1
|
Woźnicki P, Bartusik-Aebisher D, Przygórzewska A, Aebisher D. Molecular Mechanisms of the Effects of Photodynamic Therapy on the Brain: A Review of the Literature. Photodiagnosis Photodyn Ther 2025:104536. [PMID: 40023269 DOI: 10.1016/j.pdpdt.2025.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most common primary brain tumors in adults. These tumors have a diverse molecular origin and a very poor prognosis. There is a lack of effective treatment at WHO grade IV glioma, and all glioblastomas progress or recur. Current treatments including surgical intervention, radiation therapy, and chemotherapy are insufficient and can cause damage to healthy brain tissue and neurological deficits. The preservation of healthy brain tissue during therapeutic intervention is made extremely difficult by the ability of malignant gliomas to diffusely infiltrate the surrounding brain parenchyma. Photodynamic therapy (PDT) is a treatment modality for glioma that can possibly overcome the inherent shortcommings of traditional therapies. Photodynamic therapy involves the use of a photosensitizer (PS) which, upon absorption of light by photosensitized tissue, triggers photochemical reactions generating reactive oxygen species (ROS) leading to the killing of tumor cells. Research focusing on the effective use of PDT in the treatment of glioma is already underway with promising results. Clinical studies on PDT for the treatment of gliomas have shown it to be a safe therapeutic modality with acceptable levels of side effects. However, some adverse sequelae have been observed during PDT of these tumours, such as increased photosensitivity, increased intracranial pressure or transient aphasia and worsening of pre-existing neurological deficits. Although the clinical sequelae of PDT are well described, the molecular mechanisms of PDT's effects on the healthy brain have not yet been thoroughly characterized. In our work, we attempt to summarize the molecular mechanisms of the effects of photosensitization on neural tissue, brain vasculature and the blood-brain barrier (BBB). We also point to findings presenting molecular approaches to protect the healthy brain from the adverse effects of photodynamic damage.
Collapse
Affiliation(s)
- Paweł Woźnicki
- Doctoral School, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland.
| |
Collapse
|
2
|
Gao YT, Liu JH, He K, Guo SL. Advances in two-photon absorption photodynamic therapy of glioma based on porphyrin-based metal-organicframework composites. Photodiagnosis Photodyn Ther 2024; 49:104281. [PMID: 39009207 DOI: 10.1016/j.pdpdt.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Gliomas of the brain are characterised by high aggressiveness, high postoperative recurrence rate, high morbidity and mortality, posing a great challenge to clinical treatment. Traditional treatments include surgery, radiotherapy and chemotherapy; they also have significant associated side effects, leading to difficulties in tumour resection and recurrence. Photodynamic therapy has been shown to be a promising new strategy to help treat malignant tumours of the brain. It irradiates the tumour site at a specific wavelength to activate a photosensitiser, which selectively accumulates at the tumour site, triggering a photochemical reaction that destroys the tumour cells. It has the advantages of being minimally invasive, highly targeted and with few adverse reactions, and is expected to be well used in anti-tumour therapy. However, the therapeutic effect of traditional PDT is limited by the weak tissue penetration ability of photosensitiser, hypoxia and immunosuppression in the tumour microenvironment. This paper reviews the current research status on the therapeutic principle of photodynamic therapy in glioma and the mechanism of tumour cell injury, and also analyses the advantages and disadvantages of the current application in glioma treatment, and clarifies the analysis of ideas to improve the tissue penetration ability of photosensitizers. It aims to provide a feasible direction for the improvement of photodynamic therapy for glioma and a reference for the clinical treatment of deep brain tumours.
Collapse
Affiliation(s)
- Yong-Tao Gao
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000.
| | - Jun-Hui Liu
- School of Physics and Electronics, Henan University, Kaifeng City, Henan Province, PR China, 475004
| | - Kang He
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000
| | - Shuang-Lei Guo
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng City, Henan Province, PR China, 475000
| |
Collapse
|
3
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
4
|
Pevná V, Huntošová V. Imaging of heterogeneity in 3D spheroids of U87MG glioblastoma cells and its implications for photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103821. [PMID: 37778715 DOI: 10.1016/j.pdpdt.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND In recent years, pharmacology and toxicology have emphasised the intention to move from in vivo models to simplified 3D objects represented by spheroidal models of cancer. Mitochondria are one of the subcellular organelles responsible for cell metabolism and are often a lucrative target for cancer treatment including photodynamic therapy (PDT). METHODS Hanging droplet-grown glioblastoma cells were forced to form spheroids with heterogeneous environments that were characterised by fluorescence microscopy and flow cytometry using fluorescent probes sensitive to oxidative stress and apoptosis. PDT was induced with hypericin at 590 nm. RESULTS It was found that the metabolic activity of the cells in the periphery and core of the spheroid was different. Higher oxidative stress and induction of caspase-3 were observed in the peripheral layers after PDT. These parts were more destabilised and showed higher expression of LC3B, an autophagic marker. However, the response of the whole system to the treatment was controlled by the cells in the core of the spheroids, which were hardly affected by the treatment. It has been shown that the depth of penetration of hypericin into this system is an important limiting step for PDT and the induction of autophagy and apoptosis. CONCLUSIONS In this work, we have described the fluorescence imaging of vital mitochondria, caspase-3 production and immunostaining of autophagic LC3B in cells from glioblastoma spheroids before and after PDT. Overall, we can conclude that this model represents an in vitro and in vivo applicable alternative for the study of PDT in solid microtumours.
Collapse
Affiliation(s)
- Viktória Pevná
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia.
| |
Collapse
|
5
|
Bartusik-Aebisher D, Serafin I, Dynarowicz K, Aebisher D. Photodynamic therapy and associated targeting methods for treatment of brain cancer. Front Pharmacol 2023; 14:1250699. [PMID: 37841921 PMCID: PMC10568033 DOI: 10.3389/fphar.2023.1250699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Brain tumors, including glioblastoma multiforme, are currently a cause of suffering and death of tens of thousands of people worldwide. Despite advances in clinical treatment, the average patient survival time from the moment of diagnosis of glioblastoma multiforme and application of standard treatment methods such as surgical resection, radio- and chemotherapy, is less than 4 years. The continuing development of new therapeutic methods for targeting and treating brain tumors may extend life and provide greater comfort to patients. One such developing therapeutic method is photodynamic therapy. Photodynamic therapy is a progressive method of therapy used in dermatology, dentistry, ophthalmology, and has found use as an antimicrobial agent. It has also found wide application in photodiagnosis. Photodynamic therapy requires the presence of three necessary components: a clinically approved photosensitizer, oxygen and light. This paper is a review of selected literature from Pubmed and Scopus scientific databases in the field of photodynamic therapy in brain tumors with an emphasis on glioblastoma treatment.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Iga Serafin
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
6
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
7
|
Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors. Biomolecules 2020; 10:biom10121651. [PMID: 33317162 PMCID: PMC7764199 DOI: 10.3390/biom10121651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.
Collapse
|
8
|
Kim MM, Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol 2020; 96:280-294. [PMID: 32003006 DOI: 10.1111/php.13219] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Akimoto J, Fukami S, Ichikawa M, Mohamed A, Kohno M. Intraoperative Photodiagnosis for Malignant Glioma Using Photosensitizer Talaporfin Sodium. Front Surg 2019; 6:12. [PMID: 30949484 PMCID: PMC6438081 DOI: 10.3389/fsurg.2019.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to demonstrate the clinical feasibility of intraoperative photodiagnosis (PD) of malignant brain tumor using talaporfin sodium (TPS), which is an agent used in photodynamic therapy (PDT) for cancers. Methods: Forty-seven patients diagnosed with malignant gliomas by preoperative imaging (42 patients with gliomas and 5 patients with other brain tumors) received an intravenous injection of TPS at 40 mg/m2 24 h before resection. During surgery, these patients were irradiated with diode laser light at 664 nm, and tumor fluorescence was observed. The fluorescence intensity was visually rated on a 3-point rating scale [strong fluorescence, weak fluorescence and no fluorescence]. TPS concentrations in 124 samples from 47 cases were measured by HPLC (High performance liquid chromatography). Results: The fluorescence intensity was confirmed to be weak in all patients with Grade II gliomas and strong in almost all patients with Grade III or IV gliomas, reflecting the histological grade of malignancy. In patients with non-glioma brain tumors except for 1 patient with a metastatic brain tumor, the fluorescence intensity was strong. The mean TPS concentration in tissues was 1.62 μg/g for strong fluorescence areas, 0.67 μg/g for weak fluorescence areas and 0.19 μg/g for no fluorescence areas. Conclusions: Establishment of an appropriate fluorescence observation system enabled fluorescence-guided resection of malignant brain tumors using TPS, and the fluorescence intensity of tumors correlated with the TPS concentrations in tissues. These results suggest that TPS is a useful photosensitizer for both intraoperative fluorescence diagnosis and photodynamic therapy.
Collapse
Affiliation(s)
- Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan.,Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo, Japan
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Megumi Ichikawa
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Awad Mohamed
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan.,Department of Neurosurgery, Sohag University, Sohag, Egypt
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
10
|
Belykh E, Yagmurlu K, Martirosyan NL, Lei T, Izadyyazdanabadi M, Malik KM, Byvaltsev VA, Nakaji P, Preul MC. Laser application in neurosurgery. Surg Neurol Int 2017; 8:274. [PMID: 29204309 PMCID: PMC5691557 DOI: 10.4103/sni.sni_489_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. METHODS We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. RESULTS Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. CONCLUSION Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ting Lei
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kashif M. Malik
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
11
|
Dabija M, Eva L, Poeata I, Paiu A, Dorobat V, Munteanu R. Unusual aggressive and rapidly growing glioblastoma multiforme – case presentation. ROMANIAN NEUROSURGERY 2017. [DOI: 10.1515/romneu-2017-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Glioblastoma multiform is one of the most rapidly progressing cerebral tumors and the most aggressive one in our neurosurgical experience. We present the case of a 45 year old patient with very aggressive type of tumor who had come to our service for the following: intense headache, confusion, right hemiparesis installed approximately one month before. IRM scan shows up the presence of a large tumoral mass without a precise border in the left temporal-parietal region which had extended all the way down to the thalamus. The planned intervention used 5-aminolevulinic acid (5-ALA) for the precise removal of the tumor mass, suboptimal because of the risk of lesioning the motor tracts – indicated by the intraoperative electrophysiological monitoring. After surgery the outcome was good with the partial regression of the motor deficit, but only after 3 weeks due to the unexpected tumor growth the neurological status started to decay and even worsened. The patient underwent surgery again with the partial remission of the symptoms although following imagistic controls showed up fast tumor growth once more. He was recommended to oncology service for the beginning of radiotherapy. We consider the evolution and invasion of this tumor in only a 3 weeks period being impressive.
Collapse
|
12
|
Foster N, Eljamel S. ALA-induced fluorescence image guided surgery of meningiomas: A meta-analyses. Photodiagnosis Photodyn Ther 2016; 15:73-8. [DOI: 10.1016/j.pdpdt.2016.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
13
|
Eljamel MS, Mahboob SO. The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagnosis Photodyn Ther 2016; 16:35-43. [PMID: 27491856 DOI: 10.1016/j.pdpdt.2016.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/19/2016] [Accepted: 07/30/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Surgical resection of high-grade gliomas (HGG) is standard therapy because it imparts significant progression free (PFS) and overall survival (OS). However, HGG-tumor margins are indistinguishable from normal brain during surgery. Hence intraoperative technology such as fluorescence (ALA, fluorescein) and intraoperative ultrasound (IoUS) and MRI (IoMRI) has been deployed. This study compares the effectiveness and cost-effectiveness of these technologies. METHODS Critical literature review and meta-analyses, using MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ALA, fluorescein (FLCN), IoUS or IoMRI to guide HGG-surgery. The meta-analyses were conducted according to statistical heterogeneity between studies. If there was no heterogeneity, fixed effects model was used; otherwise, a random effects model was used. Statistical heterogeneity was explored by χ2 and inconsistency (I2) statistics. To assess cost-effectiveness, we calculated the incremental cost per quality-adjusted life-year (QALY). RESULTS Gross total resection (GTR) after ALA, FLCN, IoUS and IoMRI was 69.1%, 84.4%, 73.4% and 70% respectively. The differences were not statistically significant. All four techniques led to significant prolongation of PFS and tended to prolong OS. However none of these technologies led to significant prolongation of OS compared to controls. The cost/QALY was $16,218, $3181, $6049 and $32,954 for ALA, FLCN, IoUS and IoMRI respectively. CONCLUSIONS ALA, FLCN, IoUS and IoMRI significantly improve GTR and PFS of HGG. Their incremental cost was below the threshold for cost-effectiveness of HGG-therapy, denoting that each intraoperative technology was cost-effective on its own.
Collapse
|
14
|
Fluorescence guided resection (FGR): A primer for oncology. Photodiagnosis Photodyn Ther 2016; 13:73-80. [DOI: 10.1016/j.pdpdt.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 01/27/2023]
|
15
|
Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, Lew SM, Girotti AW, Jogal S, LaViolette PS, Connelly JM, Whelan HT. Photodynamic therapy (PDT) for malignant brain tumors--where do we stand? Photodiagnosis Photodyn Ther 2015; 12:530-44. [PMID: 25960361 DOI: 10.1016/j.pdpdt.2015.04.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION What is the current status of photodynamic therapy (PDT) with regard to treating malignant brain tumors? Despite several decades of effort, PDT has yet to achieve standard of care. PURPOSE The questions we wish to answer are: where are we clinically with PDT, why is it not standard of care, and what is being done in clinical trials to get us there. METHOD Rather than a meta-analysis or comprehensive review, our review focuses on who the major research groups are, what their approaches to the problem are, and how their results compare to standard of care. Secondary questions include what the effective depth of light penetration is, and how deep can we expect to kill tumor cells. CURRENT RESULTS A measurable degree of necrosis is seen to a depth of about 5mm. Cavitary PDT with hematoporphyrin derivative (HpD) results are encouraging, but need an adequate Phase III trial. Talaporfin with cavitary light application appears promising, although only a small case series has been reported. Foscan for fluorescence guided resection (FGR) plus intraoperative cavitary PDT results were improved over controls, but are poor compared to other groups. 5-Aminolevulinic acid-FGR plus postop cavitary HpD PDT show improvement over controls, but the comparison to standard of care is still poor. CONCLUSION Continued research in PDT will determine whether the advances shown will mitigate morbidity and mortality, but certainly the potential for this modality to revolutionize the treatment of brain tumors remains. The various uses for PDT in clinical practice should be pursued.
Collapse
Affiliation(s)
- Brendan J Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Garth Brandal
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Steven Donlon
- Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Thomas S Mang
- Department of Oral and Maxillofacial Surgery, University at Buffalo, Buffalo, NY, United States
| | - Andrew B Foy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sachin Jogal
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter S LaViolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
16
|
Eljamel S. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature. Int J Mol Sci 2015; 16:10443-56. [PMID: 25961952 PMCID: PMC4463655 DOI: 10.3390/ijms160510443] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR) was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA) induced FIGR. MATERIALS Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. RESULTS The mean gross total resection (GTR) rate was 75.4% (95% CI: 67.4-83.5, p<0.001). The mean time to tumor progression (TTP) was 8.1 months (95% CI: 4.7-12, p<0.001). The mean overall survival gain reported was 6.2 months (95% CI: -1-13, p<0.001). The specificity was 88.9% (95% CI: 83.9-93.9, p<0.001) and the sensitivity was 82.6% (95% CI: 73.9-91.9, p<0.001). CONCLUSION 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP.
Collapse
Affiliation(s)
- Samy Eljamel
- Neurological Surgery, High Tech Neuro & Micro Surgery, Edinburgh EH3 8JB, UK.
| |
Collapse
|
17
|
Almerie MQ, Gossedge G, Wright KE, Jayne DG. Photodynamic diagnosis for detection of peritoneal carcinomatosis. J Surg Res 2015; 195:175-87. [PMID: 25682189 DOI: 10.1016/j.jss.2015.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peritoneal carcinomatosis is the dissemination of cancer in the peritoneal cavity secondary to abdominal or extra-abdominal malignancies. Accurate assessment of the disease's burden is a challenge because of the complexity of the peritoneal cavity and the small size of the metastatic nodules. Photodynamic diagnosis (PDD) is an emerging technology in tumor diagnosis. A photosensitizer is administered, which is preferentially taken up by cancer cells. The photosensitizer emits fluorescence when exposed to a light of a specific wavelength. This helps distinguish cancer from normal tissues. METHODS We systematically reviewed the evidence for using PDD in detecting peritoneal carcinomatosis in both animal and human literature. Both Medline and EMBASE databases were searched (November 2014). The titles and the abstracts of all retrieved citations were inspected, and the full articles of the relevant articles were obtained. RESULTS A total of 12 human and 18 animal studies were included. Clinical studies have shown PDD to be a safe modality with no significant adverse effects. It increases the detection of malignant peritoneal nodules by 21%-34% in comparison with white light alone. The sensitivity and specificity of PDD were reported at 83%-100% and 95%-100%, respectively. These findings were supported by multiple animal studies, which have shown an increase in the sensitivity of tumor detection when using PDD (72%-91%) in comparison with white light alone (39%). CONCLUSIONS PDD is a promising modality, which improves the detection of peritoneal carcinomatosis lesions. Further research, however, should investigate the impact of PDD on the patients' therapeutic management and final outcomes.
Collapse
Affiliation(s)
- Muhammad Qutayba Almerie
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds, United Kingdom.
| | - Gemma Gossedge
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds, United Kingdom
| | - Kathleen E Wright
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds, United Kingdom
| | - David G Jayne
- Section of Translational Anaesthesia and Surgical Sciences, Leeds Institute of Biomedical & Clinical Sciences (LIBACS), St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
18
|
Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies. Cancer Treat Rev 2014; 40:229-41. [DOI: 10.1016/j.ctrv.2012.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
|
19
|
Chen X, Wang C, Teng L, Liu Y, Chen X, Yang G, Wang L, Liu H, Liu Z, Zhang D, Zhang Y, Guan H, Li X, Fu C, Zhao B, Yin F, Zhao S. Calcitriol enhances 5-aminolevulinic acid-induced fluorescence and the effect of photodynamic therapy in human glioma. Acta Oncol 2014; 53:405-13. [PMID: 24032442 DOI: 10.3109/0284186x.2013.819993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Glioma recurrence frequently occurs close to the marginal area of the surgical cavity as a result of residual infiltrating glioma cells. Fluorescence-guided surgery with 5-aminolevulinic acid (ALA) for resection of gliomas has been used as an effective therapeutic approach to discriminate malignant tissue from brain tissue and to facilitate patient prognosis. ALA-based photodynamic therapy is an effective adjuvant treatment modality for gliomas. However, insufficient protoporphyrin IX (PpIX) accumulation may limit the applicability of fluorescence-guided resection and photodynamic therapy in the marginal areas of gliomas. METHODS To be able to understand how to overcome these issues, human glioma cells and normal astrocytes were used as the model system. Glioma cells and astrocytes were preconditioned with calcitriol for 48 hours and then incubated with ALA. Changes in ALA-induced PpIX fluorescence and cell survival after light exposure were assessed. Furthermore, expression of porphyrin synthetic enzymes in pretreated glioma cells was analyzed. RESULTS Calcitriol can be administered prior to ALA as a non-toxic preconditioning regimen to significantly enhance ALA-induced PpIX levels and fluorescence. This increase in PpIX level was detected preferentially in glioma versus normal cells. Also, calcitriol pretreated glioma cells exhibited increased cell death following ALA-based photodynamic therapy. Furthermore, mechanistic studies documented that expression of the porphyrin synthesis enzymes coproporphyrinogen oxidase was increased by calcitriol at the mRNA level. CONCLUSION We demonstrated for the first time a simple, non-toxic and highly effective preconditioning regimen to selectively enhance PpIX fluorescence and the response of ALA-PDT in glioma cells. This finding suggests that the combined treatment of glioma cells with calcitriol plus ALA may provide an effective and selective therapeutic modality to enhance ALA-induced PpIX fluorescent quality for improving discrimination of tumor tissue and PDT efficacy.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University , Harbin , People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barron G, Valentine R, Moseley H, Brancaleon L, Hill C, Woods J. Porphyrin profile in four human cell lines after supplementation with 5-aminolaevulinic acid and its methyl ester. Photodiagnosis Photodyn Ther 2013; 10:654-63. [DOI: 10.1016/j.pdpdt.2013.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
|
21
|
Cornelius JF, Langen KJ, Stoffels G, Hänggi D, Sabel M, Steiger HJ. Positron Emission Tomography Imaging of Meningioma in Clinical Practice. Neurosurgery 2011; 70:1033-41; discussion 1042. [DOI: 10.1227/neu.0b013e31823bcd87] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Meningiomas represent about 20% of intracranial tumors and are the most frequent nonglial primary brain tumors. Diagnosis is based on computed tomography (CT) and magnetic resonance imaging (MRI). Mainstays of therapy are surgery and radiotherapy. Adjuvant chemotherapy is tested in clinical trials of phase II. Patients are followed clinically by imaging. However, classical imaging modalities such as CT and MRI have limitations. Hence, we need supplementary imaging tools. Molecular imaging modalities, especially positron emission tomography (PET), represent promising new instruments that are able to characterize specific metabolic features. So far, these modalities have only been part of limited study protocols, and their impact on clinical routine management is still under investigation. It may be expected that their extended use will provide new aspects about meningioma imaging and biology.
In the present article, we summarize PET imaging for meningiomas based on a thorough review of the literature. We discuss and illustrate the potential role of PET imaging in the clinical management of meningiomas. Finally, we indicate current limitations and outline directions for future research.
Collapse
Affiliation(s)
- Jan Frederick Cornelius
- Neurochirurgische Klinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Karl Josef Langen
- Institut für Medizin, Forschungszentrum Jülich, Heinrich-Heine-Universität, Jülich, Germany
| | - Gabriele Stoffels
- Institut für Medizin, Forschungszentrum Jülich, Heinrich-Heine-Universität, Jülich, Germany
| | - Daniel Hänggi
- Neurochirurgische Klinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Michael Sabel
- Neurochirurgische Klinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Hans Jakob Steiger
- Neurochirurgische Klinik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
22
|
Senge MO, Brandt JC. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)--a second-generation photosensitizer. Photochem Photobiol 2011; 87:1240-96. [PMID: 21848905 DOI: 10.1111/j.1751-1097.2011.00986.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review traces the development and study of the second-generation photosensitizer 5,10,15,20-tetra(m-hydroxyphenyl)chlorin through to its acceptance and clinical use in modern photodynamic (cancer) therapy. The literature has been covered up to early 2011.
Collapse
Affiliation(s)
- Mathias O Senge
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
23
|
Arum CJ, Gederaas OA, Larsen ELP, Randeberg LL, Hjelde A, Krokan HE, Svaasand LO, Chen D, Zhao CM. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:028001. [PMID: 21361708 DOI: 10.1117/1.3536536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.
Collapse
Affiliation(s)
- Carl-Jørgen Arum
- St. Olavs University Hospital Trondheim, Department of Surgery, N-7006 Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Allison RR, Bagnato VS, Sibata CH. Future of oncologic photodynamic therapy. Future Oncol 2010; 6:929-40. [DOI: 10.2217/fon.10.51] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Photodynamic therapy (PDT) is a tumor-ablative and function-sparing oncologic intervention. The relative simplicity of photosensitizer application followed by light activation resulting in the cytotoxic and vasculartoxic photodynamic reaction has allowed PDT to reach a worldwide audience. With several commercially available photosensitizing agents now on the market, numerous well designed clinical trials have demonstrated the efficacy of PDT on various cutaneous and deep tissue tumors. However, current photosensitizers and light sources still have a number of limitations. Future PDT will build on those findings to allow development and refinement of more optimal therapeutic agents and illumination devices. This article reviews the current state of the art and limitations of PDT, and highlight the progress being made towards the future of oncologic PDT.
Collapse
Affiliation(s)
- Ron R Allison
- 21st Century Oncology, 801 WH Smith Blvd, Greenville, NC 27834, USA
| | | | - Claudio H Sibata
- Brody School of Medicine, Radiation Oncology Department, 600 Moye Blvd, Greenville, NC 27834, USA
| |
Collapse
|
25
|
Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther 2010; 7:61-75. [PMID: 20510301 DOI: 10.1016/j.pdpdt.2010.02.001] [Citation(s) in RCA: 530] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/18/2010] [Indexed: 12/20/2022]
Abstract
A myriad of naturally occurring and synthetic structures are capable of transferring the energy of light. Few, however, allow for this energy transfer to enable a type II photochemical reaction which, as currently practiced, is a fundamental component of photodynamic therapy. Even fewer of these agents, aptly termed photosensitizers, have found success in the treatment of patients. This review will focus on the oncologic photosensitizers that have come to clinical trial with outcomes published in peer reviewed journals. Based on a clinical orientation the qualities of successful photosensitizers will be examined, how current drugs fare and potential future options explored.
Collapse
Affiliation(s)
- Ron R Allison
- 21st Century Oncology, Greenville, NC 27834-3764, USA
| | | |
Collapse
|
26
|
Abstract
Photodynamic techniques such as photodynamic diagnosis (PDD), fluorescence-guided tumour resection (FGR) and photodynamic therapy (PDT) are currently undergoing intensive clinical investigations as adjuvant treatment for malignant brain tumours. The following chapter provides an overview on the current clinical data and trials of PDT as well as photosensitizers, technical developments and indications for photodynamic application in neurosurgery. Besides many clinical phase I/II trials for PDT for malignant brain tumours, there are only few controlled clinical trials following tumour resection. Variations in treatment protocols, variation of photosensitizers and light dose make the evaluation scientifically difficult; however there is a clear trend towards prolonging median survival after one single photodynamic treatment as compared to standard therapeutic regimens. According to the meta analysis the median survival after PDT for primary glioblastoma multiforme (WHO grade IV) was 22 months and for recurrent GBM was 9 months as compared to standard conventional treatment, in which it is 15 and 3 months, respectively. Fluorescence-guided resection of the tumour demonstrated significant greater reduction of tumour burden. The combination of PDD/ FGR and intraoperative PDT ("to see and to treat") offers an exciting approach to the treatment of malignant brain tumours. PDT was generally well tolerated and side effects consisted of occasionally increased intracranial pressure and prolonged skin sensitivity against direct sunlight.
Collapse
|
27
|
Aziz F, Telara S, Moseley H, Goodman C, Manthri P, Eljamel MS. Photodynamic therapy adjuvant to surgery in metastatic carcinoma in brain. Photodiagnosis Photodyn Ther 2009; 6:227-30. [PMID: 19932456 DOI: 10.1016/j.pdpdt.2009.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED Cerebral metastases occur in 15-40% of cancers and their incidence is increasing. We have studied the use of fluorescence image-guided surgery and repetitive photodynamic therapy in 14 metastatic brain cancers. METHODS Case note review of prospectively collected data on patients who were treated with PDT at the time of surgery for brain metastases. Patients were consented for the surgery and PDT. Patients were given 2 mg/kg body weight of Photofrin IV 48 h before the surgery and 20 mg/kg 5-aminolevulenic acid orally 3h before surgery. Following resection of the tumor using fluorescence, microsurgical and image guidance techniques, the post-excision cavity is filled with a balloon using 0.32% intralipid solution and up to five consecutive PDT treatments were given using 100 J/cm(2) Diode Laser 630 nm. Patients were followed up clinically and by brain imaging every 3 months till their death. RESULTS Seven were lung in origin and seven of variable sources. One patient with lung metastases died of unrelated cause while the remaining six had remained free from brain disease till their death. Two of the remaining seven patients died of local brain recurrence, one bowel after 4 weeks and one of unknown primary after 70 weeks. CONCLUSION Adjuvant repetitive PDT seems to offer an excellent local control of metastatic brain carcinomas with about 79% of patients succumb to the primary and only two out of fourteen died of brain recurrence with the best results obtained in lung cancer.
Collapse
Affiliation(s)
- F Aziz
- Department of Neurosurgery, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | | | | | | | | |
Collapse
|