree Sahoo
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sudiptee Das
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Swarnaprbha Pany
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Lancaster, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, Odisha, India
| | - Qiang Liu
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA
| | - Jaykumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francusco (UCSF) School of Parmacy, California, USA
| | - Sanghamitra Pati
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
6
|
Marx L, Niestrawska JA, Gsell MA, Caforio F, Plank G, Augustin CM. Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. JOURNAL OF COMPUTATIONAL PHYSICS 2022; 463:111266. [PMID: 35662800 PMCID: PMC7612790 DOI: 10.1016/j.jcp.2022.111266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Image-based computational models of the heart represent a powerful tool to shed new light on the mechanisms underlying physiological and pathological conditions in cardiac function and to improve diagnosis and therapy planning. However, in order to enable the clinical translation of such models, it is crucial to develop personalized models that are able to reproduce the physiological reality of a given patient. There have been numerous contributions in experimental and computational biomechanics to characterize the passive behavior of the myocardium. However, most of these studies suffer from severe limitations and are not applicable to high-resolution geometries. In this work, we present a novel methodology to perform an automated identification of in vivo properties of passive cardiac biomechanics. The highly-efficient algorithm fits material parameters against the shape of a patient-specific approximation of the end-diastolic pressure-volume relation (EDPVR). Simultaneously, an unloaded reference configuration is generated, where a novel line search strategy to improve convergence and robustness is implemented. Only clinical image data or previously generated meshes at one time point during diastole and one measured data point of the EDPVR are required as an input. The proposed method can be straightforwardly coupled to existing finite element (FE) software packages and is applicable to different constitutive laws and FE formulations. Sensitivity analysis demonstrates that the algorithm is robust with respect to initial input parameters.
Collapse
Affiliation(s)
- Laura Marx
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Justyna A. Niestrawska
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Federica Caforio
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging - Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Corresponding author at: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/D04, 8010 Graz, Austria. (C.M.Augustin)
| |
Collapse
|
7
|
Chang H, Liu Q, Zimmerman JF, Lee KY, Jin Q, Peters MM, Rosnach M, Choi S, Kim SL, Ardoña HAM, MacQueen LA, Chantre CO, Motta SE, Cordoves EM, Parker KK. Recreating the heart's helical structure-function relationship with focused rotary jet spinning. Science 2022; 377:180-185. [PMID: 35857545 PMCID: PMC10077766 DOI: 10.1126/science.abl6395] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Helical alignments within the heart's musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart's musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.
Collapse
Affiliation(s)
- Huibin Chang
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Qihan Liu
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John F. Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Keel Yong Lee
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Qianru Jin
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Michael M. Peters
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Michael Rosnach
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Sean L. Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Herdeline Ann M. Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Luke A. MacQueen
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Christophe O. Chantre
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Sarah E. Motta
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Elizabeth M. Cordoves
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA
| |
Collapse
|
8
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
9
|
Kim KH, Oh Y, Liu J, Dababneh S, Xia Y, Kim RY, Kim DK, Ban K, Husain M, Hui CC, Backx PH. Irx5 and transient outward K + currents contribute to transmural contractile heterogeneities in the mouse ventricle. Am J Physiol Heart Circ Physiol 2022; 322:H725-H741. [PMID: 35245131 DOI: 10.1152/ajpheart.00572.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established that fast transmural gradients of transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of disrupted Ito,f gradient on contractile properties using mouse models of Irx5 knockout (Irx5-KO) for selective Ito,f elevation in the endomyocardium (ENDO) of the left ventricle (LV) and Kcnd2 ablation (KV4.2-KO) for selective Ito,freduction in the EPI. Irx5-KO mice exhibited decreased global LV contractility in association with reductions in cell shortening and Ca2+ transient amplitudes in isolated ENDO but not EPI cardiomyocytes. Moreover, transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e. Kcnd2 and Kcnip2) in the ENDO, but not the EPI. Indeed, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility comparable to KV4.2-KO mice. Our findings demonstrate that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ri Youn Kim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dae-Kyum Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kiwon Ban
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter H Backx
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Augustin CM, Gsell MA, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 386:114092. [PMID: 34630765 PMCID: PMC7611781 DOI: 10.1016/j.cma.2021.114092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
Collapse
Affiliation(s)
- Christoph M. Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Erik Willemen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frits W. Prinzen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Correspondence to: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, Graz 8010, Austria. (G. Plank)
| |
Collapse
|
11
|
Augustin CM, Gsell MAF, Karabelas E, Willemen E, Prinzen FW, Lumens J, Vigmond EJ, Plank G. A computationally efficient physiologically comprehensive 3D-0D closed-loop model of the heart and circulation. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2021; 386:114092. [PMID: 34630765 DOI: 10.1016/jxma.2021.114092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
Collapse
Affiliation(s)
- Christoph M Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Erik Willemen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Frits W Prinzen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
12
|
Fan L, Namani R, Choy JS, Kassab GS, Lee LC. Transmural Distribution of Coronary Perfusion and Myocardial Work Density Due to Alterations in Ventricular Loading, Geometry and Contractility. Front Physiol 2021; 12:744855. [PMID: 34899378 PMCID: PMC8652301 DOI: 10.3389/fphys.2021.744855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial supply changes to accommodate the variation of myocardial demand across the heart wall to maintain normal cardiac function. A computational framework that couples the systemic circulation of a left ventricular (LV) finite element model and coronary perfusion in a closed loop is developed to investigate the transmural distribution of the myocardial demand (work density) and supply (perfusion) ratio. Calibrated and validated against measurements of LV mechanics and coronary perfusion, the model is applied to investigate changes in the transmural distribution of passive coronary perfusion, myocardial work density, and their ratio in response to changes in LV contractility, preload, afterload, wall thickness, and cavity volume. The model predicts the following: (1) Total passive coronary flow varies from a minimum value at the endocardium to a maximum value at the epicardium transmurally that is consistent with the transmural distribution of IMP; (2) Total passive coronary flow at different transmural locations is increased with an increase in either contractility, afterload, or preload of the LV, whereas is reduced with an increase in wall thickness or cavity volume; (3) Myocardial work density at different transmural locations is increased transmurally with an increase in either contractility, afterload, preload or cavity volume of the LV, but is reduced with an increase in wall thickness; (4) Myocardial work density-perfusion mismatch ratio at different transmural locations is increased with an increase in contractility, preload, wall thickness or cavity volume of the LV, and the ratio is higher at the endocardium than the epicardium. These results suggest that an increase in either contractility, preload, wall thickness, or cavity volume of the LV can increase the vulnerability of the subendocardial region to ischemia.
Collapse
Affiliation(s)
- Lei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Ravi Namani
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Jenny S. Choy
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S. Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Gullberg GT, Shrestha UM, Veress AI, Segars WP, Liu J, Ordovas K, Seo Y. Novel Methodology for Measuring Regional Myocardial Efficiency. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1711-1725. [PMID: 33690114 PMCID: PMC8325923 DOI: 10.1109/tmi.2021.3065219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Our approach differs from the usual global measure of cardiac efficiency by using PET/MRI to measure efficiency of small pieces of cardiac tissue whose limiting size is equal to the spatial resolution of the PET scanner. We initiated a dynamic cardiac PET study immediately prior to the injection of 15.1 mCi of 11C-acetate acquiring data for 25 minutes while simultaneously acquiring MRI cine data. 1) A 3D finite element (FE) biomechanical model of the imaged heart was constructed by utilizing nonrigid deformable image registration to alter the Dassault Systèmes FE Living Heart Model (LHM) to fit the geometry in the cardiac MRI cine data. The patient specific FE cardiac model with estimates of stress, strain, and work was transformed into PET/MRI format. 2) A 1-tissue compartment model was used to calculate wash-in (K1) and the linear portion of the decay in the PET 11C-acetate time activity curve (TAC) was used to calculate the wash-out k2(mono) rate constant. K1 was used to calculate blood flow and k2(mono) was used to calculate myocardial volume oxygen consumption ( MVO2 ). 3) Estimates of stress and strain were used to calculate Myocardial Equivalent Minute Work ( MEMW ) and Cardiac Efficiency = MEMW/MVO2 was then calculated for 17 tissue segments of the left ventricle. The global MBF was 0.96 ± 0.15 ml/min/gm and MVO2 ranged from 8 to 17 ml/100gm/min. Six central slices of the MRI cine data provided a range of MEMW of 0.1 to 0.4 joules/gm/min and a range of Cardiac Efficiency of 6 to 18%.
Collapse
|
14
|
Cardiac Magnetic Resonance Feature Tracking: A Novel Method to Assess Left Ventricular Three-Dimensional Strain Mechanics After Chronic Myocardial Infarction. Acad Radiol 2021; 28:619-627. [PMID: 32340915 DOI: 10.1016/j.acra.2020.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE AND OBJECTIVES This study was designed to assess left ventricular deformation after chronic myocardial infarction (CMI) using cardiac magnetic resonance feature tracking (CMR-FT) technology, and analyze its relationship with left ventricular ejection fraction (LVEF) and infarcted transmurality. MATERIALS AND METHODS Ninety-six patients with CMI and 72 controls underwent 3.0 T CMR scanning. Strain parameters were measured by dedicated software, including global peak longitudinal strain (GPLS), global peak circumferential strain (GPCS), global peak radial strain (GPRS), segmental peak longitudinal strain (PLS), peak circumferential strain (PCS), and peak radial strain (PRS). All enhanced myocardium segments were divided into subendocardial infarction (SI) and transmural infarction (TI) group. Pearson, intraclass correlation coefficient and receiver operating characteristic analysis were performed to compare the parameters' mean values between SI and TI groups. RESULTS GPLS, GPRS, and GPCS in CMI group were significantly decreased comparing with control group. PRS and PCS in TI group were significantly lower than those in SI group, whereas no statistical difference was observed in PLS. In Pearson correlation analysis, LVEF was strongly correlated with GPLS, GPRS, and GPCS in CMI patients. Additionally, excellent reproducibility of all strain parameters was observed. In receiver operating characteristic analysis, segmental PRS and PCS might differentiate SI from TI with higher diagnostic efficiency (p < 0.05), while PLS was less valuable (p > 0.05). CONCLUSION CMR-FT could noninvasively and quantitatively assess global and regional myocardial strain in CMI patients with excellent reproducibility and strong correlation with LVEF. Additionally, segmental myocardial strain parameters indicate potential clinical value in differentiating myocardial infarction subtype.
Collapse
|
15
|
Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks. Med Image Anal 2021; 71:102066. [PMID: 33951597 DOI: 10.1016/j.media.2021.102066] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
We present a parametric physics-informed neural network for the simulation of personalised left-ventricular biomechanics. The neural network is constrained to the biophysical problem in two ways: (i) the network output is restricted to a subspace built from radial basis functions capturing characteristic deformations of left ventricles and (ii) the cost function used for training is the energy potential functional specifically tailored for hyperelastic, anisotropic, nearly-incompressible active materials. The radial bases are generated from the results of a nonlinear Finite Element model coupled with an anatomical shape model derived from high-resolution cardiac images. We show that, by coupling the neural network with a simplified circulation model, we can efficiently generate computationally inexpensive estimations of cardiac mechanics. Our model is 30 times faster than the reference Finite Element model used, including training time, while yielding satisfactory average errors in the predictions of ejection fraction (-3%), peak systolic pressure (7%), stroke work (4%) and myocardial strains (14%). This physics-informed neural network is well suited to efficiently augment cardiac images with functional data and to generate large sets of synthetic cases for training deep network classifiers while it provides efficient personalization to the specific patient of interest with a high level of detail.
Collapse
|
16
|
Sharifi Kia D, Fortunato R, Maiti S, Simon MA, Kim K. An exploratory assessment of stretch-induced transmural myocardial fiber kinematics in right ventricular pressure overload. Sci Rep 2021; 11:3587. [PMID: 33574400 PMCID: PMC7878470 DOI: 10.1038/s41598-021-83154-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
Right ventricular (RV) remodeling and longitudinal fiber reorientation in the setting of pulmonary hypertension (PH) affects ventricular structure and function, eventually leading to RV failure. Characterizing the kinematics of myocardial fibers helps better understanding the underlying mechanisms of fiber realignment in PH. In the current work, high-frequency ultrasound imaging and structurally-informed finite element (FE) models were employed for an exploratory evaluation of the stretch-induced kinematics of RV fibers. Image-based experimental evaluation of fiber kinematics in porcine myocardium revealed the capability of affine assumptions to effectively approximate myofiber realignment in the RV free wall. The developed imaging framework provides a noninvasive modality to quantify transmural RV myofiber kinematics in large animal models. FE modeling results demonstrated that chronic pressure overload, but not solely an acute rise in pressures, results in kinematic shift of RV fibers towards the longitudinal direction. Additionally, FE simulations suggest a potential protective role for concentric hypertrophy (increased wall thickness) against fiber reorientation, while eccentric hypertrophy (RV dilation) resulted in longitudinal fiber realignment. Our study improves the current understanding of the role of different remodeling events involved in transmural myofiber reorientation in PH. Future experimentations are warranted to test the model-generated hypotheses.
Collapse
Affiliation(s)
- Danial Sharifi Kia
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ronald Fortunato
- grid.21925.3d0000 0004 1936 9000Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Spandan Maiti
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Marc A. Simon
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 623A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15213 USA ,grid.412689.00000 0001 0650 7433Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.412689.00000 0001 0650 7433Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Kang Kim
- grid.21925.3d0000 0004 1936 9000Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 623A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15213 USA ,grid.412689.00000 0001 0650 7433Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.412689.00000 0001 0650 7433Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
17
|
Mojumder J, Choy J, Leng S, Zhong L, Kassab G, Lee L. Mechanical stimuli for left ventricular growth during pressure overload. EXPERIMENTAL MECHANICS 2021; 61:131-146. [PMID: 33746236 PMCID: PMC7968380 DOI: 10.1007/s11340-020-00643-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The mechanical stimulus (i.e. stress or stretch) for growth occurring in the pressure-overloaded left ventricle (LV) is not exactly known. OBJECTIVE To address this issue, we investigate the correlation between local ventricular growth (indexed by local wall thickness) and the local acute changes in mechanical stimuli after aortic banding. METHODS LV geometric data were extracted from 3D echo measurements at baseline and 2 weeks in the aortic banding swine model (n = 4). We developed and calibrated animal-specific finite element (FE) model of LV mechanics against pressure and volume waveforms measured at baseline. After the simulation of the acute effects of pressure-overload, the local changes of maximum, mean and minimum myocardial stretches and stresses in three orthogonal material directions (i.e., fiber, sheet and sheet-normal) over a cardiac cycle were quantified. Correlation between mechanical quantities and the corresponding measured local changes in wall thickness was quantified using the Pearson correlation number (PCN) and Spearman rank correlation number (SCN). RESULTS At 2 weeks after banding, the average septum thickness decreased from 10.6 ± 2.92mm to 9.49 ± 2.02mm, whereas the LV free-wall thickness increased from 8.69 ± 1.64mm to 9.4 ± 1.22mm. The FE results show strong correlation of growth with the changes in maximum fiber stress (PCN = 0.5471, SCN = 0.5111) and changes in the mean sheet-normal stress (PCN= 0.5266, SCN = 0.5256). Myocardial stretches, however, do not have good correlation with growth. CONCLUSION These results suggest that fiber stress is the mechanical stimuli for LV growth in pressure-overload.
Collapse
Affiliation(s)
- J. Mojumder
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - J.S. Choy
- California Medical Innovations Institute, San Diego, CA, USA
| | - S. Leng
- National Heart Centre Singapore, Singapore
| | - L. Zhong
- National Heart Centre Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore
| | - G.S. Kassab
- California Medical Innovations Institute, San Diego, CA, USA
| | - L.C. Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Zonderland J, Rezzola S, Wieringa P, Moroni L. Fiber diameter, porosity and functional group gradients in electrospun scaffolds. Biomed Mater 2020; 15:045020. [DOI: 10.1088/1748-605x/ab7b3c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Sharifi Kia D, Benza E, Bachman TN, Tushak C, Kim K, Simon MA. Angiotensin Receptor-Neprilysin Inhibition Attenuates Right Ventricular Remodeling in Pulmonary Hypertension. J Am Heart Assoc 2020; 9:e015708. [PMID: 32552157 PMCID: PMC7670537 DOI: 10.1161/jaha.119.015708] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Pulmonary hypertension (PH) results in increased right ventricular (RV) afterload and ventricular remodeling. Sacubitril/valsartan (sac/val) is a dual acting drug, composed of the neprilysin inhibitor sacubitril and the angiotensin receptor blocker valsartan, that has shown promising outcomes in reducing the risk of death and hospitalization for chronic systolic left ventricular heart failure. In this study, we aimed to examine if angiotensin receptor‐neprilysin inhibition using sac/val attenuates RV remodeling in PH. Methods and Results RV pressure overload was induced in Sprague–Dawley rats via banding the main pulmonary artery. Three different cohorts of controls, placebo‐treated PH, and sac/val‐treated PH were studied in a 21‐day treatment window. Terminal invasive hemodynamic measurements, quantitative histological analysis, biaxial mechanical testing, and constitutive modeling were employed to conduct a multiscale analysis on the effects of sac/val on RV remodeling in PH. Sac/val treatment decreased RV maximum pressures (29% improvement, P=0.002), improved RV contractile (30%, P=0.012) and relaxation (29%, P=0.043) functions, reduced RV afterload (35% improvement, P=0.016), and prevented RV‐pulmonary artery uncoupling. Furthermore, sac/val attenuated RV hypertrophy (16% improvement, P=0.006) and prevented transmural reorientation of RV collagen and myofibers (P=0.011). The combined natriuresis and vasodilation resulting from sac/val led to improved RV biomechanical properties and prevented increased myofiber stiffness in PH (61% improvement, P=0.032). Conclusions Sac/val may prevent maladaptive RV remodeling in a pressure overload model via amelioration of RV pressure rise, hypertrophy, collagen, and myofiber reorientation as well as tissue stiffening both at the tissue and myofiber level.
Collapse
Affiliation(s)
| | - Evan Benza
- Heart and Vascular InstituteUniversity of Pittsburgh Medical Center (UPMC)Pittsburgh PA
| | - Timothy N Bachman
- Department of BioengineeringUniversity of PittsburghPA.,Pittsburgh Heart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh and University of Pittsburgh Medical Center (UPMC)Pittsburgh PA
| | - Claire Tushak
- Department of BioengineeringUniversity of PittsburghPA
| | - Kang Kim
- Department of BioengineeringUniversity of PittsburghPA.,Heart and Vascular InstituteUniversity of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Pittsburgh Heart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh and University of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Division of CardiologySchool of MedicineUniversity of PittsburghPA.,McGowan Institute for Regenerative MedicineUniversity of PittsburghPA.,Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPA.,Center for Ultrasound Molecular Imaging and TherapeuticsUniversity of PittsburghPA
| | - Marc A Simon
- Department of BioengineeringUniversity of PittsburghPA.,Heart and Vascular InstituteUniversity of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Pittsburgh Heart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh and University of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Division of CardiologySchool of MedicineUniversity of PittsburghPA.,McGowan Institute for Regenerative MedicineUniversity of PittsburghPA
| |
Collapse
|
20
|
Carruth ED, Teh I, Schneider JE, McCulloch AD, Omens JH, Frank LR. Regional variations in ex-vivo diffusion tensor anisotropy are associated with cardiomyocyte remodeling in rats after left ventricular pressure overload. J Cardiovasc Magn Reson 2020; 22:21. [PMID: 32241289 PMCID: PMC7114814 DOI: 10.1186/s12968-020-00615-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pressure overload left ventricular (LV) hypertrophy is characterized by increased cardiomyocyte width and ventricle wall thickness, however the regional variation of this remodeling is unclear. Cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) may provide a non-invasive, comprehensive, and geometrically accurate method to detect regional differences in structural remodeling in hypertrophy. We hypothesized that DTI parameters, such as fractional and planar anisotropy, would reflect myocyte remodeling due to pressure overload in a regionally-dependent manner. METHODS We investigated the regional distributions of myocyte remodeling in rats with or without transverse aortic constriction (TAC) via direct measurement of myocyte dimensions with confocal imaging of thick tissue sections, and correlated myocyte cross-sectional area and other geometric features with parameters of diffusivity from ex-vivo DTI in the same regions of the same hearts. RESULTS We observed regional differences in several parameters from DTI between TAC hearts and SHAM controls. Consistent with previous studies, helix angles from DTI correlated strongly with those measured directly from histological sections (p < 0.001, R2 = 0.71). There was a transmural gradient in myocyte cross-sectional area in SHAM hearts that was diminished in the TAC group. We also found several regions of significantly altered DTI parameters in TAC LV compared to SHAM, especially in myocyte sheet angle dispersion and planar anisotropy. Among others, these parameters correlated significantly with directly measured myocyte aspect ratios. CONCLUSIONS These results show that structural remodeling in pressure overload LV hypertrophy is regionally heterogeneous, especially transmurally, with a greater degree of remodeling in the sub-endocardium compared to the sub-epicardium. Additionally, several parameters derived from DTI correlated significantly with measurements of myocyte geometry from direct measurement in histological sections. We suggest that DTI may provide a non-invasive, comprehensive method to detect regional structural myocyte LV remodeling during disease.
Collapse
Affiliation(s)
- Eric D Carruth
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Irvin Teh
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
- Department of Medicine, University of California San Diego, La Jolla, California, USA.
| | - Lawrence R Frank
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Cooke S, Samuel TJ, Cooper SM, Stöhr EJ. Adaptation of myocardial twist in the remodelled athlete's heart is not related to cardiac output. Exp Physiol 2018; 103:1456-1468. [DOI: 10.1113/ep087165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel Cooke
- Discipline of Physiology & Health; Cardiff School of Sport & Health Sciences (Sport); Cardiff Metropolitan University; Cardiff UK
| | - T. Jake Samuel
- Discipline of Physiology & Health; Cardiff School of Sport & Health Sciences (Sport); Cardiff Metropolitan University; Cardiff UK
| | - Stephen-Mark Cooper
- Discipline of Physiology & Health; Cardiff School of Sport & Health Sciences (Sport); Cardiff Metropolitan University; Cardiff UK
| | - Eric J. Stöhr
- Discipline of Physiology & Health; Cardiff School of Sport & Health Sciences (Sport); Cardiff Metropolitan University; Cardiff UK
| |
Collapse
|
22
|
Effect of Aqueous Extract from Descurainia sophia (L.) Webb ex Prantl on Ventricular Remodeling in Chronic Heart Failure Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1904081. [PMID: 30008784 PMCID: PMC6020489 DOI: 10.1155/2018/1904081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/07/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
Objective Descurainia sophia (L.) Webb ex Prantl (DS) is a traditional Chinese medicine. Our current study was to evaluate the effect of DS on ventricular remodeling in chronic heart failure (HF) rats and its underlying mechanism. Methods The rat chronic heart failure model induced by suprarenal abdominal aortic coarctation surgery. The survival rats were randomly divided into 3 groups: the sham group (n=6), the HF group (n=6), and the HF+DS group (n=6). After 3 months of drug intervention, we examined the effects of DS by Sirius Red staining, electron microscopy, echocardiography, hemodynamic measurement, and TUNEL and explored the underlying mechanism by Western blotting. Results We found that rats treated with DS showed improved cardiac function and less tissue damage compared to untreated group. Additionally, DS could reduce the cardiomyocytes apoptosis, decrease the ratio of Bax/bcl-2 and Caspase-3 expression, and enhance the phosphorylation of Akt protein expression. Conclusion Our study suggested that rats treated with DS after suprarenal abdominal aortic coarctation surgery showed attenuated cardiac fibrosis and apoptosis, and the protective effect may be correlated with the activation of PI3k/Akt/mTOR dependent manner.
Collapse
|
23
|
Vaverka J, Burša J, Šumbera J, Pásek M. Effect of Transmural Differences in Excitation-Contraction Delay and Contraction Velocity on Left Ventricle Isovolumic Contraction: A Simulation Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4798512. [PMID: 29862273 PMCID: PMC5971307 DOI: 10.1155/2018/4798512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Recent studies have shown that left ventricle (LV) exhibits considerable transmural differences in active mechanical properties induced by transmural differences in electrical activity, excitation-contraction coupling, and contractile properties of individual myocytes. It was shown that the time between electrical and mechanical activation of myocytes (electromechanical delay: EMD) decreases from subendocardium to subepicardium and, on the contrary, the myocyte shortening velocity (MSV) increases in the same direction. To investigate the physiological importance of this inhomogeneity, we developed a new finite element model of LV incorporating the observed transmural gradients in EMD and MSV. Comparative simulations with the model showed that when EMD or MSV or both were set constant across the LV wall, the LV contractility during isovolumic contraction (IVC) decreased significantly ((dp/dt)max was reduced by 2 to 38% and IVC was prolonged by 18 to 73%). This was accompanied by an increase of transmural differences in wall stress. These results suggest that the transmural differences in EMD and MSV play an important role in physiological contractility of LV by synchronising the contraction of individual layers of ventricular wall during the systole. Reduction or enhancement of these differences may therefore impair the function of LV and contribute to heart failure.
Collapse
Affiliation(s)
- J Vaverka
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - J Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, University of Technology, Brno, Czech Republic
| | - J Šumbera
- Department of Cardiovascular Diseases, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Pásek
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Thermomechanics, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
24
|
Stretch your heart-but not too far: The role of titin mutations in dilated cardiomyopathy. J Thorac Cardiovasc Surg 2018; 156:209-214. [PMID: 29685583 DOI: 10.1016/j.jtcvs.2017.10.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
|
25
|
Balakin A, Kuznetsov D, Protsenko Y. The phenomena of mechanical interaction of segments of hypertrophied myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 133:20-26. [PMID: 29050921 DOI: 10.1016/j.pbiomolbio.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
The main aims of adaptation mechanisms of heart contractility are to regulate the stroke volume and optimize the global heart function. These mechanisms manifest themselves in hearts of healthy animals and in hearts with severe hypertrophy in different ways. Severe right ventricle hypertrophy was induced by single treatment with monocrotaline. Young rats of both sexes were used to prevent influences of sex hormones on the development of right ventricular hypertrophy. Serial duplex method is used as a model of interaction of two ventricular wall segments. In serial duplex the muscles are in connection 'end-to-end' and subjected to mutual deformations during contractions. It is important to establish the fine-tuning phenomena and evaluate their expressiveness in healthy hearts and hearts with severe hypertrophy. Mild force transient processes occur on muscle connection to serial duplex and on muscle separation from duplex in all experimental groups. These transients manifest themselves as slow changes in the amplitude of muscle contraction from cycle to cycle. During the muscle interaction in the serial duplex, evident transient processes in the mutual amplitude of deformations in all experimental groups are observed. The greatest changes in the length occur in the relaxation phase of the contraction cycle. The loss of interaction between ventricular muscles of rats with severe heart hypertrophy is the most likely cause of an additional deterioration in the heart pumping function. New targets may occur for the recovery of contractility of hearts with severe hypertrophy.
Collapse
Affiliation(s)
- Alexander Balakin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049, Bldg. 106 (Office 119), Pervomayskaya St., Yekaterinburg, Russian Federation.
| | - Daniil Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049, Bldg. 106 (Office 119), Pervomayskaya St., Yekaterinburg, Russian Federation
| | - Yuri Protsenko
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049, Bldg. 106 (Office 119), Pervomayskaya St., Yekaterinburg, Russian Federation
| |
Collapse
|