1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2025; 22:181-191. [PMID: 38908461 PMCID: PMC11662089 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Williams ZJ, Alvarez-Laviada A, Hoagland D, Jourdan LJ, Poelzing S, Gorelik J, Gourdie RG. Development and characterization of the mode-of-action of inhibitory and agonist peptides targeting the voltage-gated sodium channel SCN1B beta-subunit. J Mol Cell Cardiol 2024; 194:32-45. [PMID: 38942073 PMCID: PMC11647768 DOI: 10.1016/j.yjmcc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Cardiac arrhythmia treatment is a clinical challenge necessitating safer and more effective therapies. Recent studies have highlighted the role of the perinexus, an intercalated disc nanodomain enriched in voltage-gated sodium channels including both Nav1.5 and β1 subunits, adjacent to gap junctions. These findings offer insights into action potential conduction in the heart. A 19-amino acid SCN1B (β1/β1B) mimetic peptide, βadp1, disrupts VGSC beta subunit-mediated adhesion in cardiac perinexii, inducing arrhythmogenic changes. We aimed to explore βadp1's mechanism and develop novel SCN1B mimetic peptides affecting β1-mediated adhesion. Using patch clamp assays in neonatal rat cardiomyocytes and electric cell substrate impedance sensing (ECIS) in β1-expressing cells, we observed βadp1 maintained inhibitory effects for up to 5 h. A shorter peptide (LQLEED) based on the carboxyl-terminus of βadp1 mimicked this inhibitory effect, while dimeric peptides containing repeated LQLEED sequences paradoxically promoted intercellular adhesion over longer time courses. Moreover, we found a link between these peptides and β1-regulated intramembrane proteolysis (RIP) - a signaling pathway effecting gene transcription including that of VGSC subunits. βadp1 increased RIP continuously over 48 h, while dimeric agonists acutely boosted RIP for up to 6 h. In the presence of DAPT, an RIP inhibitor, βadp1's effects on ECIS-measured intercellular adhesion was reduced, suggesting a relationship between RIP and the peptide's inhibitory action. In conclusion, novel SCN1B (β1/β1B) mimetic peptides are reported with the potential to modulate intercellular VGSC β1-mediated adhesion, potentially through β1 RIP. These findings suggest a path towards the development of anti-arrhythmic drugs targeting the perinexus.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | | | - Daniel Hoagland
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | - L Jane Jourdan
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | - Steven Poelzing
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States; School of Medicine, Virgina Polytechnic University, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Roanoke, VA, United States
| | - Julia Gorelik
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States; School of Medicine, Virgina Polytechnic University, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Roanoke, VA, United States.
| |
Collapse
|
3
|
Czeisler MÉ, Shan Y, Schalek R, Berger DR, Suissa-Peleg A, Takahashi JS, Lichtman JW. Extensive soma-soma plate-like contact sites (ephapses) connect suprachiasmatic nucleus neurons. J Comp Neurol 2024; 532:e25624. [PMID: 38896499 PMCID: PMC11419332 DOI: 10.1002/cne.25624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is the central pacemaker for mammalian circadian rhythms. As such, this ensemble of cell-autonomous neuronal oscillators with divergent periods must maintain coordinated oscillations. To investigate ultrastructural features enabling such synchronization, 805 coronal ultrathin sections of mouse SCN tissue were imaged with electron microscopy and aligned into a volumetric stack, from which selected neurons within the SCN core were reconstructed in silico. We found that clustered SCN core neurons were physically connected to each other via multiple large soma-to-soma plate-like contacts. In some cases, a sliver of a glial process was interleaved. These contacts were large, covering on average ∼21% of apposing neuronal somata. It is possible that contacts may be the electrophysiological substrate for synchronization between SCN neurons. Such plate-like contacts may explain why the synchronization of SCN neurons is maintained even when chemical synaptic transmission or electrical synaptic transmission via gap junctions is blocked. Such ephaptic contact-mediated synchronization among nearby neurons may therefore contribute to the wave-like oscillations of circadian core clock genes and calcium signals observed in the SCN.
Collapse
Affiliation(s)
- Mark É. Czeisler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yongli Shan
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Richard Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel R. Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Adi Suissa-Peleg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Yang F, Zhang XL, Liu HH, Qian LL, Wang RX. Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction. Mol Biol Rep 2024; 51:329. [PMID: 38393658 DOI: 10.1007/s11033-024-09290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Lu Zhang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Leybaert L, De Smet MA, Lissoni A, Allewaert R, Roderick HL, Bultynck G, Delmar M, Sipido KR, Witschas K. Connexin hemichannels as candidate targets for cardioprotective and anti-arrhythmic treatments. J Clin Invest 2023; 133:168117. [PMID: 36919695 PMCID: PMC10014111 DOI: 10.1172/jci168117] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Connexins are crucial cardiac proteins that form hemichannels and gap junctions. Gap junctions are responsible for the propagation of electrical and chemical signals between myocardial cells and cells of the specialized conduction system in order to synchronize the cardiac cycle and steer cardiac pump function. Gap junctions are normally open, while hemichannels are closed, but pathological circumstances may close gap junctions and open hemichannels, thereby perturbing cardiac function and homeostasis. Current evidence demonstrates an emerging role of hemichannels in myocardial ischemia and arrhythmia, and tools are now available to selectively inhibit hemichannels without inhibiting gap junctions as well as to stimulate hemichannel incorporation into gap junctions. We review available experimental evidence for hemichannel contributions to cellular pro-arrhythmic events in ventricular and atrial cardiomyocytes, and link these to insights at the level of molecular control of connexin-43-based hemichannel opening. We conclude that a double-edged approach of both preventing hemichannel opening and preserving gap junctional function will be key for further research and development of new connexin-based experimental approaches for treating heart disease.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Maarten Aj De Smet
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Alessio Lissoni
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Allewaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, and
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, USA
| | - Karin R Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, and
| | - Katja Witschas
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Sykora M, Andelova K, Szeiffova Bacova B, Egan Benova T, Martiskova A, Knezl V, Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules 2023; 13:biom13020330. [PMID: 36830700 PMCID: PMC9953310 DOI: 10.3390/biom13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.
Collapse
|
7
|
Binder MS, Wu Y, Baker JW, Rowe JF, Wyatt DA, Choate C, Poelzing S, Joseph M. A retrospective comparison of albumin versus mannitol priming fluid with relation to postoperative atrial fibrillation. J Card Surg 2022; 37:3485-3491. [PMID: 36116062 PMCID: PMC9826347 DOI: 10.1111/jocs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIM OF THE STUDY Postoperative atrial fibrillation (POAF) is a common complication following cardiac surgery which can result in increased mortality and increased healthcare costs. During Hurricane Maria (2017), a nationwide shortage of mannitol occurred, and our institution switched to the utilization of albumin as a priming fluid solution. We observed decreased rates of POAF during that time and began alternating albumin and mannitol priming fluid solutions. We hypothesized this observation may be from altered perinexal conduction from albumin utilization. METHODS A retrospective chart review of all patients from January 2020 through December 2020 who underwent cardiac surgery was performed, to determine if albumin was associated with reduced POAF rates. Two hundred and thirteen patients were identified and 4 were excluded. Two hundred and nine patients (110 albumin priming fluid and 99 mannitol priming fluid) were included in our final analysis. RESULTS Analysis was performed for all patients with POAF and in patients with new-onset AF (without a history of prior AF) after surgery. POAF rates showed no statistically significant difference between cohorts. For all patients, POAF occurred in 43% of the albumin subgroup and 47% of the mannitol subgroup (p = .53) and for patients with new-onset AF, POAF occurred in 35% of the albumin subgroup versus 42% of the mannitol subgroup (p = .36). Logistic regression revealed that age, ejection fraction and cardiopulmonary bypass time was associated with POAF, in our cohort. CONCLUSIONS The use of albumin compared to mannitol as priming fluid solutions was not associated with statistically significant reductions in POAF rate, in our population.
Collapse
Affiliation(s)
- M. Scott Binder
- Departments of Cardiology, Cardiothoracic SurgeryVirginia Tech CarilionRoanokeVirginiaUSA
| | - YingXing Wu
- Department of Health AnalyticsVirginia Tech CarilionRoanokeVirginiaUSA
| | - Joseph W. Baker
- Departments of Cardiology, Cardiothoracic SurgeryVirginia Tech CarilionRoanokeVirginiaUSA
| | - Joseph F. Rowe
- Departments of Cardiology, Cardiothoracic SurgeryVirginia Tech CarilionRoanokeVirginiaUSA
| | - David A. Wyatt
- Departments of Cardiology, Cardiothoracic SurgeryVirginia Tech CarilionRoanokeVirginiaUSA
| | - Cynthia Choate
- Departments of Cardiology, Cardiothoracic SurgeryVirginia Tech CarilionRoanokeVirginiaUSA
| | - Steven Poelzing
- Department of Biomedical Engineering and MechanicsVirginia Tech Fralin Biomedical Research InstituteRoanokeVirginiaUSA
| | - Mark Joseph
- Departments of Cardiology, Cardiothoracic SurgeryVirginia Tech CarilionRoanokeVirginiaUSA
| |
Collapse
|
8
|
Teng ACT, Gu L, Di Paola M, Lakin R, Williams ZJ, Au A, Chen W, Callaghan NI, Zadeh FH, Zhou YQ, Fatah M, Chatterjee D, Jourdan LJ, Liu J, Simmons CA, Kislinger T, Yip CM, Backx PH, Gourdie RG, Hamilton RM, Gramolini AO. Tmem65 is critical for the structure and function of the intercalated discs in mouse hearts. Nat Commun 2022; 13:6166. [PMID: 36257954 PMCID: PMC9579145 DOI: 10.1038/s41467-022-33303-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
The intercalated disc (ICD) is a unique membrane structure that is indispensable to normal heart function, yet its structural organization is not completely understood. Previously, we showed that the ICD-bound transmembrane protein 65 (Tmem65) was required for connexin43 (Cx43) localization and function in cultured mouse neonatal cardiomyocytes. Here, we investigate the functional and cellular effects of Tmem65 reductions on the myocardium in a mouse model by injecting CD1 mouse pups (3-7 days after birth) with recombinant adeno-associated virus 9 (rAAV9) harboring Tmem65 shRNA, which reduces Tmem65 expression by 90% in mouse ventricles compared to scrambled shRNA injection. Tmem65 knockdown (KD) results in increased mortality which is accompanied by eccentric hypertrophic cardiomyopathy within 3 weeks of injection and progression to dilated cardiomyopathy with severe cardiac fibrosis by 7 weeks post-injection. Tmem65 KD hearts display depressed hemodynamics as measured echocardiographically as well as slowed conduction in optical recording accompanied by prolonged PR intervals and QRS duration in electrocardiograms. Immunoprecipitation and super-resolution microscopy demonstrate a physical interaction between Tmem65 and sodium channel β subunit (β1) in mouse hearts and this interaction appears to be required for both the establishment of perinexal nanodomain structure and the localization of both voltage-gated sodium channel 1.5 (NaV1.5) and Cx43 to ICDs. Despite the loss of NaV1.5 at ICDs, whole-cell patch clamp electrophysiology did not reveal reductions in Na+ currents but did show reduced Ca2+ and K+ currents in Tmem65 KD cardiomyocytes in comparison to control cells. We conclude that disrupting Tmem65 function results in impaired ICD structure, abnormal cardiac electrophysiology, and ultimately cardiomyopathy.
Collapse
Affiliation(s)
- Allen C T Teng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada.
| | - Liyang Gu
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
| | - Michelle Di Paola
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Zachary J Williams
- The Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute at Virginia Tech. Carilion, Roanoke, VA, 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
| | - Aaron Au
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wenliang Chen
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Neal I Callaghan
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Farigol Hakem Zadeh
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Meena Fatah
- The Labatt Family Heart Centre (Dept. of Pediatrics) and Translational Medicine, The Hospital for Sick Children & Research Institute, University of Toronto, Toronto, ON., M5G 1X8, Canada
| | - Diptendu Chatterjee
- The Labatt Family Heart Centre (Dept. of Pediatrics) and Translational Medicine, The Hospital for Sick Children & Research Institute, University of Toronto, Toronto, ON., M5G 1X8, Canada
| | - L Jane Jourdan
- The Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute at Virginia Tech. Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Jack Liu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Christopher M Yip
- Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Robert G Gourdie
- The Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute at Virginia Tech. Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Robert M Hamilton
- The Labatt Family Heart Centre (Dept. of Pediatrics) and Translational Medicine, The Hospital for Sick Children & Research Institute, University of Toronto, Toronto, ON., M5G 1X8, Canada
| | - Anthony O Gramolini
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
9
|
Zhong C, Zhao H, Xie X, Qi Z, Li Y, Jia L, Zhang J, Lu Y. Protein Kinase C-Mediated Hyperphosphorylation and Lateralization of Connexin 43 Are Involved in Autoimmune Myocarditis-Induced Prolongation of QRS Complex. Front Physiol 2022; 13:815301. [PMID: 35418879 PMCID: PMC9000987 DOI: 10.3389/fphys.2022.815301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Myocarditis is a serious and potentially life-threatening disease, which leads to cardiac dysfunction and sudden cardiac death. An increasing number of evidence suggests that myocarditis is also a malignant complication of coronavirus pneumonia, associated with heart failure and sudden cardiac death. Prolonged QRS complexes that are related to malignant arrhythmias caused by myocarditis significantly increase the risk of sudden cardiac death in patients. However, the molecular mechanisms are not fully known at present. In this study, we identify protein kinase C (PKC) as a new regulator of the QRS complex. In isolated hearts of normal rats, the PKC agonist, phorbol-12-myristate-13-acetate (PMA), induced prolongation of the QRS complex. Mechanistically, hyperphosphorylation and lateralization of connexin 43 (Cx43) by PKC induced depolymerization and internalization of Cx43 gap junction channels and prolongation of the QRS duration. Conversely, administration of the PKC inhibitor, Ro-32-0432, in experimental autoimmune myocarditis (EAM) rats after the most severe inflammation period still significantly rescued the stability of the Cx43 gap junction and alleviated prolongation of the QRS complex. Ro-32-0432 reduced phosphorylation and blocked translocation of Cx43 in EAM rat heart but did not regulate the mRNA expression level of ventricular ion channels and the other regulatory proteins, which indicates that the inhibition of PKC might have no protective effect on ion channels that generate ventricular action potential in EAM rats. These results suggest that the pharmacological inhibition of PKC ameliorates the prolongation of the QRS complex via suppression of Cx43 hyperphosphorylation, lateralization, and depolymerization of Cx43 gap junction channels in EAM rats, which provides a potential therapeutic strategy for myocarditis-induced arrhythmias.
Collapse
Affiliation(s)
- Chunlian Zhong
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xinwen Xie
- Liancheng County General Hospital, Longyan, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiamen, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lee Jia
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
- *Correspondence: Lee Jia, ,
| | - Jinwei Zhang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Jinwei Zhang,
| | - Yusheng Lu
- School of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
- Yusheng Lu, ,
| |
Collapse
|
10
|
Ho KYL, Khadilkar RJ, Carr RL, Tanentzapf G. A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis. Curr Biol 2021; 31:4697-4712.e6. [PMID: 34480855 DOI: 10.1016/j.cub.2021.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022]
Abstract
Stem cell homeostasis requires coordinated fate decisions among stem cells that are often widely distributed within a tissue at varying distances from their stem cell niche. This requires a mechanism to ensure robust fate decisions within a population of stem cells. Here, we show that, in the Drosophila hematopoietic organ, the lymph gland (LG), gap junctions form a network that coordinates fate decisions between blood progenitors. Using live imaging of calcium signaling in intact LGs, we find that blood progenitors are connected through a signaling network. Blocking gap junction function disrupts this network, alters the pattern of encoded calcium signals, and leads to loss of progenitors and precocious blood cell differentiation. Ectopic and uniform activation of the calcium-signaling mediator CaMKII restores progenitor homeostasis when gap junctions are disrupted. Overall, these data show that gap junctions equilibrate cell signals between blood progenitors to coordinate fate decisions and maintain hematopoietic homeostasis.
Collapse
Affiliation(s)
- Kevin Y L Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre (ACTREC-TMC), Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Rosalyn L Carr
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
11
|
Zhang J, Liang Y, Bradford WH, Sheikh F. Desmosomes: emerging pathways and non-canonical functions in cardiac arrhythmias and disease. Biophys Rev 2021; 13:697-706. [PMID: 34765046 PMCID: PMC8555023 DOI: 10.1007/s12551-021-00829-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Desmosomes are critical adhesion structures in cardiomyocytes, with mutation/loss linked to the heritable cardiac disease, arrhythmogenic right ventricular cardiomyopathy (ARVC). Early studies revealed the ability of desmosomal protein loss to trigger ARVC disease features including structural remodeling, arrhythmias, and inflammation; however, the precise mechanisms contributing to diverse disease presentations are not fully understood. Recent mechanistic studies demonstrated the protein degradation component CSN6 is a resident cardiac desmosomal protein which selectively restricts cardiomyocyte desmosomal degradation and disease. This suggests defects in protein degradation can trigger the structural remodeling underlying ARVC. Additionally, a subset of ARVC-related mutations show enhanced vulnerability to calpain-mediated degradation, further supporting the relevance of these mechanisms in disease. Desmosomal gene mutations/loss has been shown to impact arrhythmogenic pathways in the absence of structural disease within ARVC patients and model systems. Studies have shown the involvement of connexins, calcium handling machinery, and sodium channels as early drivers of arrhythmias, suggesting these may be distinct pathways regulating electrical function from the desmosome. Emerging evidence has suggested inflammation may be an early mechanism in disease pathogenesis, as clinical reports have shown an overlap between myocarditis and ARVC. Recent studies focus on the association between desmosomal mutations/loss and inflammatory processes including autoantibodies and signaling pathways as a way to understand the involvement of inflammation in ARVC pathogenesis. A specific focus will be to dissect ongoing fields of investigation to highlight diverse pathogenic pathways associated with desmosomal mutations/loss.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Yan Liang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - William H. Bradford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
12
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
13
|
Molecular remodeling of Cx43, but not structural remodeling, promotes arrhythmias in an arrhythmogenic canine model of nonischemic heart failure. J Mol Cell Cardiol 2021; 158:72-81. [PMID: 34048725 DOI: 10.1016/j.yjmcc.2021.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Both gap junctional remodeling and interstitial fibrosis have been linked to impaired electrical conduction velocity (CV) and fatal ventricular arrhythmias in nonischemic heart failure (HF). However, the arrhythmogenic role of the ventricular gap junctional Cx43 in nonischemic HF remains in debate. Here, we assessed this in a newly developed arrhythmogenic canine model of nonischemic HF. METHODS AND RESULTS Nonischemic HF was induced in canines by combined aortic valve insufficiency and aortic constriction. Left ventricular (LV) myocardium from HF dogs showed similar pathological changes to that of humans. HF dogs had reduced LV function, widened QRS complexes, and spontaneous nonsustained ventricular tachycardia. CV was measured in intact LV epicardium with high-density grid mapping. Total (Cx43-T) and nonphosphorylated Cx43 (Cx43-NP) and histological interstitial fibrosis were assessed from these mapped LV tissues. Longitudinal CV, which was slowed in HF (49 ± 1 vs. 65 ± 2 cm/s in Ctl), was positively correlated with reduced total junctional Cx43 and negatively correlated with markedly increased junctional Cx43-NP (2-fold) in HF. Cx43 dephosphorylation in HF was associated with enhanced colocalization of PP2A at the level of Cx43. Unchanged action potential upstroke and transverse CV were associated with unaltered Cx43 lateralization and interstitial fibrosis in the nonischemic HF canine LV. CONCLUSION Our unique arrhythmogenic canine model of HF resembles human nonischemic HF (prior to the end stage). Cx43 remodeling occurs prior to the structural remodeling (with lack of fibrosis) in HF and it is crucial in slowed CV and ventricular arrhythmia development. Our findings suggest that altered Cx43 alone is arrhythmogenic and modulation of Cx43 has the anti-arrhythmic therapeutic potential for HF patients.
Collapse
|
14
|
Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021; 8:52. [PMID: 34063001 PMCID: PMC8147937 DOI: 10.3390/jcdd8050052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number of Cx43 mimetic peptides have been reported as therapeutic candidates for targeting disease processes linked to Cx43, including some that have advanced to clinical testing in humans. These peptides include Cx43 sequences based on the extracellular loop domains (e.g., Gap26, Gap 27, and Peptide5), cytoplasmic-loop domain (Gap19 and L2), and cytoplasmic carboxyl-terminal domain (e.g., JM2, Cx43tat, CycliCX, and the alphaCT family of peptides) of this transmembrane protein. Additionally, RYYN peptides binding to the Cx43 carboxyl-terminus have been described. In this review, we survey preclinical and clinical data available on short mimetic peptides based on, or directly targeting, Cx43, with focus on their potential for treating heart disease. We also discuss problems that have caused reluctance within the pharmaceutical industry to translate peptidic therapeutics to the clinic, even when supporting preclinical data is strong. These issues include those associated with the administration, stability in vivo, and tissue penetration of peptide-based therapeutics. Finally, we discuss novel drug delivery technologies including nanoparticles, exosomes, and other nanovesicular carriers that could transform the clinical and commercial viability of Cx43-targeting peptides in treatment of heart disease, stroke, cancer, and other indications requiring oral or parenteral administration. Some of these newly emerging approaches to drug delivery may provide a path to overcoming pitfalls associated with the drugging of peptide therapeutics.
Collapse
Affiliation(s)
- Spencer R. Marsh
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Zachary J. Williams
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
15
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
16
|
Olejnickova V, Kocka M, Kvasilova A, Kolesova H, Dziacky A, Gidor T, Gidor L, Sankova B, Gregorovicova M, Gourdie RG, Sedmera D. Gap Junctional Communication via Connexin43 between Purkinje Fibers and Working Myocytes Explains the Epicardial Activation Pattern in the Postnatal Mouse Left Ventricle. Int J Mol Sci 2021; 22:2475. [PMID: 33804428 PMCID: PMC7957598 DOI: 10.3390/ijms22052475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.
Collapse
Affiliation(s)
- Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| | - Matej Kocka
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| | - Adam Dziacky
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Department of Pediatric Cardiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Tom Gidor
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Lihi Gidor
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
| | - Martina Gregorovicova
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (V.O.); (M.K.); (A.K.); (H.K.); (A.D.); (T.G.); (L.G.); (B.S.); (M.G.)
- Institute of Physiology, CAS, 142 20 Prague, Czech Republic
| |
Collapse
|
17
|
Gómez-Torres FA, Estupiñán HY, Ruíz-Saurí A. Morphometric analysis of cardiac conduction fibers in horses and dogs, a comparative histological and immunohistochemical study with findings in human hearts. Res Vet Sci 2021; 135:200-216. [PMID: 33618179 DOI: 10.1016/j.rvsc.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
The principal function of the ventricular conduction system is rapid electrical activation of the ventricles. The aim of this study is to conduct a morphometric study to pinpoint the morphological parameters that define cardiac conduction cells, allowing us to distinguish them from other cells. Five male horse hearts and five male dog hearts were used in the study. The hearts were fixed in a 5% formaldehyde solution. Histological sections of 5 μm thickness were acquired and stained with hematoxylin-eosin and Masson's trichrome and cardiac conduction cells and their junctions were identified by desmin, connexin 40 and a PAS method. We found statistically significant differences in cardiac conduction fibers density and thickness, which was much higher in horses than in dogs (p = 0.000 for both values). By comparing the measured parameters of the cells in both species, we determined that cardiac conduction cells area and diameters were greater in horses than in dogs (p = 0.000 for all values). In dogs there are more junctions (30.8%) than in horses (26.1%), a statistically significant difference (p = 0.041). Our findings regarding the cardiac conduction fibers distribution in the animal species studied becomes new knowledge that contributes to the morphological study of this component of the cardiac conduction system and also makes it possible to locate exactly the site with the highest density of cardiac conduction fibers as a contribution to the cardiological study of these structures that lead to the prevention of ventricular arrhythmias and the identification of their treatment site.
Collapse
Affiliation(s)
- F A Gómez-Torres
- Department of Pathology, Faculty of Medicine, 1st floor, Universitat de Valencia, Av. de Blasco Ibáñez, 15, 46010 Valencia, Spain; Department of Basic Sciences, School of Medicine, Universidad Industrial de Santander, Cra 32 # 29-31, 68002 Bucaramanga, Colombia.
| | - H Y Estupiñán
- Department of Basic Sciences, School of Medicine, Universidad Industrial de Santander, Cra 32 # 29-31, 68002 Bucaramanga, Colombia; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institute, Karolinska University Hospital Huddinge, SE-141 86 Huddinge, Sweden.
| | - A Ruíz-Saurí
- Department of Pathology, Faculty of Medicine, 1st floor, Universitat de Valencia, Av. de Blasco Ibáñez, 15, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, Av. de Blasco Ibáñez, 17, 46010 Valencia, Spain.
| |
Collapse
|
18
|
Xu L, Shi R. Generation of functional Na V1.5 current by endogenous transcriptional activation of SCN5A. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1892524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Rui Shi
- Department of Gynaecology and Obstetrics, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
19
|
Strauss RE, Gourdie RG. Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules 2020; 10:E1656. [PMID: 33321985 PMCID: PMC7764618 DOI: 10.3390/biom10121656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
20
|
Wong CK, Tse HF. New methodological approaches to atrial fibrillation drug discovery. Expert Opin Drug Discov 2020; 16:319-329. [PMID: 33016154 DOI: 10.1080/17460441.2021.1826432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical practice and rhythm control using pharmacological agents is required in selected patients. Nonetheless, current medication is only modestly efficacious and associated with significant cardiovascular and systemic side effects. More efficacious and safe drugs are required to restore and maintain sinus rhythm in patients with AF. AREAS COVERED In this review, several potential drug targets are discussed including trans-membrane ion channels, intracellular calcium signaling, gap junction signaling, atrial inflammation and fibrosis, and the autonomic nervous system. New tools and methodologies for AF drug development are also reviewed including gene therapy, genome-guided therapy, stem cell technologies, tissue engineering, and optogenetics. EXPERT OPINION In recent decades, there has been an increased understanding of the underlying pathogenesis of AF. As a result, there is a gradual paradigm shift from focusing only on trans-membrane ion channel inhibition to developing therapeutic agents that target other underlying arrhythmogenic mechanisms. Gene therapy and genome-guided therapy are emerging as novel treatments for AF with some success in proof-of-concept studies. Recent advances in stem cell technology, tissue engineering, and optogenetics may allow more effective in-vitro drug screening than conventional methodologies.
Collapse
Affiliation(s)
- Chun-Ka Wong
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, SAR China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
21
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
22
|
Schinner C, Olivares-Florez S, Schlipp A, Trenz S, Feinendegen M, Flaswinkel H, Kempf E, Egu DT, Yeruva S, Waschke J. The inotropic agent digitoxin strengthens desmosomal adhesion in cardiac myocytes in an ERK1/2-dependent manner. Basic Res Cardiol 2020; 115:46. [PMID: 32556797 PMCID: PMC7299919 DOI: 10.1007/s00395-020-0805-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/05/2020] [Indexed: 01/28/2023]
Abstract
Desmosomal proteins are components of the intercalated disc and mediate cardiac myocyte adhesion. Enhancement of cardiac myocyte cohesion, referred to as "positive adhesiotropy", was demonstrated to be a function of sympathetic signaling and to be relevant for a sufficient inotropic response. We used the inotropic agent digitoxin to investigate the link between inotropy and adhesiotropy. In contrast to wild-type hearts, digitoxin failed to enhance pulse pressure in perfused mice hearts lacking the desmosomal protein plakoglobin which was paralleled with abrogation of plaque thickening indicating that positive inotropic response requires intact desmosomal adhesion. Atomic force microscopy revealed that digitoxin increased the binding force of the adhesion molecule desmoglein-2 at cell-cell contact areas. This was paralleled by enhanced cardiac myocyte cohesion in both HL-1 cardiac myocytes and murine cardiac slices as determined by dissociation assays as well as by accumulation of desmosomal proteins at cell-cell contact areas. However, total protein levels or cytoskeletal anchorage were not affected. siRNA-mediated depletion of desmosomal proteins abrogated increase of cell cohesion demonstrating that intact desmosomal adhesion is required for positive adhesiotropy. Mechanistically, digitoxin caused activation of ERK1/2. In line with this, inhibition of ERK1/2 signaling abrogated the effects of digitoxin on cell-cell adhesion and desmosomal reorganization. These results show that the positive inotropic agent digitoxin enhances cardiac myocyte cohesion with reorganization of desmosomal proteins in an ERK1/2-dependent manner. Desmosomal adhesion seems to be important for a sufficient positive inotropic response of digitoxin treatment, which can be of medical relevance for the treatment of heart failure.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Silvana Olivares-Florez
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Angela Schlipp
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sebastian Trenz
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Manouk Feinendegen
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Heinrich Flaswinkel
- Department of Biology II, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Desalegn Tadesse Egu
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
23
|
Lillo MA, Himelman E, Shirokova N, Xie LH, Fraidenraich D, Contreras JE. S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 2019; 4:130091. [PMID: 31751316 DOI: 10.1172/jci.insight.130091] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023] Open
Abstract
Patients with Duchenne muscular dystrophy (DMD) commonly present with severe ventricular arrhythmias that contribute to heart failure. Arrhythmias and lethality are also consistently observed in adult Dmdmdx mice, a mouse model of DMD, after acute β-adrenergic stimulation. These pathological features were previously linked to aberrant expression and remodeling of the cardiac gap junction protein connexin43 (Cx43). Here, we report that remodeled Cx43 protein forms Cx43 hemichannels in the lateral membrane of Dmdmdx cardiomyocytes and that the β-adrenergic agonist isoproterenol (Iso) aberrantly activates these hemichannels. Block of Cx43 hemichannels or a reduction in Cx43 levels (using Dmdmdx Cx43+/- mice) prevents the abnormal increase in membrane permeability, plasma membrane depolarization, and Iso-evoked electrical activity in these cells. Additionally, Iso treatment promotes nitric oxide (NO) production and S-nitrosylation of Cx43 hemichannels in Dmdmdx heart. Importantly, inhibition of NO production prevents arrhythmias evoked by Iso. We found that NO directly activates Cx43 hemichannels by S-nitrosylation of cysteine at position 271. Our results demonstrate that opening of remodeled and S-nitrosylated Cx43 hemichannels plays a key role in the development of arrhythmias in DMD mice and that these channels may serve as therapeutic targets to prevent fatal arrhythmias in patients with DMD .
Collapse
Affiliation(s)
| | - Eric Himelman
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
24
|
Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr Polym 2019; 224:115144. [PMID: 31472870 DOI: 10.1016/j.carbpol.2019.115144] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
Scaffolds based on nanocellulose (NC) have crucial applications in tissue engineering (TE) owing to the biocompatibility, water absorption, water retention, optical transparency, and chemo-mechanical properties. In this review, we summarize the scaffolds based on nanocellulose, including nanocrystalline cellulose and nanofibrillated cellulose. We compare four representative methods to prepare NC-based scaffolds, containing electrospinning, freeze-drying, 3D printing, and solvent casting. We outline the characteristics of scaffolds obtained by different methods. Our focus is on the applications of NC-based scaffolds to repair, improve or replace damaged tissues and organs, including skin, blood vessel, nerve, skeletal muscle, heart, liver, and ophthalmology. NC-based scaffolds are attractive materials for regeneration of different tissues and organs due to the remarkable features. Finally, we propose the challenges and potentials of NC-based TE scaffolds.
Collapse
|
25
|
Gourdie RG. The Cardiac Gap Junction has Discrete Functions in Electrotonic and Ephaptic Coupling. Anat Rec (Hoboken) 2018; 302:93-100. [PMID: 30565418 DOI: 10.1002/ar.24036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Connexin43-formed gap junctions have long been thought to contribute to cardiac conduction in the mammalian ventricle by providing direct electrotonic connectivity between the cytoplasms of neighboring cardiomyocytes. However, accumulating data from studies of non-mammalian hearts, Connexin 43 (Cx43) knockout mice and human Cx43 mutations have raised questions as to whether gap junctions are the sole means by which electrical coupling between cardiomyocytes is accomplished. Computational and experimental work over the last decade have indicated that intercellular propagation of action potentials in the heart may involve both electrotonic and ephaptic contributions-in what has been dubbed "mixed-mode" conduction. Interestingly, the Cx43 gap junction may provide a common structural platform in mammals that facilitates the operation of these two mechanisms. In addition to gap junction channels functioning in an electrotonic role, the perinexus region at the edge of gap junctions may be provide a niche for voltage-gated sodium channels from neighboring cells to be in sufficiently close proximity to enable ephaptic transmission of action potential. A novel role has recently been identified in this potential ephaptic mechanism for inter-membrane adhesion mediated by the beta subunit (beta1/Scn1b) of the sodium channel. The new perspective of the operational redundancy that is built into cardiac electrical connectivity could provide new understanding of arrhythmia mechanisms and holds the promise for new approach to anti-arrhythmic therapy. Anat Rec, 302:93-100, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert G Gourdie
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016.,Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, Virginia, 24016.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|