1
|
Couto B, Galosi S, Steel D, Kurian MA, Friedman J, Gorodetsky C, Lang AE. Severe Acute Motor Exacerbations (SAME) across Metabolic, Developmental and Genetic Disorders. Mov Disord 2024; 39:1446-1467. [PMID: 39119747 DOI: 10.1002/mds.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Instituto de Neurociencia Cognitiva y Traslacional, INECO-Favaloro-CONICET, Buenos Aires, Argentina
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital; Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Carolina Gorodetsky
- Division of Neurology, Pediatric Deep Brain Stimulation Program, Movement Disorder and Neuromodulation Program at the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Liu J, Song J, Gao D, Li Y, Guo T, Yuan W, Chen M, Chen L, Zhang Y, Ma Q, Cui M, Song X, Wang R, Jiang J, Zou Z, Dong Y, Ma J. Exploring the associations between phthalate exposure and cardiometabolic risk factors clustering among children: The potential mediating role of insulin-resistant-related genes DNA methylation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132578. [PMID: 37741207 DOI: 10.1016/j.jhazmat.2023.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
The relationship between childhood phthalates (PAEs) exposure, DNA methylation, and cardiometabolic risk (CMR) factors is not well understood. Children were included from a longitudinal cohort 2018-2020 in Xiamen, China. A nest case-control study was additionally conducted, and methylation in lysyl oxidase-like 3 (LOXL3) and solute Carrier Family 6 Member 19 (SLC6A19) were measured. Generalized linear models were used to estimate the associations between PAEs exposure and CMR factors, and mediation analyses of DNA methylation were conducted. The longitudinal study included 835 children aged 7-11 years, and the nest case-control study included 120 cases and 120 controls. Exposure to higher PAEs was correlated with increased CMR scores at baseline (β = 0.299, 95 %CI = 0.114, 0.485) and the final visit (β = 0.202, 95 %CI = 0.008, 0.397). In nest case-control study, higher mono-n-butyl phthalate (MnBP) exposure was related with elevated triglycerides (TG) (β = 0.283, 95 %CI = 0.025, 0.540). A decrement of methylation of CpG 33.34 of LOXL3 was found in response to MnBP exposure (β = -0.014, 95 %CI = -0.027, -0.001). Furthermore, increased methylation of LOXL3_CpG 33.34 and SLC6A19_CpG 11.12 was related to reduced TG. De-methylation of LOXL3_CpG 33.34 and SLC6A19_CpG 11.12 could mediate MnBP-TG pathways. Childhood exposure to PAEs was associated with increased CMR scores, and mediation of PAE exposure on childhood cardiometabolic health by LOXL3 and SLC6A19 de-methylation was observed.
Collapse
Affiliation(s)
- Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yanhui Li
- School of Nursing, Peking University, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ruolin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| |
Collapse
|
3
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
5
|
Kravetz Z, Rainald SK. New aspects for the brain in Hartnup disease based on mining of high-resolution cellular mRNA expression data for SLC6A19. IBRO Neurosci Rep 2023; 14:393-397. [PMID: 37101820 PMCID: PMC10123343 DOI: 10.1016/j.ibneur.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Hartnup disease is an autosomal recessive, metabolic disorder caused by mutations of the neutral amino acid transporter, SLC6A19/B0AT1. Reduced absorption in the intestine and kidney results in deficiencies in neutral amino acids and their down-stream metabolites, including niacin, associated with skin lesions and neurological symptoms. The effects on the nervous system such as ataxia have been related to systemic deficiencies of tryptophan (and other neutral amino acids) as no expression of the B0AT1 transporter was found in the brain. In the intestine, SLC6A19 cooperates with ACE2 which has received major attention as the cellular receptor for SARS-CoV-2. When transcriptomics data for ACE2 and its partner proteins were examined, a previously unrecognized expression of Slc6a19 mRNA in the ependymal cells of the mouse brain was encountered that is set into the context of neurological manifestations of Hartnup disease with this communication. A novel role for SLC6A19/B0AT1 in amino acid transport from CSF into ependymal cells is proposed and a role of niacin in ependymal cells highlighted.
Collapse
|
6
|
Viggiano D, Bruchfeld A, Carriazo S, de Donato A, Endlich N, Ferreira AC, Figurek A, Fouque D, Franssen CFM, Giannakou K, Goumenos D, Hoorn EJ, Nitsch D, Arduan AO, Pešić V, Rastenyté D, Soler MJ, Rroji M, Trepiccione F, Unwin RJ, Wagner CA, Wiecek A, Zacchia M, Zoccali C, Capasso G. Brain dysfunction in tubular and tubulointerstitial kidney diseases. Nephrol Dial Transplant 2021; 37:ii46-ii55. [PMID: 34792176 PMCID: PMC8713153 DOI: 10.1093/ndt/gfab276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/14/2022] Open
Abstract
Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a reduced GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue, we have selected a group of primary tubular diseases with preserved GFR, in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory, and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen as examples to highlight this topic, Bartter and Gitelman syndromes and nephrogenic diabetes insipidus. We discuss current published findings, some unanswered questions, and propose topics for future research.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino. Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden. Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Antonio de Donato
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino. Italy
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Germany
| | - Ana Carina Ferreira
- Nephrology Department, Centro Hospitalar E Universitário de Lisboa Central, Lisbon, Portugal; Universidade Nova de Lisboa
- Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Benite, France; University of Lyon, France
| | - Casper F M Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Dimitrios Goumenos
- Department of Nephrology and Renal Transplantation, Patras University Hospital, Patras, Greece
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alberto Ortiz Arduan
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Vesna Pešić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Daiva Rastenyté
- Medical Academy, Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Maria José Soler
- Nephrology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Merita Rroji
- Department of Nephrology, University Hospital Center "Mother Tereza", Tirana, Albania
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Robert J Unwin
- Department of Renal Medicine, Division of Medicine, University College London, UK
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zurich, Switzerland
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Miriam Zacchia
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA and Associazione Ipertensione, Nefrologia, Trapianto Renale (IPNET), Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, Univ. Campania "L.Vanvitelli", Naples, Italy. BIOGEM, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | | |
Collapse
|
7
|
Wang X, Li XY, Piao Y, Yuan G, Lin Y, Chen H, Wang Z, Li C, Wang C. Hartnup disease presenting as hereditary spastic paraplegia and severe peripheral neuropathy. Am J Med Genet A 2021; 188:237-242. [PMID: 34459558 DOI: 10.1002/ajmg.a.62475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022]
Abstract
Hartnup disease cases were rare, and the genotype-phenotype correlation was not fully understood. Here we reported two unrelated young men diagnosed as Hartnup disease, who carried novel compound heterozygote mutations in the SLC6A19 gene and presented with new phenotypes. Other than intermittent encephalopathy and photosensitive rashes, they displayed symptoms and signs of spastic paraplegia and severe peripheral nerve damages. Magnetic resonance imaging showed mild bilateral cerebellar atrophy and thinning of the thoracic spinal cord. Electromyogram detected mixed sensorimotor polyneuropathy in lower limbs. Sural nerve biopsy and pathological study indicated the moderately reduced neural fibers in the periphery nerves. Urinary amino acid analysis showed increased levels of multiple neutral amino acids. Moreover, muscle strengths in the lower limbs and the walking ability have been improved in both cases (MRC 3/5 to 4/5 in Patient 1; walking distance elongated from 50 to 100 m in Patient 2) after the treatment with oral nicotinic acid and intravenous injection of multiple amino acids. Exome sequencing revealed and confirmed the existence of the novel compound heterozygous SLC6A19 mutations: c.533G>A (p.Arg178Gln) and c.1379-1G>C mutations in patient1, and c.1433delG (p.Gly478AlafsTer44) and c.811G>A (p.Ala271Thr) in patient 2. Taken together, these findings expanded the clinical, neuroimaging, pathology, and genetic spectrum of Hartnup disease. However, the co-existence of HSP and peripheral neuropathy was only inferred based on clinical observations, and pathological and molecular studies are needed to further dissect the underlying mechanisms.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueshan Piao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Department of Pathology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guobin Yuan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cunjiang Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
8
|
Peng J, Yi B, Wang M, Tan J, Huang Z. CRISPR/Cas9-Mediated Whole Genomic Wide Knockout Screening Identifies Specific Genes Associated With PM 2.5-Induced Mineral Absorption in Liver Toxicity. Front Bioeng Biotechnol 2021; 9:669434. [PMID: 34307318 PMCID: PMC8293916 DOI: 10.3389/fbioe.2021.669434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
PM2.5, also known as fine particles, refers to particulate matter with a dynamic diameter of ≦2.5 μm in air pollutants, that carries metals (Zn, Co, Cd) which can pass through the alveolar epithelium and enter the circulatory system and tissues. PM2.5 can cause serious health problems, such as non-alcoholic fatty liver and hepatocellular carcinoma, although the underlying mechanisms of its toxic effect are poorly understood. Here, we exposed L02 cells to PM2.5 and performed a pooled genome−wide clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) to assess loss of function and identify new potential PM2.5targets. Enrichr and KEGG pathway analyses were performed to identify candidate genes associated with PM2.5 toxicity. Results revealed that four key genes, namely ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), metallothionein 1M (MT1M), solute carrier family 6 members 19 (SLC6A19) and transient receptor potential cation channel subfamily V member 6 (TRPV6) were associated with PM2.5 toxicity, mainly in regulating the mineral absorption pathway. Downregulating these genes increased cell viability and attenuated apoptosis in cells exposed to PM2.5. Conversely, overexpressing TRPV6 exacerbated cell apoptosis caused by PM2.5, while a reactive oxygen species (ROS) inhibitor N-acetyl-l-cysteine (NAC) alleviated PM2.5-induced apoptosis. In conclusion, ATP1A2, MT1M, SLC6A19 and TRPV6 may be contributing to absorption of metals in PM2.5 thereby inducing apoptosis mediated by ROS. Therefore, they hold potential as therapeutic targets for PM2.5-related diseases.
Collapse
Affiliation(s)
- Jinfu Peng
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengyao Wang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, Life Science School, Central South University, Changsha, China
| | - Zhijun Huang
- Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
van de Burgt N, van Koningsbruggen S, Behrens L, Leibold N, Martinez-Martinez P, Mannens M, van Amelsvoort T. Screening for inborn errors of metabolism in psychotic patients using Next Generation Sequencing. J Psychiatr Res 2021; 138:125-129. [PMID: 33848968 DOI: 10.1016/j.jpsychires.2021.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of rare genetic disorders which, when emerging later in life, are often characterized by neuropsychiatric manifestations including psychosis. This study aimed to determine whether it would be useful to screen patients presenting with a psychotic disorder for IEMs by a single blood sample using Next Generation Sequencing (NGS), in order to detect rare, treatable causes of psychotic disorders. Blood was drawn from 60 patients with a psychotic disorder, with a duration of illness of less than 5 years. Blood samples were screened for 67 genes using NGS (Illumina® MiSeq sequencing technique). The results were compared to the human reference genome (GoNL, n = 498). The identified variants were classified according to the ACMG classification. For the psychotic patients, 6 variants of a likely pathogenic (class 4, n = 2) or pathogenic (class 5, n = 4) origin were found. As all variants were heterozygous, no patients were considered to be affected by an IEM. For the GoNL control group, 73 variants of a likely pathogenic (class 4, n = 31) or pathogenic (class 5, n = 42) origin were found. All of these found variants were heterozygous. Therefore, these individuals from the control group were considered to be a carrier only. Thus, no patients were identified to have an IEM as an underlying disease using this approach. However, NGS may be useful to detect variants of genes associated with IEMs in an enriched subgroup of psychotic patients.
Collapse
Affiliation(s)
- Nikita van de Burgt
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands.
| | - Silvana van Koningsbruggen
- Department of Clinical Genetics, Laboratory of Genome Diagnostics, Amsterdam University Medical Centre (AUMC), Amsterdam, the Netherlands
| | - Leonie Behrens
- Department of Clinical Genetics, Laboratory of Genome Diagnostics, Amsterdam University Medical Centre (AUMC), Amsterdam, the Netherlands
| | - Nicole Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| | - Marcel Mannens
- Department of Clinical Genetics, Laboratory of Genome Diagnostics, Amsterdam University Medical Centre (AUMC), Amsterdam, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
11
|
Ortigoza-Escobar JD. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting With Movements Disorders. Front Neurol 2020; 11:582160. [PMID: 33281718 PMCID: PMC7691570 DOI: 10.3389/fneur.2020.582160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited metabolic diseases or inborn errors of metabolism frequently manifest with both hyperkinetic (dystonia, chorea, myoclonus, ataxia, tremor, etc.) and hypokinetic (rigid-akinetic syndrome) movement disorders. The diagnosis of these diseases is in many cases difficult, because the same movement disorder can be caused by several diseases. Through a literature review, two hundred and thirty one inborn errors of metabolism presenting with movement disorders have been identified. Fifty-one percent of these diseases exhibits two or more movement disorders, of which ataxia and dystonia are the most frequent. Taking into account the wide range of these disorders, a methodical evaluation system needs to be stablished. This work proposes a six-step diagnostic algorithm for the identification of inborn errors of metabolism presenting with movement disorders comprising red flags, characterization of the movement disorders phenotype (type of movement disorder, age and nature of onset, distribution and temporal pattern) and other neurological and non-neurological signs, minimal biochemical investigation to diagnose treatable diseases, radiological patterns, genetic testing and ultimately, symptomatic, and disease-specific treatment. As a strong action, it is emphasized not to miss any treatable inborn error of metabolism through the algorithm.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
12
|
ACE2 and gut amino acid transport. Clin Sci (Lond) 2020; 134:2823-2833. [PMID: 33140827 DOI: 10.1042/cs20200477] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
ACE2 is a type I membrane protein with extracellular carboxypeptidase activity displaying a broad tissue distribution with highest expression levels at the brush border membrane (BBM) of small intestine enterocytes and a lower expression in stomach and colon. In small intestinal mucosa, ACE2 mRNA expression appears to increase with age and to display higher levels in patients taking ACE-inhibitors (ACE-I). There, ACE2 protein heterodimerizes with the neutral amino acid transporter Broad neutral Amino acid Transporter 1 (B0AT1) (SLC6A19) or the imino acid transporter Sodium-dependent Imino Transporter 1 (SIT1) (SLC6A20), associations that are required for the surface expression of these transport proteins. These heterodimers can form quaternary structures able to function as binding sites for SARS-CoV-2 spike glycoproteins. The heterodimerization of the carboxypeptidase ACE2 with B0AT1 is suggested to favor the direct supply of substrate amino acids to the transporter, but whether this association impacts the ability of ACE2 to mediate viral infection is not known. B0AT1 mutations cause Hartnup disorder, a condition characterized by neutral aminoaciduria and, in some cases, pellagra-like symptoms, such as photosensitive rash, diarrhea, and cerebellar ataxia. Correspondingly, the lack of ACE2 and the concurrent absence of B0AT1 expression in small intestine causes a decrease in l-tryptophan absorption, niacin deficiency, decreased intestinal antimicrobial peptide production, and increased susceptibility to inflammatory bowel disease (IBD) in mice. Thus, the abundant expression of ACE2 in small intestine and its association with amino acid transporters appears to play a crucial role for the digestion of peptides and the absorption of amino acids and, thereby, for the maintenance of structural and functional gut integrity.
Collapse
|
13
|
Haijes H, Prinsen HC, de Sain-van der Velden MG, Verhoeven-Duif NM, van Hasselt PM, Jans JJ. Accurate discrimination of Hartnup disorder from other aminoacidurias using a diagnostic ratio. Mol Genet Metab Rep 2020; 22:100551. [PMID: 31908951 PMCID: PMC6938934 DOI: 10.1016/j.ymgmr.2019.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Hartnup disorder is caused by a deficiency of the sodium dependent B0 AT1 neutral amino acid transporter in the proximal kidney tubules and jejunum. Biochemically, Hartnup disorder is diagnosed via amino acid excretion patterns. However, these patterns can closely resemble amino acid excretion patterns of generalized aminoaciduria, which may induce a risk for misdiagnosis and preclusion from treatment. Here we explore whether calculating a diagnostic ratio could facilitate correct discrimination of Hartnup disorder from other aminoacidurias. Methods 27 amino acid excretion patterns from 11 patients with genetically confirmed Hartnup disorder were compared to 68 samples of 16 patients with other aminoacidurias. Amino acid fold changes were calculated by dividing the quantified excretion values over the upper limit of the age-adjusted reference value. Results Increased excretion of amino acids is not restricted to amino acids classically related to Hartnup disorder ("Hartnup amino acids", HAA), but also includes many other amino acids, not classically related to Hartnup disorder ("other amino acids", OAA). The fold change ratio of HAA over OAA was 6.1 (range: 2.4-9.6) in the Hartnup cohort, versus 0.2 (range: 0.0-1.6) in the aminoaciduria cohort (p < .0001), without any overlap observed between the cohorts. Discussion Excretion values of amino acids not classically related to Hartnup disorder are frequently elevated in patients with Hartnup disorder, which may cause misdiagnosis as generalized aminoaciduria and preclusion from vitamin B3 treatment. Calculation of the HAA/OAA ratio improves diagnostic differentiation of Hartnup disorder from other aminoacidurias.
Collapse
Affiliation(s)
- H.A. Haijes
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Section Metabolic Disorders, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hubertus C.M.T. Prinsen
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Nanda M. Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter M. van Hasselt
- Department of Pediatrics, Section Metabolic Disorders, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith J.M. Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Corresponding author at: Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| |
Collapse
|
14
|
Yahyaoui R, Pérez-Frías J. Amino Acid Transport Defects in Human Inherited Metabolic Disorders. Int J Mol Sci 2019; 21:ijms21010119. [PMID: 31878022 PMCID: PMC6981491 DOI: 10.3390/ijms21010119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Amino acid transporters play very important roles in nutrient uptake, neurotransmitter recycling, protein synthesis, gene expression, cell redox balance, cell signaling, and regulation of cell volume. With regard to transporters that are closely connected to metabolism, amino acid transporter-associated diseases are linked to metabolic disorders, particularly when they involve different organs, cell types, or cell compartments. To date, 65 different human solute carrier (SLC) families and more than 400 transporter genes have been identified, including 11 that are known to include amino acid transporters. This review intends to summarize and update all the conditions in which a strong association has been found between an amino acid transporter and an inherited metabolic disorder. Many of these inherited disorders have been identified in recent years. In this work, the physiological functions of amino acid transporters will be described by the inherited diseases that arise from transporter impairment. The pathogenesis, clinical phenotype, laboratory findings, diagnosis, genetics, and treatment of these disorders are also briefly described. Appropriate clinical and diagnostic characterization of the underlying molecular defect may give patients the opportunity to avail themselves of appropriate therapeutic options in the future.
Collapse
Affiliation(s)
- Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, 29011 Málaga, Spain
- Grupo Endocrinología y Nutrición, Diabetes y Obesidad, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain
- Correspondence:
| | - Javier Pérez-Frías
- Grupo Multidisciplinar de Investigación Pediátrica, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
15
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
16
|
Zhu Y, Chen L, He J, Chen Y, Gou H, Ma L, Qu Y, Liu Y, Wang D, Zhu Y. Study of Seizure-Manifested Hartnup Disorder Case Induced By Novel Mutations in SLC6A19. Open Life Sci 2018; 13:22-27. [PMID: 33817063 PMCID: PMC7874744 DOI: 10.1515/biol-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022] Open
Abstract
AIM The aim of the study is to investigate a variation in the gene SLC6A19 in a female patient with Hartnup disorder manifested only by seizure. METHODS DNA samples collected from the patient and her parents were analyzed and twelve exons of the SLC6A19 gene were amplified and sequenced. RESULTS We found c.47C>T and c.1522G>A mutations in the gene SLC6A19 belonging to the patient, which are missense mutations inherited from her parents. The c.47C>T mutation is from her father and c.1522G>A is inherited from her mother. The parents are both heterozygous healthy carriers. CONCLUSION Two novel mutations of the SLC6A19 gene are revealed in the female patient with Hartnup disorder, exhibiting no typical dermatologic problems, but having dramatic neurological symptoms.
Collapse
Affiliation(s)
- Yanmei Zhu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Chen
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia He
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Chen
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiyan Gou
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Ma
- Second Department of Internal Medicine, Second Hospital of Heilongjiang Province, Harbin, China
| | - Youyang Qu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Freissmuth M, Stockner T, Sucic S. SLC6 Transporter Folding Diseases and Pharmacochaperoning. Handb Exp Pharmacol 2017; 245:249-270. [PMID: 29086036 DOI: 10.1007/164_2017_71] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human genome encodes 19 genes of the solute carrier 6 (SLC6) family; non-synonymous changes in the coding sequence give rise to mutated transporters, which are misfolded and thus cause diseases in the affected individuals. Prominent examples include mutations in the transporters for dopamine (DAT, SLC6A3), for creatine (CT1, SLC6A8), and for glycine (GlyT2, SLC6A5), which result in infantile dystonia, mental retardation, and hyperekplexia, respectively. Thus, there is an obvious unmet medical need to identify compounds, which can remedy the folding deficit. The pharmacological correction of folding defects was originally explored in mutants of the serotonin transporter (SERT, SLC6A4), which were created to study the COPII-dependent export from the endoplasmic reticulum. This led to the serendipitous discovery of the pharmacochaperoning action of ibogaine. Ibogaine and its metabolite noribogaine also rescue several disease-relevant mutants of DAT. Because the pharmacology of DAT and SERT is exceptionally rich, it is not surprising that additional compounds have been identified, which rescue folding-deficient mutants. These compounds are not only of interest for restoring DAT function in the affected children. They are also likely to serve as useful tools to interrogate the folding trajectory of the transporter. This is likely to initiate a virtuous cycle: if the principles underlying folding of SLC6 transporters are understood, the design of pharmacochaperones ought to be facilitated.
Collapse
Affiliation(s)
- Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Margheritis E, Imperiali FG, Cinquetti R, Vollero A, Terova G, Rimoldi S, Girardello R, Bossi E. Amino acid transporter B(0)AT1 (slc6a19) and ancillary protein: impact on function. Pflugers Arch 2016; 468:1363-74. [PMID: 27255547 DOI: 10.1007/s00424-016-1842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/04/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022]
Abstract
Amino acids play an important role in the metabolism of all organisms. Their epithelial re-absorption is due to specific transport proteins, such as B(0)AT1, a Na(+)-coupled neutral amino acid symporter belonging to the solute carrier 6 family. Here, a recently cloned fish orthologue, from the intestine of Salmo salar, was electrophysiologically characterized with the two-electrode voltage clamp technique, in Xenopus laevis oocytes heterologously expressing the transporter. Substrate specificity, apparent affinities and the ionic dependence of the transport mechanism were determined in the presence of specific collectrin. Results demonstrated that like the human, but differently from sea bass (Dicentrarchus labrax) orthologue, salmon B(0)AT1 needs to be associated with partner proteins to be correctly expressed at the oocyte plasma membrane. Cloning of sea bass collectrin and comparison of membrane expression and functionality of the B(0)AT1 orthologue transporters allowed a deeper investigation on the role of their interactions. The parameters acquired by electrophysiological and immunolocalization experiments in the mammalian and fish transporters contributed to highlight the dynamic of relations and impacts on transport function of the ancillary proteins. The comparative characterization of the physiological parameters of amino acid transporters with auxiliary proteins can help the comprehension of the regulatory mechanism of essential nutrient absorption.
Collapse
Affiliation(s)
- Eleonora Margheritis
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Francesca Guia Imperiali
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Alessandra Vollero
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
- Interuniversity Center "The Protein Factory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, I-20131, Milan, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy.
- Interuniversity Center "The Protein Factory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, I-20131, Milan, Italy.
| |
Collapse
|
19
|
|
20
|
Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaiefard M, Seebohm G, Föller M, Palmada M, Böhmer C, Bröer S, Lang F. Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. Cell Physiol Biochem 2012; 30:1538-46. [PMID: 23234856 DOI: 10.1159/000343341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The amino acid transporter B0AT1 (SLC6A19) accomplishes concentrative cellular uptake of neutral amino acids. SLC6A19 is stimulated by serum- & glucocorticoid-inducible kinase (SGK) isoforms. SGKs are related to PKB/Akt isoforms, which also stimulate several amino acid transporters. PKB/Akt modulates glucose transport in part by phosphorylating and thus activating phosphatidylinositol-3-phosphate-5-kinase (PIKfyve), which fosters carrier protein insertion into the cell membrane. The present study explored whether PKB/Akt and/or PIKfyve stimulate SLC6A19. METHODS SLC6A19 was expressed in Xenopus oocytes with or without wild-type PKB/Akt or inactive (T308A/S473A)PKB/Akt without or with additional expression of wild-type PIKfyve or PKB/Akt-resistant (S318A)PIKfyve. Electrogenic amino acid transport was determined by dual electrode voltage clamping. RESULTS In SLC6A19-expressing oocytes but not in water-injected oocytes, the addition of the neutral amino acid L-leucine (2 mM) to the bath generated a current (I(le)), which was significantly increased following coexpression of PKB/Akt, but not by coexpression of (T308A/S473A)PKB/Akt. The effect of PKB/Akt was augmented by additional coexpression of PIKfyve but not of (S318A)PIKfyve. Coexpression of PKB/Akt enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The decline of I(le) following inhibition of carrier insertion by brefeldin A (5 µM) was similar in the absence and presence of PKB/Akt indicating that PKB/Akt stimulated carrier insertion into rather than inhibiting carrier retrieval from the cell membrane. CONCLUSION PKB/Akt up-regulates SLC6A19 activity, which may foster amino acid uptake into PKB/Akt-expressing epithelial and tumor cells.
Collapse
Affiliation(s)
- Evgenii Bogatikov
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Karnebeek CDM, Stockler S. Treatable inborn errors of metabolism causing intellectual disability: a systematic literature review. Mol Genet Metab 2012; 105:368-81. [PMID: 22212131 DOI: 10.1016/j.ymgme.2011.11.191] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intellectual disability ('developmental delay' at age<5 years) affects 2.5% of population worldwide. Recommendations to investigate genetic causes of intellectual disability are based on frequencies of single conditions and on the yield of diagnostic methods, rather than availability of causal therapy. Inborn errors of metabolism constitute a subgroup of rare genetic conditions for which an increasing number of treatments has become available. To identify all currently treatable inborn errors of metabolism presenting with predominantly intellectual disability, we performed a systematic literature review. METHODS We applied Cochrane Collaboration guidelines in formulation of PICO and definitions, and searched in Pubmed (1960-2011) and relevant (online) textbooks to identify 'all inborn errors of metabolism presenting with intellectual disability as major feature'. We assessed levels of evidence of treatments and characterised the effect of treatments on IQ/development and related outcomes. RESULTS We identified a total of 81 'treatable inborn errors of metabolism' presenting with intellectual disability as a major feature, including disorders of amino acids (n=12), cholesterol and bile acid (n=2), creatine (n=3), fatty aldehydes (n=1); glucose homeostasis and transport (n=2); hyperhomocysteinemia (n=7); lysosomes (n=12), metals (n=3), mitochondria (n=2), neurotransmission (n=7); organic acids (n=19), peroxisomes (n=1), pyrimidines (n=2), urea cycle (n=7), and vitamins/co-factors (n=8). 62% (n=50) of all disorders are identified by metabolic screening tests in blood (plasma amino acids, homocysteine) and urine (creatine metabolites, glycosaminoglycans, oligosaccharides, organic acids, pyrimidines). For the remaining disorders (n=31) a 'single test per single disease' approach including primary molecular analysis is required. Therapeutic modalities include: sick-day management, diet, co-factor/vitamin supplements, substrate inhibition, stemcell transplant, gene therapy. Therapeutic effects include improvement and/or stabilisation of psychomotor/cognitive development, behaviour/psychiatric disturbances, seizures, neurologic and systemic manifestations. The levels of available evidence for the various treatments range from Level 1b,c (n=5); Level 2a,b,c (n=14); Level 4 (n=45), Level 4-5 (n=27). In clinical practice more than 60% of treatments with evidence level 4-5 is internationally accepted as 'standard of care'. CONCLUSION This literature review generated the evidence to prioritise treatability in the diagnostic evaluation of intellectual disability. Our results were translated into digital information tools for the clinician (www.treatable-id.org), which are part of a diagnostic protocol, currently implemented for evaluation of effectiveness in our institution. Treatments for these disorders are relatively accessible, affordable and with acceptable side-effects. Evidence for the majority of the therapies is limited however; international collaborations, patient registries, and novel trial methodologies are key in turning the tide for rare diseases such as these.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Vancouver BC V6H 3V4, Vancouver, Canada.
| | | |
Collapse
|
22
|
Bhavsar SK, Hosseinzadeh Z, Merches K, Gu S, Bröer S, Lang F. Stimulation of the amino acid transporter SLC6A19 by JAK2. Biochem Biophys Res Commun 2011; 414:456-61. [PMID: 21964291 DOI: 10.1016/j.bbrc.2011.09.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 01/16/2023]
Abstract
JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation (V617F)JAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na(+) coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, (V617F)JAK2 or inactive (K882E)JAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2mM) to the bath generated a current (I(le)), which was significantly increased following coexpression of JAK2 or (V617F)JAK2, but not by coexpression of (K882E)JAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40μM) resulted in a gradual decline of I(le). According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of I(le) following inhibition of carrier insertion by brefeldin A (5μM) was similar in the absence and presence of JAK2 indicating that JAK2 stimulates carrier insertion into rather than inhibiting carrier retrival from the cell membrane. In conclusion, JAK2 up-regulates SLC6A19 activity which may foster amino acid uptake into JAK2 expressing cells.
Collapse
|
23
|
Current World Literature. Curr Opin Neurol 2011; 24:183-90. [DOI: 10.1097/wco.0b013e32834585ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|