1
|
Chen H, Li H, Li H, Zhang Z. Umbrella review of adjuvant photodynamic therapy for cholangiocarcinoma palliative treatment. Photodiagnosis Photodyn Ther 2025; 51:104472. [PMID: 39761808 DOI: 10.1016/j.pdpdt.2025.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Cholangiocarcinoma is a rare and often fatal malignancy. Numerous studies have demonstrated promising outcomes and survival rates associated with adjuvant photodynamic therapy (PDT) in the palliative treatment of cholangiocarcinoma. OBJECTIVE To systematically evaluate the existing meta-analyses on PDT for cholangiocarcinoma, assessing evidence quality and strength while performing updated meta-analyses to refine survival outcomes. METHODS PubMed, EMBASE, Cochrane Library, and Web of Science were systematically searched up to September 18, 2024, to identify meta-analyses and clinical studies on PDT in patients with cholangiocarcinoma. The random-effects model was employed to re-synthesize existing meta-analyses, with a comprehensive evaluation of methodological quality. Updated meta-analyses of survival data were conducted, including subgroup analyses stratified by cholangiocarcinoma type and intervention modality. RESULTS A total of 5 meta-analyses and 21 clinical studies were included. The findings indicated that combining PDT with stenting or chemotherapy can significantly improve overall survival in patients with cholangiocarcinoma and reduce mortality rate, without increasing the risk of adverse events (AEs) such as cholangitis or abscess formation. For extrahepatic cholangiocarcinoma, adding PDT to stenting demonstrated a notable improvement in the 2-year survival rate. Meanwhile, for hilar cholangiocarcinoma, the addition of chemotherapy to PDT showed a more pronounced enhancement in the 1-year survival rate. CONCLUSION Current evidence indicates that PDT combined with stenting or chemotherapy in the palliative treatment of cholangiocarcinoma decreases overall mortality and enhances OS without increasing the incidence of AEs. Adding PDT to stenting or chemotherapy may be more beneficial for long-term efficacy.
Collapse
Affiliation(s)
- Hanhan Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Honglin Li
- Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huijie Li
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhen Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China.
| |
Collapse
|
2
|
Hu J, Shi Y, Jin L, Yi S, Chen J, Wan D, Ye W, Chen J, Zhang Y, Jiang Y, Duan B, Dong Y. Predicting survival rates: the power of prognostic nomograms in distal cholangiocarcinoma. Front Oncol 2025; 15:1478836. [PMID: 39931085 PMCID: PMC11807801 DOI: 10.3389/fonc.2025.1478836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Objective The purpose of this research is to establish a prognostic nomogram for patients with distal cholangiocarcinoma (dCCA). Methods We obtained clinical data from 2401 patients diagnosed with distal cholangiocarcinoma (dCCA) between 2010 and 2020 from the Surveillance, Epidemiology, and End Results database. These patients were randomly assigned to either the training or validation group in a ratio of 6:4. 228 patients were enrolled from 9 hospitals in China as the external validation cohort. Univariate and multifactorial Cox regression analyses were conducted to ascertain prognostic factors and prognostic nomograms were developed utilizing LASSO logistic regression analysis. We used the calibration curve, and area under the curve to validate the nomograms. Decision curve analysis was used to evaluate the model and its clinical applicability. Results The findings demonstrated that Grade, M stages, Surgery, and Chemotherapy emerged as autonomous prognostic factors for the survival of individuals with dCCA. The developed nomograms exhibited satisfactory accuracy in forecasting 1-year, 3-year, and 5-year survival probabilities. Furthermore, the calibration curves indicated a strong concordance between the anticipated and observed outcomes. The AUC of the nomogram for 1-year, 3-year, 5 year overall survival (OS) predication were 0.809 (95%CI 78.5-83.3), 0.79 (95%CI 75.8-82.2) and 0.761 ((95%CI 72.3-80.0) in the training cohort, 0.79 (95%CI 75.9-82.0), 0.73 (95%CI 68.5-77.5), and 0.732(95%CI 68.0-78.3) in internal test cohort, 0.862 (95%CI 81.7-90.7),0.83 (95%CI 76.4-89.6),and 0.819(95%CI 74.6-89.2) in external test cohort. Conclusion The nomograms that have been suggested demonstrate strong predictive capability. These tools can assist medical professionals in assessing the prognosis of patients with dCCA and in devising more accurate treatment strategies for them.
Collapse
Affiliation(s)
- Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuping Shi
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Jin
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suhong Yi
- Department of Gastroenterology, Xinyu People’s Hospital, Xinyu, Jiangxi, China
| | - Jinsuo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Dadong Wan
- Department of Gastroenterology, Fuyang Women & Children’s Hospital, Fuyang, Anhui, China
| | - Weixin Ye
- Department of Gastroenterology, Xining Second People’s Hospital, Xining, Qinghai, China
| | - Jingnan Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Zhang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bensong Duan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuwei Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Liang C, Liu X, Yu J, Shi L, Wei W, Zhu Y, Feng M, Tang T, Li D, Yang T, Zheng J, Ma B, Wei L. Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway. J Adv Res 2025:S2090-1232(25)00059-1. [PMID: 39870303 DOI: 10.1016/j.jare.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown. OBJECTIVES To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC). METHODS Cell pyroptosis was examined via LDH release, SYTOX Green staining, and ELISA. RNA sequencing, network pharmacology, drug affinity target stability (DARTS)-tandem mass spectrometry (MS/MS), and molecular docking were employed to identify drug targets. Furthermore, immunoblotting and flow cytometry were utilized to elucidate the mechanisms of drug action. RESULTS Our research revealed that PDT-HP can induce pyroptosis in TNBC cells. Further investigation revealed that PDT-HP induces endoplasmic reticulum stress, activating Caspase-3 and gasdermin E (GSDME) to trigger TNBC cell pyroptosis. RNA-seq, network pharmacology, and DARTS-MS/MS proteomic analyses revealed that the endoplasmic reticulum protein calreticulin (CALR) is a potential HP target and that interfering with CALR inhibited PDT-HP-induced pyroptosis. During PDT-HP treatment, the interaction between CALR and SERCA2 inactivates SERCA2, increasing the susceptibility of cells to increased intracellular Ca2+ levels under oxidative stress. This triggered endoplasmic reticulum stress and activated Caspase3, which further cleaved GSDME, releasing GSDME-N and ultimately leading to pyroptosis in TNBC cells. CONCLUSION In this study, we provide insight into the antitumor mechanism by examining the pharmacological mechanism by which PDT-HP regulates TNBC cell pyroptosis via the ROS/CALR/Caspase-3/GSDME signaling axis.
Collapse
Affiliation(s)
- Chen Liang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Xiao Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Jie Yu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Lingyun Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Wenchao Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Yalu Zhu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Maoping Feng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Tingting Tang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Dameng Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Tao Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China.
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China.
| |
Collapse
|
4
|
Wang X, Bai Y, Chai N, Li Y, Linghu E, Wang L, Liu Y. Chinese national clinical practice guideline on diagnosis and treatment of biliary tract cancers. Chin Med J (Engl) 2024; 137:2272-2293. [PMID: 39238075 PMCID: PMC11441919 DOI: 10.1097/cm9.0000000000003258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Biliary tract carcinoma (BTC) is relatively rare and comprises a spectrum of invasive tumors arising from the biliary tree. The prognosis is extremely poor. The incidence of BTC is relatively high in Asian countries, and a high number of cases are diagnosed annually in China owing to the large population. Therefore, it is necessary to clarify the epidemiology and high-risk factors for BTC in China. The signs associated with BTC are complex, often require collaborative treatment from surgeons, endoscopists, oncologists, and radiation therapists. Thus, it is necessary to develop a comprehensive Chinese guideline for BTC. METHODS This clinical practice guideline (CPG) was developed following the process recommended by the World Health Organization. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to assess the certainty of evidence and make recommendations. The full CPG report was reviewed by external guideline methodologists and clinicians with no direct involvement in the development of this CPG. Two guideline reporting checklists have been adhered to: Appraisal of Guidelines for Research and Evaluation (AGREE) and Reporting Items for practice Guidelines in Healthcare (RIGHT). RESULTS The guideline development group, which comprised 85 multidisciplinary clinical experts across China. After a controversies conference, 17 clinical questions concerning the prevention, diagnosis, and treatment of BTC were proposed. Additionally, detailed descriptions of the surgical principles, perioperative management, chemotherapy, immunotherapy, targeted therapy, radiotherapy, and endoscopic management were proposed. CONCLUSIONS The guideline development group created a comprehensive Chinese guideline for the diagnosis and treatment of BTC, covering various aspects of epidemiology, diagnosis, and treatment. The 17 clinical questions have important reference value for the management of BTC.
Collapse
Affiliation(s)
- Xu’an Wang
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Systems Medicine for Cancers, Shanghai Cancer Institute; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai 200127, China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ningli Chai
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yexiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100853, China
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute; Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; State Key Laboratory of Systems Medicine for Cancers, Shanghai Cancer Institute; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai 200127, China
| | | |
Collapse
|
5
|
Flores-Cruz RD, Espinoza-Guillén A, Reséndiz-Acevedo K, Mendoza-Rodríguez V, López-Casillas F, Jiménez-Sánchez A, Méndez FJ, Ruiz-Azuara L. Doble synergetic anticancer activity through a combined chemo-photodynamic therapy and bioimaging of a novel Cas-ZnONPs all-in-one system. J Inorg Biochem 2024; 258:112623. [PMID: 38823065 DOI: 10.1016/j.jinorgbio.2024.112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
A strategy for cancer treatment was implemented, based on chemo-photodynamic therapy, utilizing a novel formulation, low-cost system called Cas-ZnONPs. This system consisted of the incorporation of Casiopeina III-ia (CasIII-ia), a hydrophilic copper coordination compound with well-documented anti-neoplastic activity, on Zinc oxide nanoparticles (ZnONPs) with apoptotic activity and lipophilicity, allowing them to permeate biological barriers. Additionally, ZnONPs exhibited fluorescence, with emission at different wavelengths depending on their agglomeration and enabling real-time tracking biodistribution. Also, ZnONPs served as a sensitizer, generating reactive oxygen species (ROS) in situ. In in vitro studies on HeLa and MDA-MB-231 cell lines, a synergistic effect was observed with the impregnated CasIII-ia on ZnONPs. The anticancer activity had an increase in cellular inhibition, depending on the dose of exposure to UV-vis irradiation. In in vivo studies utilized zebrafish models for xenotransplanting stained MDA-MB-231 cells and testing the effectiveness of Cas-ZnONPs treatment. The treatment successfully eliminated cancer cells, both when combined with Photodynamic Therapy (PDT) and when used alone. However, a significantly higher concentration (50 times) of Cas-ZnONPs was required in the absence of PDT. This demonstrates the potential of Cas-ZnONPs in cancer treatment, especially when combined with PDT.
Collapse
Affiliation(s)
- Ricardo David Flores-Cruz
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico.
| | - Adrián Espinoza-Guillén
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Karen Reséndiz-Acevedo
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Valentín Mendoza-Rodríguez
- Instituto de Fisiología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Arturo Jiménez-Sánchez
- Departamento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Franklin J Méndez
- Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico.
| |
Collapse
|
6
|
Su C, Cheng S, Cheng R, Li K, Li Y. A cancer-targeted glutathione-gated probe for self-sufficient ST/CDT combination therapy and FRET-based miRNA imaging. Mikrochim Acta 2024; 191:433. [PMID: 38951214 DOI: 10.1007/s00604-024-06503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
A cancer-targeted glutathione (GSH)-gated theranostic probe (CGT probe) for intracellular miRNA imaging and combined treatment of self-sufficient starvation therapy (ST) and chemodynamic therapy (CDT) was developed. The CGT probe is constructed using MnO2 nanosheet (MS) as carrier material to adsorb the elaborately designed functional DNAs. It can be internalized by cancer cells via specific recognition between the AS1411 aptamer and nucleolin. After CGT probe entering the cancer cells, the overexpressed GSH, as gate-control, can degrade MS to Mn2+ which can be used for CDT by Fenton-like reaction. Simultaneously, Mn2+-mediated CDT can further cascade with the enzyme-like activities (catalase-like activity and glucose oxidase-like activity) of CGT probe, achieving self-sufficient ST/CDT synergistic therapy. Meanwhile, the anchored DNAs are released, achieving in situ signal amplification via disubstituted-catalytic hairpin assembly (DCHA) and FRET (fluorescence resonance energy transfer) imaging of miR-21. The in vitro and in vivo experiments demonstrated that accurate and sensitive miRNA detection can be achieved using the CGT probe. Overall, the ingenious CGT probe opens a new avenue for the development of early clinical diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Cong Su
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Simin Cheng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Ruimin Cheng
- School of Economic and Management, Shanghai University of Sport, Shanghai, 200438, PR China
| | - Kexin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
7
|
Mesquita B, Singh A, Prats Masdeu C, Lokhorst N, Hebels ER, van Steenbergen M, Mastrobattista E, Heger M, van Nostrum CF, Oliveira S. Nanobody-mediated targeting of zinc phthalocyanine with polymer micelles as nanocarriers. Int J Pharm 2024; 655:124004. [PMID: 38492899 DOI: 10.1016/j.ijpharm.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.
Collapse
Affiliation(s)
- Bárbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arunika Singh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cèlia Prats Masdeu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nienke Lokhorst
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Erik R Hebels
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mies van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University, College of Medicine, Jiaxing, Zhejiang, PR China; Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Chi H, Yan X, Tong W, Tian Q. SpyGlass guided PDT for advanced intraductal papillary mucinous neoplasm of the bile tract: A case report and literature review. Photodiagnosis Photodyn Ther 2024; 46:104098. [PMID: 38642727 DOI: 10.1016/j.pdpdt.2024.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Intraductal papillary mucinous neoplasm of the bile tract is a rare biliary tumor characterized by mucin growth within the bile duct. In the early stages, it often presents without significant obstruction, this often leads to its discovery in the advanced stages. We report a case of a 63-year-old female with an intraductal papillary mucinous neoplasm of the bile duct (IPMN-B). The patient had a history of intrahepatic bile duct stones and biliary ascariasis. She gradually developed symptoms such as jaundice and intermittent fever before admission, and a bile duct biopsy confirmed the diagnosis of IPMN-B. Currently, endoscopic photodynamic therapy (PDT) is considered an effective treatment for bile duct cancer. In this case, we performed two sessions of PDT guided by SpyGlass. The patient experienced complete remission postoperatively, and there has been no evidence of tumor recurrence or metastasis in the three years following the procedure.
Collapse
Affiliation(s)
- Hao Chi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300192, China
| | - Xiaodong Yan
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300192, China
| | - Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300192, China
| | - Qing Tian
- Department of Hepatobiliary Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
9
|
Li Y, Li Y, Song Y, Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep 2024; 51:53. [PMID: 38334150 DOI: 10.3892/or.2024.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
10
|
Hu Y, Wang D, Zhang T, Lei M, Luo Y, Chen Z, Li Y, Duan D, Zhang L, Zhu Y. Combined Photosensitive Gene Therapy Effective Against Triple-Negative Breast Cancer in Mice Model. Int J Nanomedicine 2024; 19:1809-1825. [PMID: 38414523 PMCID: PMC10898360 DOI: 10.2147/ijn.s449042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Tumor hypoxia and invasion present significant challenges for the efficacy of photodynamic therapy (PDT) in triple-negative breast cancer (TNBC). This study developed a mitochondrial targeting strategy that combined PDT and gene therapy to promote each other and address the challenges. Methods The positively charged amphiphilic material triphenylphosphine-tocopherol polyethylene glycol succinate (TPP-TPGS, TPS) and the photosensitizer chloride e6 (Ce6) formed TPS@Ce6 nanoparticles (NPs) by hydrophobic interaction. They electrostatically condensed microRNA-34a (miR-34a) to form stable TPS@Ce6/miRNA NPs. Results Firstly, Ce6 disrupted the lysosomal membrane, followed by successful delivery of miR-34a by TPS@Ce6/miRNA NPs. Meanwhile, miR-34a reduced ROS depletion and further enhanced the effectiveness of PDT. Consequently, the mutual promotion between PDT and gene therapy led to enhanced anti-tumor effects. Furthermore, the TPS@Ce6/miRNA NPs promoted apoptosis by down-regulating Caspase-3 and inhibited tumor cell migration and invasion by down-regulating N-Cadherin. In addition, in vitro and in vivo experiments demonstrated that the TPS@Ce6/miRNA NPs achieved excellent anti-tumor effects. These findings highlighted the enhanced anticancer effects and reduced migration of tumor cells through the synergistic effects of PDT and gene therapy. Conclusion Taken together, the targeted co-delivery of Ce6 and miR-34a will facilitate the application of photodynamic and genic nanomedicine in the treatment of aggressive tumors, particularly TNBC.
Collapse
Affiliation(s)
- Yixue Hu
- College of Life Science, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Dongna Wang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Tianyu Zhang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Yingnan Luo
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, Nanjing, People’s Republic of China
| | - Yuting Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Dandan Duan
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Liefeng Zhang
- College of Life Science, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing, People’s Republic of China
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Möhring C, Khan O, Zhou T, Sadeghlar F, Mahn R, Kaczmarek DJ, Dold L, Toma M, Marinova M, Glowka TR, Matthaei H, Manekeller S, Kalff JC, Strassburg CP, Weismüller TJ, Gonzalez-Carmona MA. Comparison between regular additional endobiliary radiofrequency ablation and photodynamic therapy in patients with advanced extrahepatic cholangiocarcinoma under systemic chemotherapy. Front Oncol 2023; 13:1227036. [PMID: 37711210 PMCID: PMC10497756 DOI: 10.3389/fonc.2023.1227036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
Background and aims Extrahepatic cholangiocarcinoma (eCCA) remains a malignancy with a dismal prognosis. The first-line standard of care includes systemic chemotherapy (SC) and biliary drainage through stenting. Endobiliary ablative techniques, such as photodynamic therapy (ePDT) and radio-frequency ablation (eRFA), have demonstrated feasibility and favorable survival data. This study aimed to compare the oncologic outcome in patients treated with SC and concomitant eRFA or ePDT. Method All patients with eCCA were evaluated for study inclusion. Sixty-three patients receiving a combination of SC and at least one endobiliary treatment were retrospectively compared. Results Patients were stratified into three groups: SC + ePDT (n = 22), SC + eRFA (n = 28), and SC + ePDT + eRFA (n = 13). The median overall survival (OS) of the whole cohort was 14.2 months with no statistically significant difference between the three therapy groups but a trend to better survival for the group receiving ePDT as well as eRFA, during SC (ePDT + SC, 12.7 months; eRFA + SC, 13.8 months; ePDT + eRFA + SC, 20.2 months; p = 0.112). The multivariate Cox regression and subgroup analysis highlighted the beneficial effect of eRFA on OS. Overall, combined therapy was well tolerated. Only cholangitis occurred more often in the SC + eRFA group. Conclusion Additional endobiliary ablative therapies in combination with SC were feasible. Both modalities, eRFA and ePDT, showed a similar benefit in terms of survival. Interestingly, patients receiving both regimes showed the best OS indicating a possible synergism between both ablative therapeutic techniques.
Collapse
Affiliation(s)
- Christian Möhring
- Department of Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Oliver Khan
- Department of Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Taotao Zhou
- Department of Medicine I, University Hospital of Bonn, Bonn, Germany
| | | | - Robert Mahn
- Department of Medicine I, University Hospital of Bonn, Bonn, Germany
| | | | - Leona Dold
- Department of Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Marieta Toma
- Department of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Milka Marinova
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Tim R. Glowka
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Hanno Matthaei
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | | | - Jörg C. Kalff
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | | | - Tobias J. Weismüller
- Department of Medicine I, University Hospital of Bonn, Bonn, Germany
- Department of Gastroenterology and Oncology, Vivantes Humboldt Hospital, Berlin, Germany
| | | |
Collapse
|
12
|
Kuwatani M, Sakamoto N. Promising Highly Targeted Therapies for Cholangiocarcinoma: A Review and Future Perspectives. Cancers (Basel) 2023; 15:3686. [PMID: 37509347 PMCID: PMC10378186 DOI: 10.3390/cancers15143686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
To overcome the poor prognosis of cholangiocarcinoma (CCA), highly targeted therapies, such as antibody-drug conjugates (ADCs), photodynamic therapy (PDT) with/without systemic chemotherapy, and experimental photoimmunotherapy (PIT), have been developed. Three preclinical trials have investigated the use of ADCs targeting specific antigens, namely HER2, MUC1, and glypican-1 (GPC1), for CCA. Trastuzumab emtansine demonstrated higher antiproliferative activity in CCA cells expressing higher levels of HER2. Similarly, "staphylococcal enterotoxin A-MUC1 antibody" and "anti-GPC1 antibody-monomethyl auristatin F" conjugates showed anticancer activity. PDT is effective in areas where appropriate photosensitizers and light coexist. Its mechanism involves photosensitizer excitation and subsequent reactive oxygen species production in cancer cells upon irradiation. Hematoporphyrin derivatives, temoporfin, phthalocyanine-4, talaporfin, and chlorine e6 derivatives have mainly been used clinically and preclinically in bile duct cancer. Currently, new forms of photosensitizers with nanotechnology and novel irradiation catheters are being developed. PIT is the most novel anti-cancer therapy developed in 2011 that selectively kills targeted cancer cells using a unique photosensitizer called "IR700" conjugated with an antibody specific for cancer cells. PIT is currently in the early stages of development for identifying appropriate CCA cell targets and irradiation devices. Future human and artificial intelligence collaboration has potential for overcoming challenges related to identifying universal CCA cell targets. This could pave the way for highly targeted therapies for CCA, such as ADC, PDT, and PIT.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
13
|
Pogorilyy V, Ostroverkhov P, Efimova V, Plotnikova E, Bezborodova O, Diachkova E, Vasil'ev Y, Pankratov A, Grin M. Thiocarbonyl Derivatives of Natural Chlorins: Synthesis Using Lawesson's Reagent and a Study of Their Properties. Molecules 2023; 28:molecules28104215. [PMID: 37241955 DOI: 10.3390/molecules28104215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The development of sulfur-containing pharmaceutical compounds is important in the advancement of medicinal chemistry. Photosensitizers (PS) that acquire new properties upon incorporation of sulfur-containing groups or individual sulfur atoms into their structure are not neglected, either. In this work, a synthesis of sulfur-containing derivatives of natural chlorophyll a using Lawesson's reagent was optimized. Thiocarbonyl chlorins were shown to have a significant bathochromic shift in the absorption and fluorescence bands. The feasibility of functionalizing the thiocarbonyl group at the macrocycle periphery by formation of a Pt(II) metal complex in the chemotherapeutic agent cisplatin was shown. The chemical stability of the resulting conjugate in aqueous solution was studied, and it was found to possess a high cytotoxic activity against sarcoma S37 tumor cells that results from the combined photodynamic and chemotherapeutic effect on these cells.
Collapse
Affiliation(s)
- Viktor Pogorilyy
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Petr Ostroverkhov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Valeria Efimova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Ekaterina Plotnikova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Olga Bezborodova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery, Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia
| | - Yuriy Vasil'ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia
| | - Andrei Pankratov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| |
Collapse
|