1
|
Salmasi Z, Kamali H, Rezaee H, Nazeran F, Jafari Z, Eisvand F, Teymouri M, Khordad E, Mosafer J. Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit. Drug Deliv Transl Res 2025; 15:770-785. [PMID: 39215953 DOI: 10.1007/s13346-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, DOX (Doxorubicin) and Fe3O4 magnetic nanocrystals (SPIONs (Superparamagnetic iron oxide nanocrystals)) were encapsulated in the PLGA-PEG: poly(lactide-co-glycolide)-b-poly(ethylene glycol) nanoparticles for theranostic purposes. The final prepared formulation which is called NPs (Nanoparticles) exhibited a particle size with a mean diameter of ~ 209 nm and a sufficient saturation magnetization value of 1.65 emu/g. The NPs showed faster DOX release at pH 5.5 compared to pH 7.4. Also, the cytotoxicity effect of NPs increased compared to Free-DOX alone in C6 glioma cancer cells. For in vivo investigations, the 2.2 Kg rabbits were injected with NPs formulations via a central articular anterior vein in their ears. Furthermore, the images of rabbit organs were depicted via MR (Magnetic resonance) and fluorescent imaging techniques. A negative contrast (dark signal) was observed in T2 (Relaxation Time) weighted MR images of IV (Intravenously)-injected rabbits with NPs compared to the control ones. The organ's florescent images of NPs-injected rabbits showed a high density of red color related to the accumulation of DOX in liver and kidney organs. These data showed that the NPs have no cytotoxicity effect on the heart. Also, the results of histopathological tests of different organs showed that the groups receiving NPs and Free-DOX were almost similar and no significant difference was seen, except for the cardiac tissue in which the pathological effects of NPs were significantly less than the Free-DOX. Additionally, pharmacokinetic studies were also conducted at the sera and whole bloods of IV-injected rabbits with NPs and Free-DOX. The pharmacokinetic parameters showed that NPs could enhance the DOX retention in the serum compared to the Free-DOX. Altogether, we aimed to produce a powerful delivery nanosystem for its potential in dual therapeutic and diagnostic applications which are called theranostic agents.
Collapse
Affiliation(s)
- Zahra Salmasi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Rezaee
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Nazeran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frarhad Eisvand
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manouchehr Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, North Khorasan, Iran
| | - Elnaz Khordad
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, P.O. Box 9516915169, Torbat Heydariyeh, Iran.
| |
Collapse
|
2
|
Chiang MR, Hsu CW, Pan WC, Tran NT, Lee YS, Chiang WH, Liu YC, Chen YW, Chiou SH, Hu SH. Reprogramming Dysfunctional Dendritic Cells by a Versatile Catalytic Dual Oxide Antigen-Captured Nanosponge for Remotely Enhancing Lung Metastasis Immunotherapy. ACS NANO 2024. [PMID: 39739571 DOI: 10.1021/acsnano.4c09525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported. Intravenous delivery of DON enhances tumor accumulation via the marginated target. At the tumor site, DON incorporates cerium oxide nanozyme (CeO2)-coated iron oxide nanocubes as a peroxide mimicry in cancer cells, promoting sustained ROS generation and depleting intracellular glutathione, i.e., chemodynamic therapy (CDT). Upon high-frequency magnetic field (HFMF) irradiation, CDT accelerates the decomposition of H2O2 and the subsequent production of more reactive oxygen species, known as Kelvin's force laws, which promote the cycle between Fe3+/Fe2+ and Ce3+/Ce4+ in a sustainable active surface. HFMF-boosted catalytic DON promotes tumors to release tumor-associated antigens, including neoantigens and damage-associated molecular patterns. Then, the porous DON acts as an antigen transporter to deliver autologous tumor-associated antigens to program DCs, resulting in sustained immune stimulation. Catalytic DON combined with the immune checkpoint inhibitor (anti-PD1) in lung metastases suppresses tumors and improves survival over 40 days.
Collapse
Affiliation(s)
- Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wei Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ngoc-Tri Tran
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Sheng Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taipei 112304, Taiwan
- Department of Medical Research, Veterans General Hospital, Taipei, Taipei 112304, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Hong S, Jeong SH, Han JH, Yuk HD, Jeong CW, Ku JH, Kwak C. Highly efficient nucleic acid encapsulation method for targeted gene therapy using antibody conjugation system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102322. [PMID: 39363882 PMCID: PMC11447337 DOI: 10.1016/j.omtn.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
Gene therapy has surfaced as a promising avenue for treating cancers, offering the advantage of deliberate adjustment of targeted genes. Nonetheless, the swift degradation of nucleic acids in the bloodstream necessitates an effective and secure delivery system. The widespread utilization of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as drug delivery systems has highlighted challenges in controlling particle size and release properties. Moreover, the encapsulation of nucleic acids exacerbates these difficulties due to the negatively charged surface of PLGA nanoparticles. In this study, we aimed to improve the encapsulation efficiency of nucleic acids by employing negatively charged microbeads and optimizing the timing of the specific formulation steps. Furthermore, by conjugating PSMA-617, a ligand for the prostate-specific membrane antigen (PSMA), with PLGA nanoparticles, we assessed the antitumor effects and the efficacy of a nucleic acid delivery system on a prostate cancer model. The employed technique within the nucleic acid encapsulation system represents a novel approach that could be adapted to encapsulate various kinds of nucleic acids. Moreover, it enables the attachment of targeting moieties to different cell membrane proteins, thereby unveiling new prospects for precise therapeutics in cancer therapy.
Collapse
Affiliation(s)
- Seokbong Hong
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Hyeong Dong Yuk
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, 03080 Seoul, South Korea
- Department of Urology, Seoul National University Hospital, 03080 Seoul, South Korea
| |
Collapse
|
4
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Dutta B, Barick KC, Hassan PA, Tyagi AK. Recent progress and current status of surface engineered magnetic nanostructures in cancer theranostics. Adv Colloid Interface Sci 2024; 334:103320. [PMID: 39515063 DOI: 10.1016/j.cis.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - A K Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Deng X, Zhao R, Tang Y, Yi M, Wang D, Lin W, Wang G. FeS 2@COF based nanocarrier for photothermal-enhanced chemodynamic/thermodynamic tumor therapy and immunotherapy via reprograming tumor-associated macrophages. J Nanobiotechnology 2024; 22:711. [PMID: 39543651 PMCID: PMC11566302 DOI: 10.1186/s12951-024-02992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Developing high-performance nanomedicines to enhance antitumor efficacy remains a hot point in the field of biomedicine. In this study, we designed a versatile nanocomposite (FeS₂@COF-HA/AIPH) integrating covalent organic frameworks (COF) functionalized with pyrite (FeS₂) for synergistic photothermal (PTT), chemodynamic (CDT), thermodynamic (TDT) therapies, and immunotherapy. The superior photothermal effects and catalytic capabilities of FeS₂@COF enabled a minimally invasive PTT/CDT combination. The nanoplatform, with its mesoporous structure, also served as a drug delivery system, encapsulating the thermos-decomposable initiator AIPH. The hyaluronic acid (HA) coating not only improved tumor-targeting efficiency but also prevented nonspecific AIPH release. Under near-infrared (NIR) irradiation, the localized hyperthermia triggered AIPH decomposition, generating toxic alkyl radicals (•R) for TDT, further enhancing CDT efficiency. The combination of PTT, CDT, TDT, and immunotherapy led to potent antitumor effects with minimal systemic toxicity, both in vitro and in vivo. Notably, the nanoplatform effectively reprogrammed tumor-associated macrophages (TAMs) from an M2 to M1 phenotype, boosting antitumor immunity. This multifunctional platform thus offers a promising strategy for integrated PTT, CDT, TDT, and immune activation in tumor therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - YunFeng Tang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Yi
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Wang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Makela AV, Tundo A, Liu H, Schneider D, Hermiston T, Khodakivskyi P, Goun E, Contag CH. Targeted intracellular delivery of molecular cargo to hypoxic human breast cancer stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575071. [PMID: 39605477 PMCID: PMC11601403 DOI: 10.1101/2024.01.12.575071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cancer stem cells (CSCs) drive tumorigenesis, are responsible for metastasis, and resist conventional therapies thus posing significant treatment challenges. CSCs reside in hypoxic tumor regions and therefore, effective therapies must target CSCs within this specific microenvironment. CSCs are characterized by limited distinguishable features, however, surface displayed phosphatidylserine (PS) appears to be characteristic of stem cells and offers a potential target. GlaS, a truncated coagulation protein that is internalized after binding PS, was investigated for intracellular delivery of molecular payloads to CSCs. Intracellular delivery via GlaS was enhanced in patient-derived CD44+ mammary CSCs under hypoxic conditions relative to physoxia or hyperoxia. In vivo, GlaS successfully targeted hypoxic tumor regions, and functional delivery of molecular cargo was confirmed using luciferin conjugated to GlaS via a disulfide linkage (GlaS-SS-luc), which releases luciferin upon intracellular glutathione reduction. Bioluminescence imaging demonstrated effective GlaS-mediated delivery of luciferin, a model drug, to CSCs in culture and in vivo. These findings offer the promise of directed delivery of therapeutic agents to intracellular targets in CSCs.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Anthony Tundo
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Huiping Liu
- Department of Pharmacology and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | - Elena Goun
- Department of Chemistry, University of Missouri, Columbia, MO
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
- Departments of Biomedical Engineering, and Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
| |
Collapse
|
8
|
Luo N, Liu L, Luo J, Zhou Z, Sun CL, Hua X, Luo L, Wang J, Geng H, Shao X, Zhang HL, Liu Z. Alternating Donor-Acceptor Ladder-Type Heteroarene for Efficient Photothermal Conversion via Boosting Non-Radiative Decay. Angew Chem Int Ed Engl 2024:e202418047. [PMID: 39527040 DOI: 10.1002/anie.202418047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The development of novel ladder-type conjugated molecules is crucial for advancing supramolecular chemistry and material science. In this study, we report a straightforward synthesis of new alternating donor-acceptor (D-A) ladder-type heteroarene, FCDTDPP, and demonstrate its application as photothermal agent for imaging and cancer therapy. FCDTDPP is constructed by vinylene bridge between cyclopentadithiophene (D) and diketopyrrolopyrrole (A) through intramolecular Friedel-Crafts type reaction. FCDTDPP exhibits unique combination of good molecular planarity, efficient intra-/intermolecular mixed D-A interactions, and local aromaticity. These features collectively contribute to its broad and intense absorptions with narrow band gap in red band of the spectra, coupled with multiple vibrational absorption feature, thereby enhancing non-radiative decay process and resulting in efficient photothermal conversion property. FCDTDPP and its nanoparticles (NPs) exhibit superior photothermal conversion performance and stability under 660 nm laser irradiation. Moreover, in vitro studies reveal that FCDTDPP NPs possess excellent biocompatibility, low cytotoxicity, and robust photothermal therapeutic efficacy, a finding further corroborated by preliminary in vivo experiments in tumor-bearing mice. This work charts a novel course for the molecular engineering of organic photothermal conversion systems, propelling relevant research forward.
Collapse
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Jinyang Luo
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Hua Geng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Cheng R, Wang S. Cell-mediated nanoparticle delivery systems: towards precision nanomedicine. Drug Deliv Transl Res 2024; 14:3032-3054. [PMID: 38615157 PMCID: PMC11445310 DOI: 10.1007/s13346-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
Cell-mediated nanoparticle delivery systems (CMNDDs) utilize cells as carriers to deliver the drug-loaded nanoparticles. Unlike the traditional nanoparticle drug delivery approaches, CMNDDs take the advantages of cell characteristics, such as the homing capabilities of stem cells, inflammatory chemotaxis of neutrophils, prolonged blood circulation of red blood cells, and internalization of macrophages. Subsequently, CMNDDs can easily prolong the blood circulation, cross biological barriers, such as the blood-brain barrier and the bone marrow-blood barrier, and rapidly arrive at the diseased areas. Such advantageous properties make CMNDDs promising delivery candidates for precision targeting. In this review, we summarize the recent advances in CMNDDs fabrication and biomedical applications. Specifically, ligand-receptor interactions, non-covalent interactions, covalent interactions, and internalization are commonly applied in constructing CMNDDs in vitro. By hitchhiking cells, such as macrophages, red blood cells, monocytes, neutrophils, and platelets, nanoparticles can be internalized or attached to cells to construct CMNDDs in vivo. Then we highlight the recent application of CMNDDs in treating different diseases, such as cancer, central nervous system disorders, lung diseases, and cardiovascular diseases, with a brief discussion about challenges and future perspectives in the end.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
10
|
Mneimneh AT, Darwiche N, Mehanna MM. Investigating the therapeutic promise of drug-repurposed-loaded nanocarriers: A pioneering strategy in advancing colorectal cancer treatment. Int J Pharm 2024; 664:124473. [PMID: 39025341 DOI: 10.1016/j.ijpharm.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrence and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticles formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
11
|
Bazzazan MA, Fattollazadeh P, Keshavarz Shahbaz S, Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int J Pharm 2024; 664:124639. [PMID: 39187034 DOI: 10.1016/j.ijpharm.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks expression of estrogen, progesterone, and HER2 receptor targets for therapy. Polymeric nanoparticles help address the challenges in treating TNBC by enabling tailored and targeted drug delivery. Biocompatible polymeric nanoparticles leverage enhanced tumor permeability for site-specific accumulation and ligand-mediated active targeting to boost specificity. Controlled, sustained intratumorally release of encapsulated chemotherapies, such as paclitaxel and curcumin, improves antitumor efficacy as demonstrated through preclinical TNBC models. However, the practical application of these nanomedicines still has room for improvement. Advancing personalized nanoparticle platforms that align treatments to TNBC's expanding molecular subtypes shows promise. Expanding the polymer range through novel copolymers or drug conjugates may improve tumor penetration, stability, and drug encapsulation. Incorporating gene therapies, imaging agents, or triggering stimuli responsiveness into polymeric nanoparticles can also overcome innate and acquired drug resistance in TNBC while monitoring outcomes. This article reviews the different types of nanoparticles used to treat TNBC and the different mechanisms of nanoparticles that can deliver drugs to tumor cells. Collaboration across different disciplines aimed at developing combination therapies, immuno-oncology, tumor-targeting ligands, and translating preclinical safety/efficacy via scalable manufacturing practices is essential. Well-designed polymeric nanoparticles offer immense potential for patient-centric TNBC treatment, but continued optimization across bench to bedside efforts is critical for clinical realization and transforming patient outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Bazzazan
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Pouriya Fattollazadeh
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
12
|
Ryu D, Park HB, An EK, Kim SJ, Kim DY, Lim D, Hwang J, Kwak M, Im W, Ryu JH, You S, Lee PCW, Jin JO. Photoimmunotherapy using indocyanine green-loaded Codium fragile polysaccharide and chitosan nanoparticles suppresses tumor growth and metastasis. J Nanobiotechnology 2024; 22:650. [PMID: 39438917 PMCID: PMC11515802 DOI: 10.1186/s12951-024-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Metastasis and recurrence are the main challenges in cancer treatment. Among various therapeutic approaches, immunotherapy holds promise for preventing metastasis and recurrence. In this study, we evaluated the efficacy of treating primary cancer and blocking metastasis and recurrence with photo-immunotherapeutic nanoparticles, which were synthesized using two types of charged polysaccharides. Codium fragile polysaccharide (CFP), which exhibits immune-stimulating properties and carries a negative charge, was combined with positively charged chitosan to synthesize nanoparticles. Additionally, indocyanine green (ICG), a photosensitizer, was loaded inside these particles and was referred to as chitosan-CFP-ICG (CC-ICG). Murine colon cancer cells (CT-26) internalized CC-ICG, and subsequent 808-nanometer laser irradiation promoted apoptotic/necrotic cell death. Moreover, intratumoral injection of CC-ICG, with 808-nanometer laser irradiation eliminated CT-26 tumors in mice. Rechallenged lung metastases of CT-26 cancer were inhibited by dendritic cell activation-mediated cytotoxic T lymphocyte stimulation in mice cured by CC-ICG. These results demonstrated that CC-ICG is a natural tumor therapeutic with the potential to treat primary tumors and suppress metastasis and recurrence.
Collapse
Affiliation(s)
- Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Da Young Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Wonpil Im
- Departments of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon, 210-702, South Korea.
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea.
| |
Collapse
|
13
|
Chen Y, Lu Y, Hua K, Li J, Zheng J, Pan Y, Du Y, Zhang Q, Li W. Intracellular Generation of Alkyl Radicals Enabled by a Self-Catalytic ATRP Nanoinitiator. ACS Macro Lett 2024; 13:1233-1239. [PMID: 39258749 DOI: 10.1021/acsmacrolett.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Oxygen-independent alkyl radicals (R•) have demonstrated great promise in combating tumor hypoxia. Currently, Azo compounds have been the primary source of R•, suffering from external stimuli and decomposition during circulation. Herein, we developed a self-catalytic ATRP nanoinitiator that could generate R• via glutathione (GSH) reduction and thus selectively induce apoptosis of tumor cells. Specifically, a conjugation of laccase (possessing a copper(II) complex) and polymeric alkyl bromide, poly(iBBr), was fabricated to yield an ATRP nanoinitiator (Lac-P(iBBr)). After internalization by cells featured with overexpressed GSH, copper(II) in Lac-P(iBBr) was reduced to copper(I) by GSH, which abstracted the Br atom in poly(iBBr) to yield toxic R•. Moreover, GSH-depletion intensified the oxidative damage caused by R•. Efficient generation of R• by Lac-P(iBBr) could happen in lab flasks, living cells, and tumor-bearing mice without any external stimuli, as demonstrated by the radical product, as well as the consumption of GSH. Moreover, the self-catalytic ATRP nanoinitiator significantly induced cell apoptosis and suppressed tumor growth. Our study expands the chemical toolbox to manipulate cell fates.
Collapse
Affiliation(s)
- Yubin Chen
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Yao Lu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Kai Hua
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Junyan Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Jingtao Zheng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Yanyan Pan
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Yongzhong Du
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai, Shandong 264003, China
| | - Qiang Zhang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai, Shandong 264003, China
| |
Collapse
|
14
|
Yeo S, Jung S, Kim H, Ahn JH, Hwang SJ. 4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity. Pharmaceuticals (Basel) 2024; 17:1296. [PMID: 39458937 PMCID: PMC11514591 DOI: 10.3390/ph17101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cancer is one of the most significant threats to human health. Following surgical excision, chemotherapy is an effective strategy against remaining cancer cells. 4-hexylresorcinol (4-HR) has anti-cancer properties and exhibits hydrophobicity-induced aggregation in the blood that has trouble with targeted tumor delivery and cellular uptake of the drug. The purpose of this study is to encapsulate 4-HR into solid lipid nanoparticles (SLNs) to enhance its anti-cancer effect by avoiding aggregation and facilitating cellular uptake. METHODS 4-HR SLNs were prepared via hot melt homogenization with sonication. SLN characteristics were assessed by analyzing particle size, zeta potential, and drug release. Cytotoxicity, as an indicator of the anti-cancer effect, was evaluated against HeLa (cervical cancer in humans), A549 (lung cancer in humans), and CT-26 (colon carcinoma in mice) cell lines. RESULTS Particle size ranged from 169.4 to 644.8 nm, and zeta potential ranged from -19.8 to -40.3 mV, which are conducive to cellular uptake. Entrapment efficiency (EE) of 4-HR was found to be 75.0-96.5%. The cytotoxicity of 4-HR-loaded SLNs demonstrated enhanced anti-cancer effects compared to pure 4-HR. The enhancement of anti-cancer effects depended on reduced particle size based on cellular uptake, the EE, and the cell type. CONCLUSIONS These findings imply that 4-HR-loaded SLN is a promising strategy for chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Sooho Yeo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Sukkyun Jung
- Research Center of Barunbarum Co., Seoul 06776, Republic of Korea;
| | - Haneul Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Jun-Hyun Ahn
- Department of Biopharmaceutical Engineering, Hannam University, 1646 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| |
Collapse
|
15
|
Poonia N, Jadhav NV, Mamatha D, Garg M, Kabra A, Bhatia A, Ojha S, Lather V, Pandita D. Nanotechnology-assisted combination drug delivery: a progressive approach for the treatment of acute myeloid leukemia. Ther Deliv 2024; 15:893-910. [PMID: 39268925 PMCID: PMC11497954 DOI: 10.1080/20415990.2024.2394012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous hematopoietic cancer prevalent in adults, has been a leading cause of leukemia-associated deaths for decades. Despite advancements in understanding its pathology and pharmacological targets, therapeutic strategies have seen minimal change. The standard treatment, combining cytarabine and anthracycline, has persisted, accompanied by challenges such as pharmacokinetic issues and non-specific drug delivery, leading to severe side effects. Nanotechnology offers a promising solution through combination drug delivery. FDA-approved CPX351 (VYXEOS™) a liposomal formulation delivering doxorubicin and cytarabine, exemplifies enhanced therapeutic efficacy. Ongoing research explores various nanocarriers for delivering multiple bioactives, addressing drug targeting, pharmacokinetics and chemoresistance. This review highlights nanotechnology-based combination therapies for the effective management of AML, presenting a potential breakthrough in leukemia.
Collapse
Affiliation(s)
- Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Nikita Vijay Jadhav
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
| | - Davuluri Mamatha
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector-125, Noida, 201313, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (Govt of Punjab), Dabwali Road, Bathinda, Punjab, 151001, India
| | - Shreesh Ojha
- Pharmacology, College of Medicine & Health Sciences, P.O. Box 15551, Al Ain, UAE
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
- Centre for Advanced Formulation & Technology (CAFT), Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
16
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
17
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
18
|
Wang C, Zhang S. Two-dimensional metal organic frameworks in cancer treatment. MATERIALS HORIZONS 2024; 11:3482-3499. [PMID: 38779943 DOI: 10.1039/d4mh00068d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
With large specific surface area, controllable pore size, increased active sites, and structural stability, two-dimensional metal organic frameworks (2D MOFs) have emerged as promising nanomedicines in cancer therapy. These distinctive features make 2D MOFs particularly advantageous in cancer treatment and the corresponding application has gained considerable popularity, signifying significant application potential. Herein, recent advances in various applications including drug delivery and chemotherapy, photodynamic therapy, sonodynamic therapy, chemodynamic therapy, catalytic therapy, and combined therapy were summarized, with emphasis on the latest progress of new materials and mechanisms for these processes. Moreover, the current challenges, potential solutions, and possible future directions are discussed as well.
Collapse
Affiliation(s)
- Chao Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218-2625, USA.
| | - Shan Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
19
|
Kono Y, Sugaya T, Yasudome H, Ogiso H, Ogawara KI. Preparation of stable and monodisperse paclitaxel-loaded bovine serum albumin nanoparticles via intermolecular disulfide crosslinking. Biochem Biophys Rep 2024; 38:101713. [PMID: 38681670 PMCID: PMC11047288 DOI: 10.1016/j.bbrep.2024.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Paclitaxel (PTX) is one of the most used anti-cancer drugs worldwide. Due to its insolubility in water, the clinically available liquid formulation of PTX contains Cremophor EL that is responsible for severe hypersensitivity. Albumin-based nanoparticles have emerged as a promising carrier for anti-cancer drugs because albumin nanoparticles have high capacity to not only load lipophilic drugs without solubilizer but also accumulate in tumor by both passive and active mechanisms. In this study, we attempted to prepare solvent-free formulation of PTX-loaded bovine serum albumin (BSA) nanoparticles with high stability, and the in vitro stability in serum were comparatively assessed between our PTX-loaded BSA nanoparticles and clinically used nanoparticulate albumin-bound PTX (Abraxane®). PTX-loaded BSA nanoparticles were prepared by intermolecular disulfide crosslinking. When BSA molecules were used without denaturation by guanidinium, the obtained BSA nanoparticles showed broad size distribution. On the other hand, the nanoparticles composed of denatured BSA by guanidinium had a uniform size around 100 nm. The PTX encapsulation efficiency of BSA nanoparticles were approximately 30-40 %. In addition, in vitro gel filtration analysis and dialysis study demonstrated that PTX-loaded BSA nanoparticles had higher colloidal stability and sustained PTX release property than Abraxane® in serum. These results suggest that BSA nanoparticles is a promising drug carrier for improving therapeutic efficacy of PTX and reducing its adverse effects.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Tomoyuki Sugaya
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hikaru Yasudome
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hideo Ogiso
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikoyama, Imizu, 939-0363, Japan
| | - Ken-ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| |
Collapse
|
20
|
Li P, Zhai Z, Fang J, Wang R, Li W, Wang B, Wang J, Zhu J, Bing F, Pan Q, Gao C, Lu S. PLGA micro/nanoparticle vaccination elicits non-tumor antigen specific resident memory CD8 + T cell protection from hepatocellular carcinoma. NANOSCALE 2024; 16:12149-12162. [PMID: 38833269 DOI: 10.1039/d4nr00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Together, tumor and virus-specific tissue-resident CD8+ memory T cells (TRMs) of hepatocellular carcinoma (HCC) patients with Hepatitis B virus (HBV) infection can provide rapid frontline immune surveillance. The quantity and activity of CD8+ TRMs were correlated with the relapse-free survival of patients with improved health. However, HBV-specific CD8+ TRMs have a more exhausted phenotype and respond more actively under anti-PDL1 or PD1 treatment of HBV+HCC patients. Vaccination strategies that induce a strong and sustained CD8+ TRMs response are quite promising. Herein, a biodegradable poly(D,L-lactide-co-glycolide) microsphere and nanosphere particle (PLGA N.M.P) delivery system co-assembled by anti-PD1 antibodies (aPD1) and loaded with ovalbumin (OVA-aPD1 N.M.P) was fabricated and characterized for size (200 nm and 1 μm diameter), charge (-15 mV), and loading efficiencies of OVA (238 μg mg-1 particles) and aPD1 (40 μg mg-1 particles). OVA-aPD1 N.M.P could stimulate the maturation of BMDCs and enhance the antigen uptake and presentation by 2-fold compared to free OVA. The nanoparticles also induced the activation of macrophages (RAW 264.7) to produce a high level of cytokines, including TNF-α, IL-6 and IL-10. In vivo stimulation of mice using OVA-aPD1 N.M.P robustly enhanced IFN-γ-producing-CD8+ T cell infiltration in tumor tissues and the secretion of IgG and IgG2a/IgG1 antibodies. OVA-aPD1 N.M.P delivered OVA to increase the activation and proliferation of OVA-specific CD8+ TRMs, and its combination with anti-PD1 antibodies promoted complete tumor rejection by the reversal of tumor-infiltrating CD8+ T cell exhaustion. Thus, PLGA N.M.P could induce a strong CD8+ TRMs response, further highlighting its therapeutic potential in enhancing an antitumor immune response.
Collapse
Affiliation(s)
- Pan Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jiawen Fang
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| | - Ruo Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Weiqi Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jinglei Wang
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Feng Bing
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - ChangYou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - ShaoHong Lu
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| |
Collapse
|
21
|
Shen J, Gao F, Pan Q, Zong Z, Liang L. Synthesis and Application of a pH-Responsive Functional Metal-Organic Framework: In Vitro Investigation for Delivery of Oridonin in Cancer Therapy. Molecules 2024; 29:2643. [PMID: 38893518 PMCID: PMC11173415 DOI: 10.3390/molecules29112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Oridonin (Ori) is a naturally existing diterpenoid substance that mainly exists in the Chinese medicinal plant Rabdosia rubescens. It was previously found to possess intriguing biological properties; however, the quick clearance from plasma and limited solubility in water restricts its use as a drug. Several metal-organic frameworks (MOFs), having big surfaces and large pores, have recently been considered promising drug transporters. The zeolitic imidazolate framework-8 (ZIF-8), a form of MOF consisting of 2-methylimidazole with zinc ions, is structurally stable under physiologically neutral conditions, while it can degrade at low pH values such as in tumor cells. Herein, a nanosized drug delivery system, Ori@ZIF-8, was successfully designed for encapsulating and transporting oridonin to the tumor site. The drug loading of the prepared Ori@ZIF-8 was 26.78%, and the particles' mean size was 240.5 nm. In vitro, the release of Ori@ZIF-8 exhibited acid sensitivity, with a slow release under neutral conditions and rapid release of the drug under weakly acidic conditions. According to the in vitro anti-tumor experiments, Ori@ZIF-8 produced higher cytotoxicity than free Ori and induced apoptosis in A549 cancer cells. In conclusion, Ori@ZIF-8 could be a potential pH-responsive carrier to accurately release more oridonins at the tumor site.
Collapse
Affiliation(s)
- Jingyi Shen
- Department of Pharmaceutical Engineering, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Donghai Avenue, Bengbu 233030, China; (F.G.); (Q.P.); (Z.Z.)
| | | | | | | | - Lili Liang
- Department of Pharmaceutical Engineering, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Donghai Avenue, Bengbu 233030, China; (F.G.); (Q.P.); (Z.Z.)
| |
Collapse
|
22
|
Mosleh AM, El-Sherif AA, El-Sayed AA, Fahmy HM. Characterization and Cytotoxicity Assessment of Synthesized Palladium (II) Complex-Encapsulated Zinc Oxide Nanoparticles for Cancer Treatment. Cell Biochem Biophys 2024; 82:1225-1234. [PMID: 38744782 DOI: 10.1007/s12013-024-01273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 μg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.
Collapse
Affiliation(s)
- Ayaat M Mosleh
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
Amin H, Ibrahim IM, Hassanein EHM. Weaponizing chitosan and its derivatives in the battle against lung cancer. Int J Biol Macromol 2024; 272:132888. [PMID: 38844273 DOI: 10.1016/j.ijbiomac.2024.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer (LC) is a crisis of catastrophic proportions. It is a global problem and urgently requires a solution. The classic chemo drugs are lagging behind as they lack selectivity, where their side effects are spilled all over the body, and these adverse effects would be terribly tragic for LC patients. Therefore, they could make a bad situation worse, inflict damage on normal cells, and inflict pain on patients. Since our confidence in classic drugs is eroding, chitosan can offer a major leap forward in LC therapy. It can provide the backbone and the vehicle that enable chemo drugs to penetrate the hard shell of LC. It could be functionalized in a variety of ways to deliver a deadly payload of toxins to kill the bad guys. It is implemented in formulation of polymeric NPs, lipidic NPs, nanocomposites, multiwalled carbon nanotubes, and phototherapeutic agents. This review is a pretty clear proof of chitosan's utility as a weapon in battling LC. Chitosan-based formulations could work effectively to kill LC cells. If a researcher is looking for a vehicle for medication for LC therapy, chitosan can be an appropriate choice.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
24
|
Arnold CR, Mangesius J, Portnaia I, Ganswindt U, Wolff HA. Innovative therapeutic strategies to overcome radioresistance in breast cancer. Front Oncol 2024; 14:1379986. [PMID: 38873260 PMCID: PMC11169591 DOI: 10.3389/fonc.2024.1379986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Despite a comparatively favorable prognosis relative to other malignancies, breast cancer continues to significantly impact women's health globally, partly due to its high incidence rate. A critical factor in treatment failure is radiation resistance - the capacity of tumor cells to withstand high doses of ionizing radiation. Advancements in understanding the cellular and molecular mechanisms underlying radioresistance, coupled with enhanced characterization of radioresistant cell clones, are paving the way for the development of novel treatment modalities that hold potential for future clinical application. In the context of combating radioresistance in breast cancer, potential targets of interest include long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and their associated signaling pathways, along with other signal transduction routes amenable to pharmacological intervention. Furthermore, technical, and methodological innovations, such as the integration of hyperthermia or nanoparticles with radiotherapy, have the potential to enhance treatment responses in patients with radioresistant breast cancer. This review endeavors to provide a comprehensive survey of the current scientific landscape, focusing on novel therapeutic advancements specifically addressing radioresistant breast cancer.
Collapse
Affiliation(s)
| | - Julian Mangesius
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iana Portnaia
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hendrik Andreas Wolff
- Department of Radiology, Nuclear Medicine, and Radiotherapy, Radiology Munich, Munich, Germany
| |
Collapse
|
25
|
Jackson N, Cecchi D, Beckham W, Chithrani DB. Application of High-Z Nanoparticles to Enhance Current Radiotherapy Treatment. Molecules 2024; 29:2438. [PMID: 38893315 PMCID: PMC11173748 DOI: 10.3390/molecules29112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Radiotherapy is an essential component of the treatment regimens for many cancer patients. Despite recent technological advancements to improve dose delivery techniques, the dose escalation required to enhance tumor control is limited due to the inevitable toxicity to the surrounding healthy tissue. Therefore, the local enhancement of dosing in tumor sites can provide the necessary means to improve the treatment modality. In recent years, the emergence of nanotechnology has facilitated a unique opportunity to increase the efficacy of radiotherapy treatment. The application of high-atomic-number (Z) nanoparticles (NPs) can augment the effects of radiotherapy by increasing the sensitivity of cells to radiation. High-Z NPs can inherently act as radiosensitizers as well as serve as targeted delivery vehicles for radiosensitizing agents. In this work, the therapeutic benefits of high-Z NPs as radiosensitizers, such as their tumor-targeting capabilities and their mechanisms of sensitization, are discussed. Preclinical data supporting their application in radiotherapy treatment as well as the status of their clinical translation will be presented.
Collapse
Affiliation(s)
- Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
26
|
Reilly RM, Georgiou CJ, Brown MK, Cai Z. Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape. EJNMMI Radiopharm Chem 2024; 9:37. [PMID: 38703297 PMCID: PMC11069497 DOI: 10.1186/s41181-024-00266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Radiation nanomedicines are nanoparticles labeled with radionuclides that emit α- or β-particles or Auger electrons for cancer treatment. We describe here our 15 years scientific journey studying locally-administered radiation nanomedicines for cancer treatment. We further present a view of the radiation nanomedicine landscape by reviewing research reported by other groups. MAIN BODY Gold nanoparticles were studied initially for radiosensitization of breast cancer to X-radiation therapy. These nanoparticles were labeled with 111In to assess their biodistribution after intratumoural vs. intravenous injection. Intravenous injection was limited by high liver and spleen uptake and low tumour uptake, while intratumoural injection provided high tumour uptake but low normal tissue uptake. Further, [111In]In-labeled gold nanoparticles modified with trastuzumab and injected iintratumourally exhibited strong tumour growth inhibition in mice with subcutaneous HER2-positive human breast cancer xenografts. In subsequent studies, strong tumour growth inhibition in mice was achieved without normal tissue toxicity in mice with human breast cancer xenografts injected intratumourally with gold nanoparticles labeled with β-particle emitting 177Lu and modified with panitumumab or trastuzumab to specifically bind EGFR or HER2, respectively. A nanoparticle depot (nanodepot) was designed to incorporate and deliver radiolabeled gold nanoparticles to tumours using brachytherapy needle insertion techniques. Treatment of mice with s.c. 4T1 murine mammary carcinoma tumours with a nanodepot incorporating [90Y]Y-labeled gold nanoparticles inserted into one tumour arrested tumour growth and caused an abscopal growth-inhibitory effect on a distant second tumour. Convection-enhanced delivery of [177Lu]Lu-AuNPs to orthotopic human glioblastoma multiforme (GBM) tumours in mice arrested tumour growth without normal tissue toxicity. Other groups have explored radiation nanomedicines for cancer treatment in preclinical animal tumour xenograft models using gold nanoparticles, liposomes, block copolymer micelles, dendrimers, carbon nanotubes, cellulose nanocrystals or iron oxide nanoparticles. These nanoparticles were labeled with radionuclides emitting Auger electrons (111In, 99mTc, 125I, 103Pd, 193mPt, 195mPt), β-particles (177Lu, 186Re, 188Re, 90Y, 198Au, 131I) or α-particles (225Ac, 213Bi, 212Pb, 211At, 223Ra). These studies employed intravenous or intratumoural injection or convection enhanced delivery. Local administration of these radiation nanomedicines was most effective and minimized normal tissue toxicity. CONCLUSIONS Radiation nanomedicines have shown great promise for treating cancer in preclinical studies. Local intratumoural administration avoids sequestration by the liver and spleen and is most effective for treating tumours, while minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | | | - Madeline K Brown
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Abousalman-Rezvani Z, Refaat A, Dehghankelishadi P, Roghani-Mamaqani H, Esser L, Voelcker NH. Insights into Targeted and Stimulus-Responsive Nanocarriers for Brain Cancer Treatment. Adv Healthc Mater 2024; 13:e2302902. [PMID: 38199238 DOI: 10.1002/adhm.202302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Brain cancers, especially glioblastoma multiforme, are associated with poor prognosis due to the limited efficacy of current therapies. Nanomedicine has emerged as a versatile technology to treat various diseases, including cancers, and has played an indispensable role in combatting the COVID-19 pandemic as evidenced by the role that lipid nanocarrier-based vaccines have played. The tunability of nanocarrier physicochemical properties -including size, shape, surface chemistry, and drug release kinetics- has resulted in the development of a wide range of nanocarriers for brain cancer treatment. These nanocarriers can improve the pharmacokinetics of drugs, increase blood-brain barrier transfer efficiency, and specifically target brain cancer cells. These unique features would potentially allow for more efficient treatment of brain cancer with fewer side effects and better therapeutic outcomes. This review provides an overview of brain cancers, current therapeutic options, and challenges to efficient brain cancer treatment. The latest advances in nanomedicine strategies are investigated with an emphasis on targeted and stimulus-responsive nanocarriers and their potential for clinical translation.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Ahmed Refaat
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Pharmaceutics Department, Faculty of Pharmacy - Alexandria University, 1 El-Khartoum Square, Alexandria, 21021, Egypt
| | - Pouya Dehghankelishadi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335/1996, Iran
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd, Melbourne, VIC 3168, Australia
- Department of Materials Science & Engineering, Faculty of Engineering, Monash University, 14 Alliance Ln, Melbourne, VIC 3168, Australia
| |
Collapse
|
28
|
Siebert JN, Shah JV, Tan MC, Riman RE, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Early Detection of Myeloid-Derived Suppressor Cells in the Lung Pre-Metastatic Niche by Shortwave Infrared Nanoprobes. Pharmaceutics 2024; 16:549. [PMID: 38675210 PMCID: PMC11053826 DOI: 10.3390/pharmaceutics16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.
Collapse
Affiliation(s)
- Jake N. Siebert
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mark C. Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Alex’s Lemonade Stand Foundation for Childhood Cancer, 333 E. Lancaster Ave., #414, Wynnewood, PA 19096, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
31
|
Negut I, Bita B. Polymersomes as Innovative, Stimuli-Responsive Platforms for Cancer Therapy. Pharmaceutics 2024; 16:463. [PMID: 38675124 PMCID: PMC11053450 DOI: 10.3390/pharmaceutics16040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses the urgent need for more targeted and less toxic cancer treatments by exploring the potential of multi-responsive polymersomes. These advanced nanocarriers are engineered to deliver drugs precisely to tumor sites by responding to specific stimuli such as pH, temperature, light, hypoxia, and redox conditions, thereby minimizing the side effects associated with traditional chemotherapy. We discuss the design, synthesis, and recent applications of polymersomes, emphasizing their ability to improve therapeutic outcomes through controlled drug release and targeted delivery. Moreover, we highlight the critical areas for future research, including the optimization of polymersome-biological interactions and biocompatibility, to facilitate their clinical adoption. Multi-responsive polymersomes emerge as a promising development in nanomedicine, offering a pathway to safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Irina Negut
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
| | - Bogdan Bita
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
32
|
Zhi L, Cheng C, Jing L, Zhi-Ping P, Lu Y, Yan T, Zhi-Gang W, Guo-Bing Y. Application of fluorocarbon nanoparticles of 131I-fulvestrant as a targeted radiation drug for endocrine therapy on human breast cancer. J Nanobiotechnology 2024; 22:107. [PMID: 38475902 DOI: 10.1186/s12951-024-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. METHOD To address these challenges, we engineered tumor-targeting nanoparticles termed 131I-fulvestrant-ALA-PFP-FA-NPs. This involved labeling fulvestrant with 131I to create 131I-fulvestrant. Subsequently, we incorporated the 131I-fulvestrant and 5-aminolevulinic acid (ALA) into fluorocarbon nanoparticles with folate as the targeting agent. This design facilitates a tri-modal therapeutic approach-endocrine therapy, radiotherapy, and PDT for estrogen receptor-positive breast cancer. RESULTS Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The 131I-fulvestrant-ALA-PFP-FA-NPs maintained stability and showcased potent antitumor capabilities due to the synergism of endocrine therapy, radiotherapy, and CR-PDT. Throughout the treatment duration, we detected no notable irregularities in hematological, biochemical, or histological evaluations. CONCLUSION We've pioneered a nanoparticle system loaded with radioactive isotope 131I, endocrine therapeutic agents, and a photosensitizer precursor. This system offers a combined modality of radiotherapy, endocrine treatment, and PDT for breast cancer.
Collapse
Affiliation(s)
- Li Zhi
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Chen Cheng
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Luo Jing
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Peng Zhi-Ping
- Department of Nuclear Medicine Laboratory, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Lu
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tian Yan
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wang Zhi-Gang
- Department of Ultrasound Research Institute, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yin Guo-Bing
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
33
|
Guo Y, Awais MM, Fei S, Xia J, Sun J, Feng M. Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals (Basel) 2024; 14:655. [PMID: 38396623 PMCID: PMC10885876 DOI: 10.3390/ani14040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (M.M.A.); (S.F.); (J.X.); (J.S.)
| |
Collapse
|
34
|
Almeida ER, Goliatt PVZC, Dos Santos HF, Picaud F. Modeling the Cellular Uptake of Functionalized Carbon Nanohorns Loaded with Cisplatin through a Breast Cancer Cell Membrane. Mol Pharm 2024; 21:38-52. [PMID: 37646561 DOI: 10.1021/acs.molpharmaceut.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cisplatin encapsulation into carbon nanohorns (CNH) is a promising nanoformulation to circumvent the drug dissipation and to specifically accumulate it in tumor sites. Herein, biased molecular dynamics simulations were used to analyze the transmembrane transport of the CNH loaded with cisplatin through a breast cancer cell membrane prototype. The simulations revealed a four-stage mechanism: approach, insertion, permeation, and internalization. Despite the lowest structural disturbance of the membrane provided by the nanocarrier, the average free energy barrier for the translocation was 55.2 kcal mol-1, suggesting that the passive process is kinetically unfavorable. In contrast, the free energy profiles revealed potential wells of -6.8 kcal mol-1 along the insertion stage in the polar heads region of the membrane, which might enhance the retention of the drug in tumor sites; therefore, the most likely cisplatin delivery mechanism should involve the adsorption and retention of CNH on the surface of cancer cells, allowing the loaded cisplatin be slowly released and passively transported through the cell membrane.
Collapse
Affiliation(s)
- Eduardo R Almeida
- Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, Minas Gerais 36036-330, Brazil
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA 4662, Centre Hospitalier Universitaire de Besançon, Université de Franche-Comté, 16 route de Gray, 25030 Besançon, Cedex, France
| | - Priscila V Z Capriles Goliatt
- Grupo de Modelagem Computacional Aplicada (GMCA), Programa de Pós-Graduação em Modelagem Computacional (PGMC), Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - Hélio F Dos Santos
- Núcleo de Estudos em Química Computacional (NEQC), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA 4662, Centre Hospitalier Universitaire de Besançon, Université de Franche-Comté, 16 route de Gray, 25030 Besançon, Cedex, France
| |
Collapse
|
35
|
Gupta U, Maity D, Sharma VK. Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition. Biomed Mater 2023; 19:012003. [PMID: 37944188 DOI: 10.1088/1748-605x/ad0b23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nanotheranostics is a promising field that combines the benefits of diagnostic and treatment into a single nano-platform that not only administers treatment but also allows for real-time monitoring of therapeutic response, decreasing the possibility of under/over-drug dosing. Furthermore, developing smart delivery systems (SDSs) for cancer theranostics that can take advantage of various tumour microenvironment (TME) conditions (such as deformed tumour vasculature, various over-expressed receptor proteins, reduced pH, oxidative stress, and resulting elevated glutathione levels) can aid in achieving improved pharmacokinetics, higher tumour accumulation, enhanced antitumour efficacy, and/or decreased side effects and multidrug resistance (MDR) inhibition. Polymeric nanoparticles (PNPs) are being widely investigated in this regard due to their unique features such as small size, passive/active targeting possibility, better pharmaceutical kinetics and biological distribution, decreased adverse reactions of the established drugs, inherent inhibitory properties to MDR efflux pump proteins, as well as the feasibility of delivering numerous therapeutic substances in just one design. Hence in this review, we have primarily discussed PNPs based targeted and/or controlled SDSs in which we have elaborated upon different TME mediated nanotheranostic platforms (NTPs) including active/passive/magnetic targeting platforms along with pH/ROS/redox-responsive platforms. Besides, we have elucidated different imaging guided cancer therapeutic platforms based on four major cancer imaging techniques i.e., fluorescence/photo-acoustic/radionuclide/magnetic resonance imaging, Furthermore, we have deliberated some of the most recently developed PNPs based multimodal NTPs (by combining two or more imaging or therapy techniques on a single nanoplatform) in cancer theranostics. Moreover, we have provided a brief update on PNPs based NTP which are recently developed to overcome MDR for effective cancer treatment. Additionally, we have briefly discussed about the tissue biodistribution/tumour targeting efficiency of these nanoplatforms along with recent preclinical/clinical studies. Finally, we have elaborated on various limitations associated with PNPs based nanoplatforms.
Collapse
Affiliation(s)
- Urvashi Gupta
- Department of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Dipak Maity
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, United States of America
| |
Collapse
|
36
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
37
|
Iki N, Nakane R, Masuya-Suzuki A, Ozawa Y, Maruoka T, Iiyama M, Sumiyoshi A, Aoki I. MRI Contrasting Agent Based on Mn-MOF-74 Nanoparticles with Coordinatively Unsaturated Sites. Mol Imaging Biol 2023; 25:968-976. [PMID: 36653627 DOI: 10.1007/s11307-023-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE The development of magnetic resonance imaging (MRI) contrasting agents (CAs) that are safer and have a higher relaxivity than Gd(III)-based agents is a significant research topic. Herein, we propose the use of a Mn-based metal organic framework (MOF), Mn-MOF-74, characterized by a safe paramagnetic center, a coordinatively unsaturated site (CUS) for aquation, and a long rotational correlation time, endowing high relaxivity. Furthermore, biocompatibility and delivery to the tumor are generally expected for MOFs that are obtainable in the nanometer size range. PROCEDURE Drop-wise mixing of 2,5-dihydroxyterephthalic acid (DHTP) and Mn(II) acetate yielded Mn-MOF-74 with a diameter of < 150 nm, which was then modified with 1-fivefold higher amounts of poly(ethylene glycol) (M.W. = 5000) to afford MOFs stably dispersed in water for at least 24 h. RESULTS The longitudinal and transverse relaxivity of the PEG-modified MOF was in the range of r1 = 8.08-13.5 and r2 = 32.7-46.8 mM-1 s-1, respectively (1.0 T, 23.7-23.9 °C), being larger than those of typical Gd(III)- and Mn(II)-based CAs of single-nuclear metal complexes. The in vivo imaging of a tumor-bearing mouse clearly showed that the tumor could be readily recognized due to signal enhancement (117%) in T1-weighted images, whereas other tissues showed small signal changes. CONCLUSIONS These results suggest that PEG-Mn-MOF-74 can be passively delivered to tumors and can act as a high-relaxivity T1 agent.
Collapse
Affiliation(s)
- Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan.
| | - Ryuta Nakane
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8579, Japan
| | - Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yoshikazu Ozawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Takako Maruoka
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Megumi Iiyama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Akira Sumiyoshi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan.
| |
Collapse
|
38
|
Yousefzadeh-Valendeh S, Fattahi M, Asghari B, Alizadeh Z. Dandelion flower-fabricated Ag nanoparticles versus synthetic ones with characterization and determination of photocatalytic, antioxidant, antibacterial, and α-glucosidase inhibitory activities. Sci Rep 2023; 13:15444. [PMID: 37723218 PMCID: PMC10507034 DOI: 10.1038/s41598-023-42756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
In the present work, Silver nanoparticles (AgNPs) were fabricated through the dandelion flower hydroalcoholic extract, and their properties were characterized by FTIR, XRD, UV visible, SEM, and EDX. The results demonstrated that the average diameter of the green fabricated AgNPs is 45-55 nm (G-AgNPs). The antioxidant, antimicrobial, antidiabetic, and photocatalytic properties of G-AgNPs were compared with two commercially available different diameter sizes (20 and 80-100 nm) of AgNPs (C-AgNPs1- and C-AgNPs2, respectively). The sample's capacity for antioxidants was evaluated by DPPH free radical scavenging method. The consequences showed that G-AgNPs have higher radical scavenging activity (47.8%) than C-AgNPs2 (39.49%) and C-AgNPs1 (33.91%). To investigate the photocatalytic property, methylene blue dye was used. The results displayed that G-AgNPs is an effective photo-catalyst compared to C-AgNPs2 and C-AgNPs1, which respectively have an inhibition potential of 75.22, 51.94, and 56.65%. Also, the antimicrobial capacity of nanoparticles was assayed against, the gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria. The results indicated that G-AgNPs could effectively inhibit the growth of both bacteria, compared to C-AgNPs1 and C-AgNPs2. Finally, G-AgNPs exhibited a considerable α-glucosidase enzyme inhibitory effect (88.37%) in comparison with C-AgNPs1 (61.7%) and C-AgNPs2 (50.5%).
Collapse
Affiliation(s)
| | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Behvar Asghari
- Department of Horticultural Sciences Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Alizadeh
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
39
|
Ji H, Zhu Q. Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J Control Release 2023; 361:803-818. [PMID: 37597810 DOI: 10.1016/j.jconrel.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Smart nanomaterials are nano-scaled materials that respond in a controllable and reversible way to external physical or chemical stimuli. DNA self-assembly is an effective way to construct smart nanomaterials with precise structure, diverse functions and wide applications. Among them, static structures such as DNA polyhedron, DNA nanocages and DNA hydrogels, as well as dynamic reactions such as catalytic hairpin reaction, hybridization chain reaction and rolling circle amplification, can serve as the basis for building smart nanomaterials. Due to the advantages of DNA, such as good biocompatibility, simple synthesis, rational design, and good stability, these materials have attracted increasing attention in the fields of pharmaceuticals and biology. Based on their specific response design, DNA self-assembled smart nanomaterials can deliver a variety of drugs, including small molecules, nucleic acids, proteins and other drugs; and they play important roles in enhancing cellular uptake, resisting enzymatic degradation, controlling drug release, and so on. This review focuses on different assembly methods of DNA self-assembled smart nanomaterials, therapeutic strategies based on various intelligent responses, and their applications in drug delivery. Finally, the opportunities and challenges of smart nanomaterials based on DNA self-assembly are summarized.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
40
|
Liu S, Ma J, Xue EY, Wang S, Zheng Y, Ng DKP, Wang A, Zheng N. Polymeric Phthalocyanine-Based Nanosensitizers for Enhanced Photodynamic and Sonodynamic Therapies. Adv Healthc Mater 2023; 12:e2300481. [PMID: 37019442 DOI: 10.1002/adhm.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic therapy and sonodynamic therapy are two highly promising modalities for cancer treatment. The latter holds an additional advantage in deep-tumor therapy owing to the deep penetration of the ultrasonic radiation. The therapeutic efficacy depends highly on the photo/ultrasound-responsive properties of the sensitizers as well as their tumor-localization property and pharmacokinetics. A novel nanosensitizer system based on a polymeric phthalocyanine (pPC-TK) is reported herein in which the phthalocyanine units are connected with cleavable thioketal linkers. Such polymer could self-assemble in water forming nanoparticles with a hydrodynamic diameter of 48 nm. The degradable and flexible thioketal linkers could effectively inhibit the π-π stacking of the phthalocyanine units, rendering the resulting nanoparticles an efficient generator of reactive oxygen species upon light or ultrasonic irradiation. The nanosensitizer could be internalized into cancer cells readily, inducing cell death by efficient photodynamic and sonodynamic effects. The potency is significantly higher than that of the monomeric phthalocyanine (PC-4COOH). The nanosensitizer could also effectively inhibit the growth of tumor in liver tumor-bearing mice by these two therapies without causing noticeable side effects. More importantly, it could also retard the growth of a deep-located orthotopic liver tumor in vivo by sonodynamic therapy.
Collapse
Affiliation(s)
- Shuxin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinjuan Ma
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| | - Shaolei Wang
- Department of Radiology Intervention, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110801, China
| | - Yubin Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| |
Collapse
|
41
|
Rizwanullah M, Perwez A, Alam M, Ahmad S, Mir SR, Rizvi MMA, Amin S. Polymer-lipid hybrid nanoparticles of exemestane for improved oral bioavailability and anti-tumor efficacy: An extensive preclinical investigation. Int J Pharm 2023; 642:123136. [PMID: 37311498 DOI: 10.1016/j.ijpharm.2023.123136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Exemestane (EXE), an irreversible aromatase inhibitor, is primarily used as a first-line therapy for estrogen receptor-positive breast cancer patients. However, complex physicochemical characteristics of EXE limit its oral bioavailability (<10%) and anti-breast cancer efficacy. The present study aimed to develop a novel nanocarrier system to improve the oral bioavailability and anti-breast cancer efficacy of EXE. In this perspective, EXE-loaded TPGS-based polymer lipid hybrid nanoparticles (EXE-TPGS-PLHNPs) were prepared by the nanoprecipitation method and evaluated for their potential in improving oral bioavailability, safety, and therapeutic efficacy in the animal model. EXE-TPGS-PLHNPs showed significantly higher intestinal permeation in comparison to EXE-PLHNPs (without TPGS) and free EXE. After oral administration, EXE-TPGS-PLHNPs and EXE-PLHNPs revealed 3.58 and 4.69 times higher oral bioavailability in Wistar rats compared to the conventional EXE suspension. The results of the acute toxicity experiment suggested that the developed nanocarrier was safe for oral administration. Furthermore, EXE-TPGS-PLHNPs and EXE-PLHNPs represented much better anti-breast cancer activity in Balb/c mice bearing MCF-7 tumor xenograft with tumor inhibition rate of 72.72% and 61.94% respectively in comparison with the conventional EXE suspension (30.79%) after 21 days of oral chemotherapy. In addition, insignificant changes in the histopathological examination of vital organs and hematological analysis further confirm the safety of the developed PLHNPs. Therefore, the findings of the present investigation advocated that the encapsulation of EXE in PLHNPs can be a promising approach for oral chemotherapy of breast cancer.
Collapse
Affiliation(s)
- Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmad Perwez
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Meraj Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Showkat Rasool Mir
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
42
|
Liu P, Wu Y, Xu X, Fan X, Sun C, Chen X, Xia J, Bai S, Qu L, Lu H, Wu J, Chen J, Piao JG, Wu Z. Microwave triggered multifunctional nanoplatform for targeted photothermal-chemotherapy in castration-resistant prostate cancer. NANO RESEARCH 2023; 16:9688-9700. [DOI: 10.1007/s12274-023-5541-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 11/11/2023]
|
43
|
Huang W, Yao F, Tian S, Liu M, Liu G, Jiang Y. Recent Advances in Zein-Based Nanocarriers for Precise Cancer Therapy. Pharmaceutics 2023; 15:1820. [PMID: 37514006 PMCID: PMC10384823 DOI: 10.3390/pharmaceutics15071820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer has emerged as a leading cause of death worldwide. However, the pursuit of precise cancer therapy and high-efficiency delivery of antitumor drugs remains an enormous obstacle. The major challenge is the lack of a smart drug delivery system with the advantages of biodegradability, biocompatibility, stability, targeting and response release. Zein, a plant-based protein, possesses a unique self-assembly ability to encapsulate anticancer drugs directly or indirectly. Using zein as a nanotherapeutic pharmaceutic preparation can protect anticancer drugs from harsh environments, such as sunlight, stomach acid and pepsin. Moreover, the surface functionalization of zein is easily realized, which can endow it with targeting and stimulus-responsive release capacity. Hence, zein is an ideal nanocarrier for the precise delivery of anticancer drugs. Combined with our previous research experiences, we attempt to review the current state of the preparation of zein-based nanocarriers for anticancer drug delivery. The challenges, solutions and development trends of zein-based nanocarriers for precise cancer therapy are discussed. This review will provide a guideline for precise cancer therapy in the future.
Collapse
Affiliation(s)
- Wenquan Huang
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Fei Yao
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Shuangyan Tian
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Mohao Liu
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Guijin Liu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
44
|
Moya-Garcia CR, Li-Jessen NYK, Tabrizian M. Chitosomes Loaded with Docetaxel as a Promising Drug Delivery System to Laryngeal Cancer Cells: An In Vitro Cytotoxic Study. Int J Mol Sci 2023; 24:9902. [PMID: 37373051 DOI: 10.3390/ijms24129902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Current delivery of chemotherapy, either intra-venous or intra-arterial, remains suboptimal for patients with head and neck tumors. The free form of chemotherapy drugs, such as docetaxel, has non-specific tissue targeting and poor solubility in blood that deters treatment efficacy. Upon reaching the tumors, these drugs can also be easily washed away by the interstitial fluids. Liposomes have been used as nanocarriers to enhance docetaxel bioavailability. However, they are affected by potential interstitial dislodging due to insufficient intratumoral permeability and retention capabilities. Here, we developed and characterized docetaxel-loaded anionic nanoliposomes coated with a layer of mucoadhesive chitosan (chitosomes) for the application of chemotherapy drug delivery. The anionic liposomes were 99.4 ± 1.5 nm in diameter with a zeta potential of -26 ± 2.0 mV. The chitosan coating increased the liposome size to 120 ± 2.2 nm and the surface charge to 24.8 ± 2.6 mV. Chitosome formation was confirmed via FTIR spectroscopy and mucoadhesive analysis with anionic mucin dispersions. Blank liposomes and chitosomes showed no cytotoxic effect on human laryngeal stromal and cancer cells. Chitosomes were also internalized into the cytoplasm of human laryngeal cancer cells, indicating effective nanocarrier delivery. A higher cytotoxicity (p < 0.05) of docetaxel-loaded chitosomes towards human laryngeal cancer cells was observed compared to human stromal cells and control treatments. No hemolytic effect was observed on human red blood cells after a 3 h exposure, proving the proposed intra-arterial administration. Our in vitro results supported the potential of docetaxel-loaded chitosomes for locoregional chemotherapy delivery to laryngeal cancer cells.
Collapse
Affiliation(s)
- Christian R Moya-Garcia
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
- School of Communication Sciences and Disorders, McGill University, 2001 Av. McGill College #8, Montréal, QC H3A 1G1, Canada
- Department of Otolaryngology-Head and Neck Surgery, McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 Rue University, Montreal, QC H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 Av. McGill College, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
45
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
46
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
47
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
48
|
Terrés-Haro JM, Monreal-Trigo J, Hernández-Montoto A, Ibáñez-Civera FJ, Masot-Peris R, Martínez-Máñez R. Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation. Bioengineering (Basel) 2023; 10:bioengineering10020232. [PMID: 36829726 PMCID: PMC9952663 DOI: 10.3390/bioengineering10020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
(1) Background: The ability of metal nanoparticles to carry other molecules and their electromagnetic interactions can be used for localized drug release or to heat malignant tissue, as in the case of photothermal treatments. Plasmonics can be used to calculate their absorption and electric field enhancement, which can be further used to predict the outcome of photothermal experiments. In this study, we model the nanoparticle geometry in a Finite Element Model calculus environment to calculate the effects that occur as a response to placing it in an optical, electromagnetic field, and also a model of the experimental procedure to measure the temperature rise while irradiating a suspension of nanoparticles. (2) Methods: Finite Element Method numerical models using the COMSOL interface for geometry and mesh generation and iterative solving discretized Maxwell's equations; (3) Results: Absorption and scattering cross-section spectrums were obtained for NanoRods and NanoStars, also varying their geometry as a parameter, along with electric field enhancement in their surroundings; temperature curves were calculated and measured as an outcome of the irradiation of different concentration suspensions; (4) Conclusions: The results obtained are comparable with the bibliography and experimental measurements.
Collapse
Affiliation(s)
- José Manuel Terrés-Haro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
- Correspondence: (J.M.T.-H.); (R.M.-P.)
| | - Javier Monreal-Trigo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andy Hernández-Montoto
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, 46026 Valencia, Spain
| | - Francisco Javier Ibáñez-Civera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
| | - Rafael Masot-Peris
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
- Correspondence: (J.M.T.-H.); (R.M.-P.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, 46026 Valencia, Spain
| |
Collapse
|
49
|
Gaitsch H, Hersh AM, Alomari S, Tyler BM. Dendrimer Technology in Glioma: Functional Design and Potential Applications. Cancers (Basel) 2023; 15:1075. [PMID: 36831418 PMCID: PMC9954563 DOI: 10.3390/cancers15041075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Novel therapeutic and diagnostic methods are sorely needed for gliomas, which contribute yearly to hundreds of thousands of cancer deaths worldwide. Despite the outpouring of research efforts and funding aimed at improving clinical outcomes for patients with glioma, the prognosis for high-grade glioma, and especially glioblastoma, remains dire. One of the greatest obstacles to improving treatment efficacy and destroying cancer cells is the safe delivery of chemotherapeutic drugs and biologics to the tumor site at a high enough dose to be effective. Over the past few decades, a burst of research has leveraged nanotechnology to overcome this obstacle. There has been a renewed interest in adapting previously understudied dendrimer nanocarriers for this task. Dendrimers are small, highly modifiable, branched structures featuring binding sites for a variety of drugs and ligands. Recent studies have demonstrated the potential for dendrimers and dendrimer conjugates to effectively shuttle therapeutic cargo to the correct tumor location, permeate the tumor, and promote apoptosis of tumor cells while minimizing systemic toxicity and damage to surrounding healthy brain tissue. This review provides a primer on the properties of dendrimers; outlines the mechanisms by which they can target delivery of substances to the site of brain pathology; and delves into current trends in the application of dendrimers to drug and gene delivery, and diagnostic imaging, in glioma. Finally, future directions for translating these in vitro and in vivo findings to the clinic are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
50
|
Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics 2023; 15:pharmaceutics15020504. [PMID: 36839825 PMCID: PMC9967630 DOI: 10.3390/pharmaceutics15020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is crucial in fighting cancer and achieving successful remission. Many novel strategies have recently developed, but there are still some obstacles to overcome before we can effectively attack the cancer cells and decimate the cancer environment by inducing a cascade of immune responses. To successfully demonstrate antitumor activity, immune cells must be delivered to cancer cells and exposed to the immune system. Such cutting-edge technology necessitates meticulously designed delivery methods with no loss or superior homing onto cancer environments, as well as high therapeutic efficacy and fewer adverse events. In this paper, we discuss recent advances in cancer immunotherapy delivery techniques, as well as their future prospects.
Collapse
Affiliation(s)
- Palaniyandi Muthukutty
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine and Medical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: or ; Tel.: +82-51-510-3402
| |
Collapse
|