1
|
Jin Y, Jana S, Abbasov ME, Lin H. Antibiotic target discovery by integrated phenotypic and activity-based profiling of electrophilic fragments. Cell Chem Biol 2025:S2451-9456(25)00033-9. [PMID: 40020665 DOI: 10.1016/j.chembiol.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/05/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
The emergence of antibiotic resistance necessitates the discovery of novel bacterial targets and antimicrobial agents. Here, we present a bacterial target discovery framework that integrates phenotypic screening of cysteine-reactive fragments with competitive activity-based protein profiling to map and functionally characterize the targets of screening hits. Using this approach, we identify β-ketoacyl-acyl carrier protein synthase III (FabH) and MiaA tRNA prenyltransferase as primary targets of a hit fragment, 10-F05, that confer bacterial stress resistance and virulence in Shigella flexneri. Mechanistic investigations elucidate that covalent C112 modification in FabH, an enzyme involved in bacterial fatty acid synthesis, results in its inactivation and consequent growth inhibition. We further demonstrate that irreversible C273 modification at the MiaA RNA-protein interaction interface abrogates substrate tRNA binding, attenuating resistance and virulence through decreased translational accuracy. Our findings underscore the efficacy of integrating phenotypic and activity-based profiling of electrophilic fragments to accelerate the identification and pharmacologic validation of new therapeutic targets.
Collapse
Affiliation(s)
- Yizhen Jin
- Graduate Program of Biochemistry, Molecular and Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Medicine and Department of Chemistry, The University of Chicago, 900 E. 57(th) Street, Chicago, IL 60637, USA
| | - Sadhan Jana
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Medicine and Department of Chemistry, The University of Chicago, 900 E. 57(th) Street, Chicago, IL 60637, USA
| | - Mikail E Abbasov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Medicine and Department of Chemistry, The University of Chicago, 900 E. 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Tramonti A, Donkor AK, Parroni A, Musayev FN, Barile A, Ghatge MS, Graziani C, Alkhairi M, AlAwadh M, di Salvo ML, Safo MK, Contestabile R. Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli: a pivotal enzyme in the vitamin B6 salvage pathway. FEBS J 2023; 290:5628-5651. [PMID: 37734924 PMCID: PMC10872706 DOI: 10.1111/febs.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Akua K Donkor
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Alessia Parroni
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudio Graziani
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Mona Alkhairi
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed AlAwadh
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| |
Collapse
|
3
|
Xue C, Ng IS. Investigation of enzymatic quality and quantity using pyridoxal 5'-phosphate (PLP) regeneration system as a decoy in Escherichia coli. Int J Biol Macromol 2023; 235:123814. [PMID: 36841388 DOI: 10.1016/j.ijbiomac.2023.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), an essential cofactor for multiple enzymes, was used as a protein decoy to prompt enzyme expression and activity for the first time. The best chassis, denoted as WJK, was developed using a pyridoxal kinase (PdxK) and integrated at the HK022 phage attack site of Escherichia coli W3110. When compared with the original strain, the amount and activity of lysine decarboxylase (CadA) in WJK were significantly increased by 100 % and 120 %, respectively. When supplementary nineteen amino acids as second carbon source, cell growth and protein trade-off were observed. The transcriptional levels of genes from glycolysis to TCA cycle, adhE, argH and gdhA were dominating and redirected more flux into α-ketoglutarate, thus facilitated cell growth. Stepwise improvement was conducted with pyridoxal and nitrogen-rich medium; hence, CadA activity was increased to 60 g-cadaverine/g-dry cell weight/h. By reutilizing the whole-cell biocatalysts in two repeated reactions with the supplementation of fresh cells, a total cadaverine of 576 g/L was obtained even without additional PLP. Notably, PLP decoy augment the enzymatic activities of 5-aminolevulinic acid synthase and glutamate/lysine/arginine decarboxylases by over 100 %. Finally, a conserved PLP-binding pocket, Ser-His-Lys, was identified as a vital PLP sponge site that simultaneously improved protein quality and quantity.
Collapse
Affiliation(s)
- Chengfeng Xue
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
4
|
Maity AN, Chen JR, Li QY, Ke SC. The Nitrogen Atom of Vitamin B 6 Is Essential for the Catalysis of Radical Aminomutases. Int J Mol Sci 2022; 23:ijms23095210. [PMID: 35563602 PMCID: PMC9105233 DOI: 10.3390/ijms23095210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Radical aminomutases are pyridoxal 5'-phosphate (PLP, a B6 vitamer)-dependent enzymes that require the generation of a 5'-deoxyadenosyl radical to initiate the catalytic cycle, to perform a 1,2 amino group shift reaction. The role of the nitrogen atom of PLP in radical aminomutases has not been investigated extensively yet. We report an alternative synthetic procedure to provide easy access to 1-deazaPLP (dAPLP), an isosteric analog of PLP which acts as a probe for studying the role of the nitrogen atom. Our results revealed that lysine 5,6-aminomutase (5,6-LAM), a radical aminomutase, reconstituted with dAPLP cannot turn over a substrate, demonstrating that the nitrogen atom is essential for radical aminomutases. In contrast, biochemical and spectroscopic studies on the S238A variant reconstituted with PLP revealed a minuscule loss of activity. This apparent anomaly can be explained by a water-mediated rescue of activity in S238A, as if mimicking the active site of lysine 2,3-aminomutase. This study leads to a better comprehension of how enzymes harness the optimum capability of PLP to realize catalysis.
Collapse
|
5
|
Cloning and Characterization of Pyridoxal Kinase from Geobacillus sp. H6a. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal kinase encoded by pdxK gene, is the important key enzyme in the salvage pathway of vitamin B6 biosynthesis. The enzyme catalyzes the phosphorylation of the 5′ alcohol groups of free form vitamin B6 into their 5′-phosphate forms that requires metal ion and ATP. Pyridoxal kinase have been reported in many organisms except in the thermophilic bacterium. Therefore, this study aimed to clone, express and characterize pyridoxal kinase of Geobacillus sp. H6a isolated from the hot spring in the North of Thailand. The GhpdxK gene (810 base pairs) was inserted into pET28a(+) plasmids at restriction site of NdeI and BamHI and transformed into E.coli BL21(DE3). The expressed pyridoxal kinase of this bacterium exhibits a homodimer, in which each subunit had a molecular mass of about 32 kDa when examined by SDS-PAGE and gel filtration. The enzyme showed maximal activity at 70°C and at pH 8.0. The expressed enzyme obtained in this study was found to be more active (>50%) in the broad pH range (6.0 – 9.0) than those previously reported. This enzyme prefers Mg2+ and also accepts other cations to the less extent. Under optimal conditions, the expressed enzyme has higher affinity toward PN (20 ± 1.35 µM), while it showed the same affinity to pyridoxal (100 ± 0.76 µM) and pyridoxamine (100 ± 1.21 µM). The Km value for ATP and 4-amino-5-hydroxymethyl-2-methylpyridine were 8.99 ± 1.76 µM and 19 ± 0.85 µM, respectively. With high activity at high temperature and active in the broad pH range, it could be considered as a potential candidate for future application particularly bioconversion of vitamin B6.
Collapse
|
6
|
Genetic analysis using vitamin B 6 antagonist 4-deoxypyridoxine uncovers a connection between pyridoxal 5'-phosphate and coenzyme A metabolism in Salmonella enterica. J Bacteriol 2022; 204:e0060721. [PMID: 35099985 DOI: 10.1128/jb.00607-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for organisms in all three domains of life. Despite the central role of PLP, many aspects of vitamin B6 metabolism, including its integration with other biological pathways, are not fully understood. In this study, we examined the metabolic perturbations caused by the vitamin B6 antagonist 4-deoxypyridoxine (dPN) in a ptsJ mutant of Salmonella enterica serovar Typhimurium LT2. Our data suggest that PdxK (PL/PN/PM kinase, EC 2.7.1.35) phosphorylates dPN to 4-deoxypyridoxine 5'-phosphate (dPNP), which in turn can compromise the de novo biosynthesis of PLP. The data are consistent with the hypothesis that accumulated dPNP inhibits GlyA (serine hydroxymethyltransferase, EC 2.1.2.1) and/or GcvP (glycine decarboxylase, EC 1.4.4.2), two PLP-dependent enzymes involved in the generation of one-carbon units. Our data suggest this inhibition leads to reduced flux to coenzyme A precursors and subsequently lower synthesis of CoA and thiamine. This study uncovers a link between vitamin B6 metabolism and the biosynthesis of CoA and thiamine, highlighting the integration of biochemical pathways in microbes. IMPORTANCE PLP is a ubiquitous cofactor required by enzymes in diverse metabolic networks. The data herein expand our understanding of the toxic effects of dPN, a vitamin B6 antagonist often used to mimic vitamin B6 deficiency and to study PLP-dependent enzyme kinetics. In addition to de novo PLP biosynthesis, we define a metabolic connection between vitamin B6 metabolism and synthesis of thiamine and CoA. This work provides a foundation for the use of dPN to study vitamin B6 metabolism in other organisms.
Collapse
|
7
|
Devi S, Tomar P, Faisal Tarique K, Gourinath S. Inhibiting Pyridoxal Kinase of Entamoeba histolytica Is Lethal for This Pathogen. Front Cell Infect Microbiol 2021; 11:660466. [PMID: 33937101 PMCID: PMC8085340 DOI: 10.3389/fcimb.2021.660466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
Pyridoxal 5’-phosphate (PLP) functions as a cofactor for hundreds of different enzymes that are crucial to the survival of microorganisms. PLP-dependent enzymes have been extensively characterized and proposed as drug targets in Entamoeba histolytica. This pathogen is unable to synthesize vitamin B6via de-novo pathway and relies on the uptake of vitamin B6 vitamers from the host which are then phosphorylated by the enzyme pyridoxal kinase to produce PLP, the active form of vitamin B6. Previous studies from our lab shows that EhPLK is essential for the survival and growth of this protozoan parasite and its active site differs significantly with respect to its human homologue making it a potential drug target. In-silico screening of EhPLK against small molecule libraries were performed and top five ranked molecules were shortlisted on the basis of docking scores. These compounds dock into the PLP binding site of the enzyme such that binding of these compounds hinders the binding of substrate. Of these five compounds, two compounds showed inhibitory activity with IC50 values between 100-250 μM when tested in-vitro. The effect of these compounds proved to be extremely lethal for Entamoeba trophozoites in cultured cells as the growth was hampered by 91.5% and 89.5% when grown in the presence of these compounds over the period of 72 hours.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priya Tomar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
9
|
Vu HN, Downs DM. An Unexpected Role for the Periplasmic Phosphatase PhoN in the Salvage of B 6 Vitamers in Salmonella enterica. Appl Environ Microbiol 2021; 87:e02300-20. [PMID: 33218995 PMCID: PMC7848904 DOI: 10.1128/aem.02300-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6, essential for cellular function in all domains of life. In many organisms, such as Salmonella enterica serovar Typhimurium and Escherichia coli, this cofactor can be synthesized de novo or salvaged from B6 vitamers in the environment. Unexpectedly, S. enterica strains blocked in PLP biosynthesis were able to use exogenous PLP and pyridoxine 5'-phosphate (PNP) as the source of this required cofactor, while E. coli strains of the same genotype could not. Transposon mutagenesis found that phoN was essential for the salvage of PLP and PNP under the conditions tested. phoN encodes a class A nonspecific acid phosphatase (EC 3.1.3.2) that is transcriptionally regulated by the PhoPQ two-component system. The periplasmic location of PhoN was essential for PLP and PNP salvage, and in vitro assays confirmed PhoN has phosphatase activity with PLP and PNP as substrates. The data suggest that PhoN dephosphorylates B6 vitamers, after which they enter the cytoplasm and are phosphorylated by kinases of the canonical PLP salvage pathway. The connection of phoN with PhoPQ and the broad specificity of the gene product suggest S. enterica is exploiting a moonlighting activity of PhoN for PLP salvage.IMPORTANCE Nutrient salvage is a strategy used by species across domains of life to conserve energy. Many organisms are unable to synthesize all required metabolites de novo and must rely exclusively on salvage. Others supplement de novo synthesis with the ability to salvage. This study identified an unexpected mechanism present in S. enterica that allows salvage of phosphorylated B6 vitamers. In vivo and in vitro data herein determined that the periplasmic phosphatase PhoN can facilitate the salvage of PLP and PNP. We suggest a mechanistic working model of PhoN-dependent utilization of PLP and PNP and discuss the general role of promiscuous phosphatases and kinases in organismal fitness.
Collapse
Affiliation(s)
- Huong N Vu
- Department of Microbiology, The University of Georgia, Athens, Georgia, USA
| | - Diana M Downs
- Department of Microbiology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Hübner I, Dienemann JN, Friederich J, Schneider S, Sieber SA. Tailored Cofactor Traps for the in Situ Detection of Hemithioacetal-Forming Pyridoxal Kinases. ACS Chem Biol 2020; 15:3227-3234. [PMID: 33269909 DOI: 10.1021/acschembio.0c00787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyridoxal kinases (PLK) are crucial enzymes for the biosynthesis of pyridoxal phosphate, an important cofactor in a plethora of enzymatic reactions. The evolution of these enzymes resulted in different catalytic designs. In addition to the active site, the importance of a cysteine, embedded within a distant flexible lid region, was recently demonstrated. This cysteine forms a hemithioacetal with the pyridoxal aldehyde and is essential for catalysis. Despite the prevalence of these enzymes in various organisms, no tools were yet available to study the relevance of this lid residue. Here, we introduce pyridoxal probes, each equipped with an electrophilic trapping group in place of the aldehyde to target PLK reactive lid cysteines as a mimic of hemithioacetal formation. The addition of alkyne handles placed at two different positions within the pyridoxal structure facilitates enrichment of PLKs from living cells. Interestingly, depending on the position, the probes displayed a preference for either Gram-positive or Gram-negative PLK enrichment. By applying the cofactor traps, we were able to validate not only previously investigated Staphylococcus aureus and Enterococcus faecalis PLKs but also Escherichia coli and Pseudomonas aeruginosa PLKs, unravelling a crucial role of the lid cysteine for catalysis. Overall, our tailored probes facilitated a reliable readout of lid cysteine containing PLKs, qualifying them as chemical tools for mining further diverse proteomes for this important enzyme class.
Collapse
Affiliation(s)
- Ines Hübner
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jan-Niklas Dienemann
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Julia Friederich
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstrasse 5–13, 81377 Munich, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
11
|
Osire T, Yang T, Xu M, Zhang X, Long M, Ngon NKA, Rao Z. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. Int J Biol Macromol 2020; 169:8-17. [PMID: 33301846 DOI: 10.1016/j.ijbiomac.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Several approaches for efficient production of cadaverine, a bio-based diamine with broad industrial applications have been explored. Here, Serratia marcescens lysine decarboxylase (SmcadA) was expressed in E. coli; mild surfactants added in biotransformation reactions; the E. coli native lysine/cadaverine antiporter cadB, E. coli pyridoxal kinases pdxK and pdxY overexpressed and synthetic RBS libraries screened. Addition of mild surfactants and overexpression of antiporter cadB increased cadaverine biosynthesis of SmcadA. Moreover, expression of pdxY gene yielded 19.82 g/L in a reaction mixture containing added cofactor precursor pyridoxal (PL), without adding exogenous PLP. The screened synthetic RBS1, applied to fully exploit pdxY gene expression, ultimately resulted in PLP self-sufficiency, producing 27.02 g/L cadaverine using strain T7R1_PL. To boost SmcadA catalytic activity, the designed mutants Arg595Lys and Ser512Ala had significantly improved cumulative cadaverine production of 219.54 and 201.79 g/L respectively compared to the wild-type WT (181.62 g/L), after 20 h reaction. Finally, molecular dynamics simulations for WT and variants indicated that increased flexibility at the binding sites of the protein enhanced residue-ligand interactions, contributing to high cadaverine synthesis. This work demonstrates potential of harnessing different pull factors through integrated gene engineering of efficient biocatalysts and gaining insight into the mechanisms involved through MD simulations.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Noelle Kewang A Ngon
- National Engineering Laboratory for Cereal Fermentation Technology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
12
|
Tarique KF, Devi S, Tomar P, Ali MF, Rehman SAA, Gourinath S. Characterization and functional insights into the Entamoeba histolytica pyridoxal kinase, an enzyme essential for its survival. J Struct Biol 2020; 212:107645. [PMID: 33045383 DOI: 10.1016/j.jsb.2020.107645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 01/18/2023]
Abstract
Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for more than 140 enzymes. This coenzyme plays a pivotal role in catalysis of various enzymatic reactions that are critical for the survival of organisms. Entamoeba histolytica depends on the uptake of pyridoxal (PL), a B6 vitamer from the external environment which is then phosphorylated by pyridoxal kinase (EhPLK) to form PLP via the salvage pathway. E. histolytica cannot synthesise vitamin B6de-novo, and also lacks pyridoxine 5'-phosphate oxidase, a salvage pathway enzyme required to produce PLP from pyridoxine phosphate (PNP) and pyridoxamine phosphate (PMP). Analysing the importance of PLK in E. histolytica, we have determined the high-resolution crystal structures of the dimeric pyridoxal kinase in apo, ADP-bound, and PLP-bound states. These structures provided a snapshot of the transition state and help in understanding the reaction mechanism in greater detail. The EhPLK structure significantly differed from the human homologue at its PLP binding site, and the phylogenetic study also revealed its divergence from human PLK. Further, gene regulation of EhPLK using sense and antisense RNA showed that any change in optimal level is harmful to the pathogen. Biochemical and in vivo studies unveiled EhPLK to be essential for this pathogen, while the molecular differences with human PLK structure can be exploited for the structure-guided design of EhPLK inhibitors.
Collapse
Affiliation(s)
- Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priya Tomar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad Farhan Ali
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Syed Arif Abdul Rehman
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli. J Bacteriol 2020; 202:JB.00056-20. [PMID: 32253339 DOI: 10.1128/jb.00056-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and an essential cofactor in all organisms. In Escherichia coli, PLP is synthesized via the deoxyxylulose 5-phosphate (DXP)-dependent pathway that includes seven enzymatic steps and generates pyridoxine 5'-phosphate as an intermediate. Additionally, E. coli is able to salvage pyridoxal, pyridoxine, and pyridoxamine B6 vitamers to produce PLP using kinases PdxK/PdxY and pyridox(am)ine phosphate oxidase (PdxH). We found that E. coli strains blocked in PLP synthesis prior to the formation of pyridoxine 5'-phosphate (PNP) required significantly less exogenous pyridoxal (PL) than strains lacking pdxH and identified the conversion of PL to pyridoxine (PN) during cultivation to be the cause. Our data showed that PdxI, shown to have PL reductase activity in vitro, was required for the efficient salvage of PL in E. coli The pdxI+ E. coli strains converted exogenous PL to PN during growth, while pdxI mutants did not. In total, the data herein demonstrated that PdxI is a critical enzyme in the salvage of PL by E. coli IMPORTANCE The biosynthetic pathway of pyridoxal 5'-phosphate (PLP) has extensively been studied in Escherichia coli, yet limited information is available about the vitamin B6 salvage pathway. We show that the protein PdxI (YdbC) is the primary pyridoxal (PL) reductase in E. coli and is involved in the salvage of PL. The orthologs of PdxI occur in a wide range of bacteria and plants, suggesting that PL reductase in the B6 salvage pathway is more widely distributed than previously expected.
Collapse
|
14
|
An Evolutionary Marker of the Ribokinase Superfamily Is Responsible for Zinc-Mediated Regulation of Human Pyridoxal Kinase. Catalysts 2020. [DOI: 10.3390/catal10050555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ribokinase superfamily catalyzes the phosphorylation of a vast diversity of substrates, and its members are characterized by the conservation of a common structural fold along with highly conserved sequence motifs responsible for phosphoryl transfer (GXGD) and stabilization of the metal-nucleotide complex (NXXE). Recently, a third motif (HXE) exclusive from ADP-dependent enzymes was identified, with its glutamic acid participating in water-mediated interactions with the metal-nucleotide complex and in stabilization of the ternary complex during catalysis. In this work, we bioinformatically determine that the aspartic acid of another motif (DPV), exclusively found in hydroxyethyl thiazole (THZK), hydroxymethyl pyrimidine (HMPK) and pyridoxal kinases (PLK), is structurally equivalent to the acidic residue in the HXE motif. Moreover, this residue is highly conserved among all ribokinase superfamily members. To determine whether the functional role of the DPV motif is similar to the HXE motif, we employed molecular dynamics simulations using crystal structures of phosphoryl donor substrate-complexed THZK and PLK, showing that its aspartic acid participated in water-mediated or direct interactions with the divalent metal of the metal-nucleotide complex. Lastly, enzyme kinetic assays on human PLK, an enzyme that utilizes zinc, showed that site-directed mutagenesis of the aspartic acid from the DPV motif abolishes the inhibition of this enzyme by increasing free zinc concentrations. Altogether, our results highlight that the DPV and HXE motifs are evolutionary markers of the functional and structural divergence of the ribokinase superfamily and evidence the role of the DPV motif in the interaction with both free and nucleotide-complexed divalent metals in the binding site of these enzymes.
Collapse
|
15
|
Are S, Gatreddi S, Jakkula P, Qureshi IA. Structural attributes and substrate specificity of pyridoxal kinase from Leishmania donovani. Int J Biol Macromol 2020; 152:812-827. [PMID: 32105687 DOI: 10.1016/j.ijbiomac.2020.02.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/26/2022]
Abstract
The enzyme pyridoxal kinase (PdxK) catalyzes the conversion of pyridoxal to pyridoxal-5'-phosphate (PLP) using ATP as the co-factor. The product pyridoxal-5'-phosphate plays a key role in several biological processes such as transamination, decarboxylation and deamination. In the present study, full-length ORF of PdxK from Leishmania donovani (LdPdxK) was cloned and then purified using affinity chromatography. LdPdxK exists as a homo-dimer in solution and shows more activity at near to physiological pH. Biochemical analysis of LdPdxK with pyridoxal, pyridoxamine, pyridoxine and ginkgotoxin revealed its affinity preference towards different substrates. The secondary structure analysis using circular dichroism spectroscopy showed LdPdxK to be predominantly α-helical in organization which tends to decline at lower and higher pH. Simultaneously, LdPdxK was crystallized and its three-dimensional structure in complex with ADP and different substrates were determined. Crystal structure of LdPdxK delineated that it has a central core of β-sheets surrounded by α-helices with a conserved GTGD ribokinase motif. The structures of LdPdxK disclosed no major structural changes between ADP and ADP- substrate bound structures. In addition, comparative structural analysis highlighted the key differences between the active site pockets of leishmanial and human PdxK, rendering LdPdxK an attractive candidate for the designing of novel and specific inhibitors.
Collapse
Affiliation(s)
- Sayanna Are
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Santhosh Gatreddi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Pranay Jakkula
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
16
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
17
|
Kumar V, Sharma M, Rakesh BR, Malik CK, Neelagiri S, Neerupudi KB, Garg P, Singh S. Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. Int J Biol Macromol 2018; 119:320-334. [DOI: 10.1016/j.ijbiomac.2018.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022]
|
18
|
Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells 2018; 7:cells7070084. [PMID: 30037155 PMCID: PMC6071262 DOI: 10.3390/cells7070084] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Vitamin B6 is one of the most central molecules in cells of living organisms. It is a critical co-factor for a diverse range of biochemical reactions that regulate basic cellular metabolism, which impact overall physiology. In the last several years, major progress has been accomplished on various aspects of vitamin B6 biology. Consequently, this review goes beyond the classical role of vitamin B6 as a cofactor to highlight new structural and regulatory information that further defines how the vitamin is synthesized and controlled in the cell. We also discuss broader applications of the vitamin related to human health, pathogen resistance, and abiotic stress tolerance. Overall, the information assembled shall provide helpful insight on top of what is currently known about the vitamin, along with addressing currently open questions in the field to highlight possible approaches vitamin B6 research may take in the future.
Collapse
Affiliation(s)
- Marcelina Parra
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Seth Stahl
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Hanjo Hellmann
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| |
Collapse
|
19
|
Tramonti A, Nardella C, di Salvo ML, Pascarella S, Contestabile R. The MocR-like transcription factors: pyridoxal 5'-phosphate-dependent regulators of bacterial metabolism. FEBS J 2018; 285:3925-3944. [PMID: 29974999 DOI: 10.1111/febs.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Many biological functions played by current proteins were not created by evolution from scratch, rather they were obtained combining already available protein scaffolds. This is the case of MocR-like bacterial transcription factors (MocR-TFs), a subclass of GntR transcription regulators, whose structure is the outcome of the fusion between DNA-binding proteins and pyridoxal 5'-phosphate (PLP)-dependent enzymes. The resultant chimeras can count on the properties of both protein classes, i.e. the capability to recognize specific DNA sequences and to bind PLP and amino-compounds; it is the modulation of such binding properties to confer to MocR-TFs chimeras the ability to interact with effector molecules and DNA so as to regulate transcription. MocR-TFs control different metabolic processes involving vitamin B6 and amino acids, which are canonical ligands of PLP-dependent enzymes. However, MocR-TFs are also implicated in the metabolism of compounds that are not substrates of PLP-dependent enzymes, such as rhizopine and ectoine. Genomic analyses show that MocR-TFs are widespread among eubacteria, implying an essential role in their metabolism and highlighting the scarcity of our knowledge on these important players in microbial metabolism. Although MocR-TFs have been discovered 15 years ago, the research activity on these transcriptional regulators has only recently intensified, producing a wealth of information that needs to be brought back to general principles. This is the main task of this review, which reports and analyses the available information concerning MocR-TFs functional role, structural features, interaction with effector molecules and the characteristics of DNA transcriptional factor-binding sites of MocR-based regulatory systems.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| |
Collapse
|
20
|
Rosenberg J, Yeak KC, Commichau FM. A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis. Environ Microbiol 2017; 20:156-168. [PMID: 29027347 DOI: 10.1111/1462-2920.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the most important form of vitamin B6 serves as a cofactor for many proteins. Two alternative pathways for de novo PLP biosynthesis are known: the short deoxy-xylulose-5-phosphate (DXP)-independent pathway, which is present in the Gram-positive model bacterium Bacillus subtilis and the longer DXP-dependent pathway, which has been intensively studied in the Gram-negative model bacterium Escherichia coli. Previous studies revealed that bacteria contain many promiscuous enzymes causing a so-called 'underground metabolism', which can be important for the evolution of novel pathways. Here, we evaluated the potential of B. subtilis to use a truncated non-native DXP-dependent PLP pathway from E. coli for PLP synthesis. Adaptive laboratory evolution experiments revealed that two non-native enzymes catalysing the last steps of the DXP-dependent PLP pathway and two genomic alterations are sufficient to allow growth of vitamin B6 auxotrophic bacteria as rapid as the wild type. Thus, the existence of an underground metabolism in B. subtilis facilitates the generation of a pathway for synthesis of PLP using parts of a non-native vitamin B6 pathway. The introduction of non-native enzymes into a metabolic network and rewiring of native metabolism could be helpful to generate pathways that might be optimized for producing valuable substances.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - KahYen C Yeak
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Tramonti A, Milano T, Nardella C, di Salvo ML, Pascarella S, Contestabile R. Salmonella typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B 6 salvage pathway. FEBS J 2017; 284:466-484. [PMID: 27987384 DOI: 10.1111/febs.13994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
The vitamin B6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
22
|
Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv 2016; 35:31-40. [PMID: 27890703 DOI: 10.1016/j.biotechadv.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Vitamin B6 is a designation for the six vitamers pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate, and pyridoxamine. PLP, being the most important B6 vitamer, serves as a cofactor for many proteins and enzymes. In contrast to other organisms, animals and humans have to ingest vitamin B6 with their food. Several disorders are associated with vitamin B6 deficiency. Moreover, pharmaceuticals interfere with metabolism of the cofactor, which also results in vitamin B6 deficiency. Therefore, vitamin B6 is a valuable compound for the pharmaceutical and the food industry. Although vitamin B6 is currently chemically synthesized, there is considerable interest on the industrial side to shift from chemical processes to sustainable fermentation technologies. Here, we review recent findings regarding biosynthesis and homeostasis of vitamin B6 and describe the approaches that have been made in the past to develop microbial production processes. Moreover, we will describe novel routes for vitamin B6 biosynthesis and discuss their potential for engineering bacteria that overproduce the commercially valuable substance. We also highlight bottlenecks of the vitamin B6 biosynthetic pathways and propose strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University of Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
23
|
Crystal structure and catalytic mechanism of pyridoxal kinase from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2016; 478:300-306. [PMID: 27425248 DOI: 10.1016/j.bbrc.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 11/20/2022]
Abstract
Pyridoxal kinase is a ubiquitous enzyme essential for pyridoxal 5'-phosphate (PLP) homeostasis since PLP is required for the catalytic activity of a variety of PLP-dependent enzymes involved in amino acid, lipid, and sugar metabolism as well as neurotransmitter biosynthesis. Previously, two catalytic mechanisms were proposed with regard to Pdx kinases, in which either the aspartate or the cysteine residue is involved as a catalytic residue. Because the Pdx kinase of Pseudomonas aeruginosa (PaPdxK) contains both residues, the catalytic mechanism of PaPdxK remains elusive. To elucidate the substrate-recognition and catalytic mechanisms of PaPdxK, the crystal structure of PaPdxK was determined at a 2.0 Å resolution. The PaPdxK structure possesses a channel that can accommodate substrates and a metallic cofactor. Our structure-based biochemical and mutational analyses in combination with modeling studies suggest that PaPdxK catalysis is mediated by an acid-base mechanism through the catalytic acid Asp225 and a helical dipole moment.
Collapse
|
24
|
Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci Rep 2015. [PMID: 26212886 PMCID: PMC4515825 DOI: 10.1038/srep12583] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins.
Collapse
|
25
|
di Salvo ML, Nogués I, Parroni A, Tramonti A, Milano T, Pascarella S, Contestabile R. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1160-6. [PMID: 25655354 DOI: 10.1016/j.bbapap.2015.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a crucial role in several cellular processes. In most organisms, PLP is recycled from nutrients and degraded B6-enzymes in a salvage pathway that involves pyridoxal kinase (PLK), pyridoxine phosphate oxidase and phosphatase activities. Regulation of the salvage pathway is poorly understood. Escherichia coli possesses two distinct pyridoxal kinases, PLK1, which is the focus of the present work, and PLK2. From previous studies dating back to thirty years ago, pyridoxal (PL) was shown to inhibit E. coli PLK1 forming a covalent link with the enzyme. This inhibition was proposed to play a regulative role in vitamin B6 metabolism, although its details had never been clarified. Recently, we have shown that also PLP produced during PLK1 catalytic cycle acts as an inhibitor, forming a Schiff base with Lys229, without being released in the solvent. The question arises as to which is the actual inhibition mechanism by PL and PLP. In the present work, we demonstrated that also PL binds to Lys229 as a Schiff base. However, the isolated covalent PLK1-PL complex is not inactive but, in the presence of ATP, is able to catalyse the single turnover production of PLP, which binds tightly to the enzyme and is ultimately responsible for its inactivation. The inactivation mechanism mediated by Lys229 may play a physiological role in controlling cellular levels of PLP. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Alessia Parroni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185 Roma, Italy; Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
26
|
Elsinghorst PW, di Salvo ML, Parroni A, Contestabile R. Inhibition of human pyridoxal kinase by 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI). J Enzyme Inhib Med Chem 2014; 30:336-40. [PMID: 24899377 DOI: 10.3109/14756366.2014.915396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2-Acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI) is observed as a minor contaminant in caramel food colourings (E 150c). Feeding experiments with rodents have revealed a significant lymphopenic effect that has been linked to the presence of THI in these food colourings. Pyridoxal kinase inhibition by THI has been suggested, but not demonstrated, as a mode of action as it leads to lowered levels of pyridoxal-5'-phosphate, which are known to cause lymphopenia. Recently, THI was also shown to inhibit sphingosine-1-phosphate lyase causing comparable immunosuppressive effects and derivatives of THI are being developed for the treatment of rheumatoid arthritis in humans. Interestingly, sphingosine-1-phosphate lyase activity depends on pyridoxal-5'-phosphate, which in turn is provided by pyridoxal kinase. This report shows that THI does inhibit pyridoxal kinase with competitive and mixed-type non-competitive behaviour towards its two substrates, pyridoxal and ATP, respectively. The corresponding inhibition constants are in the low millimolar range.
Collapse
Affiliation(s)
- Paul W Elsinghorst
- Pharmaceutical Chemistry I, Pharmaceutical Institute , University of Bonn, Bonn , Germany and
| | | | | | | |
Collapse
|
27
|
Nodwell MB, Koch MF, Alte F, Schneider S, Sieber SA. A subfamily of bacterial ribokinases utilizes a hemithioacetal for pyridoxal phosphate salvage. J Am Chem Soc 2014; 136:4992-9. [PMID: 24601602 DOI: 10.1021/ja411785r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the active vitamer of vitamin B6 and acts as an essential cofactor in many aspects of amino acid and sugar metabolism. The virulence and survival of pathogenic bacteria such as Mycobacterium tuberculosis depend on PLP, and deficiencies in humans have also been associated with neurological disorders and inflammation. While PLP can be synthesized by a de novo pathway in bacteria and plants, most higher organisms rely on a salvage pathway that phosphorylates either pyridoxal (PL) or its related vitamers, pyridoxine (PN) and pyridoxamine (PM). PL kinases (PLKs) are essential for this phosphorylation step and are thus of major importance for cellular viability. We recently identified a pyridoxal kinase (SaPLK) as a target of the natural product antibiotic rugulactone (Ru) in Staphylococcus aureus. Surprisingly, Ru selectively modified SaPLK not at the active site cysteine, but on a remote cysteine residue. Based on structural and biochemical studies, we now provide insight into an unprecedented dual Cys charge relay network that is mandatory for PL phosphorylation. The key component is the reactive Cys 110 residue in the lid region that forms a hemithioactetal intermediate with the 4'-aldehyde of PL. This hemithioacetal, in concert with the catalytic Cys 214, increases the nucleophilicity of the PL 5'-OH group for the inline displacement reaction with the γ-phosphate of ATP. A closer inspection of related enzymes reveals that Cys 110 is conserved and thus serves as a characteristic mechanistic feature for a dual-function ribokinase subfamily herein termed CC-PLKs.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Organic Chemistry II, Centre for Integrated Protein Science CIPSM, Institute of Advanced Studies, and ‡Biochemistry, Department of Chemistry, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
28
|
Navarro F, Ramírez-Sarmiento CA, Guixé V. Catalytic and regulatory roles of species involved in metal-nucleotide equilibriums in human pyridoxal kinase. Biometals 2013; 26:805-12. [PMID: 23860900 DOI: 10.1007/s10534-013-9660-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Pyridoxal 5'-phosphate is the active form of vitamin B6 and its deficiency is directly related with several human disorders, which make human pyridoxal kinase (hPLK) an important pharmacologic target. In spite of this, a carefully kinetic characterization of hPLK including the main species that regulates the enzymatic activity is at date missing. Here we analyse the catalytic and regulatory mechanisms of hPLK as a function of a precise determination of the species involved in metal-nucleotide equilibriums and describe new regulatory mechanisms for this enzyme. hPLK activity is supported by several metals, being Zn(2+) the most effective, although the magnitude of the effect observed is highly dependent on the relative concentrations of metal and nucleotide used. The true substrate for the reaction catalyzed by hPLK is the metal nucleotide complex, while ATP(4-) and HATP(3-) did not affect the activity. The enzyme presents substrate inhibition by both pyridoxal (PL) and ZnATP(2-), although the latter behaves as a weakly inhibitor. Our study also established, for the first time, a dual role for free Zn(2+); as an activator at low concentrations (19 μM optimal concentration) and as a potent inhibitor with a IC50 of 37 μM. These results highlighted the importance of an accurate estimation of the actual concentration of the species involved in metal-nucleotide equilibriums in order to obtain reliable values for the kinetic parameters, and for determine the true regulators of the PLK activity. They also help to explain the dissimilar kinetic parameters reported in the literature for this enzyme.
Collapse
Affiliation(s)
- Freddy Navarro
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | |
Collapse
|
29
|
Ghatge MS, Contestabile R, di Salvo ML, Desai JV, Gandhi AK, Camara CM, Florio R, González IN, Parroni A, Schirch V, Safo MK. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS One 2012; 7:e41680. [PMID: 22848564 PMCID: PMC3404986 DOI: 10.1371/journal.pone.0041680] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/24/2012] [Indexed: 11/18/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.
Collapse
Affiliation(s)
- Mohini S. Ghatge
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Roberto Contestabile
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Martino L. di Salvo
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Jigar V. Desai
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amit K. Gandhi
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Christina M. Camara
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rita Florio
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Isabel N. González
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, Monterotondo Scalo, Roma, Italy
- Institute of Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Alessia Parroni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Verne Schirch
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Martin K. Safo
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Huang S, Shu T, Zhang J, Ma W, Wei S, Huang L. Functional significance of some particular amino acid residues in Bombyx mori pyridoxal kinase. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:155-60. [PMID: 22079857 DOI: 10.1016/j.cbpb.2011.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Pyridoxal kinase (PLK; EC 2.7.1.35) is a key enzyme for vitamin B(6) metabolism in animals. It catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal 5'-phosphate, an important cofactor for many enzymatic reactions. Bombyx mori PLK (BmPLK) is 10 or more residues shorter than mammalian PLKs, and some amino acid residues conserved in the PLKs from mammals are not maintained in the protein. Multiple sequence alignment suggested that amino acid residues Thr(47), Ile(54), Arg(88), Asn(121) and Glu(230) might play important roles in BmPLK. In this study, we used a site-directed specific mutagenesis approach to determine the functional significance of these particular amino acid residues in BmPLK. Our results demonstrated that the mutation of Asn(121) to Glu did not affect the catalytic function of BmPLK. The corresponding site-directed mutants of Thr(47) to Asn, Ile(54) to Phe, and Arg(88) to Ile displayed a decreased catalytic efficiency and an elevated Km value for substrate relative to the wild-type value, and no enzyme activity could be detected in mutant of Trp(230) to Glu. Circular dichroism analysis revealed that the mutation of Trp(230) to Glu resulted in mis-folding of the protein. Our results provided direct evidence that residue Trp(230) is crucial to maintain the structural and functional integrity of BmPLK. This study will add to the existing understanding of the characteristic of structure and function of BmPLK.
Collapse
Affiliation(s)
- ShuoHao Huang
- Key Laboratory of Tea Biochemistry & Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
di Salvo ML, Contestabile R, Safo MK. Vitamin B6 salvage enzymes: Mechanism, structure and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1597-608. [DOI: 10.1016/j.bbapap.2010.12.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
32
|
Griswold WR, Toney MD. Chemoenzymatic synthesis of 1-deaza-pyridoxal 5'-phosphate. Bioorg Med Chem Lett 2010; 20:1352-4. [PMID: 20097067 DOI: 10.1016/j.bmcl.2010.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/04/2010] [Indexed: 11/17/2022]
Abstract
The first synthesis of 1-deaza-pyridoxal 5'-phosphate (2-formyl-3-hydroxy-4-methylbenzyl phosphate) is described. The chemoenzymatic approach described here is a reliable route to this important isosteric pyridoxal phosphate analogue. This work enables elucidation of the role of the pyridine nitrogen in pyridoxal 5'-phosphate dependent enzymes.
Collapse
Affiliation(s)
- Wait R Griswold
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
33
|
Gandhi AK, Ghatge MS, Musayev FN, Sease A, Aboagye SO, di Salvo ML, Schirch V, Safo MK. Kinetic and structural studies of the role of the active site residue Asp235 of human pyridoxal kinase. Biochem Biophys Res Commun 2009; 381:12-5. [DOI: 10.1016/j.bbrc.2009.01.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
|
34
|
|
35
|
Musayev FN, di Salvo ML, Ko TP, Gandhi AK, Goswami A, Schirch V, Safo MK. Crystal Structure of human pyridoxal kinase: structural basis of M(+) and M(2+) activation. Protein Sci 2007; 16:2184-94. [PMID: 17766369 PMCID: PMC2204131 DOI: 10.1110/ps.073022107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.
Collapse
Affiliation(s)
- Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kästner U, Hallmen C, Wiese M, Leistner E, Drewke C. The human pyridoxal kinase, a plausible target for ginkgotoxin fromGinkgo biloba. FEBS J 2007; 274:1036-45. [PMID: 17250738 DOI: 10.1111/j.1742-4658.2007.05654.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ginkgotoxin (4'-O-methylpyridoxine) occurring in the seeds and leaves of Ginkgo biloba, is an antivitamin structurally related to vitamin B(6). Ingestion of ginkgotoxin triggers epileptic convulsions and other neuronal symptoms. Here we report on studies on the impact of B(6) antivitamins including ginkgotoxin on recombinant homogeneous human pyridoxal kinase (EC 2.7.1.35). It is shown that ginkgotoxin serves as an alternate substrate for this enzyme with a lower K(m) value than pyridoxal, pyridoxamine or pyridoxine. Thus, the presence of ginkgotoxin leads to temporarily reduced pyridoxal phosphate formation in vitro and possibly also in vivo. Our observations are discussed in light of Ginkgo medications used as nootropics.
Collapse
Affiliation(s)
- Uta Kästner
- Institut für Pharmazeutische Biologie, Universität Bonn, Germany
| | | | | | | | | |
Collapse
|
37
|
Safo MK, Musayev FN, di Salvo ML, Hunt S, Claude JB, Schirch V. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases. J Bacteriol 2006; 188:4542-52. [PMID: 16740960 PMCID: PMC1482971 DOI: 10.1128/jb.00122-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, 800 E. Leigh St., Virginia Commonwealth University, Richmond, VA 23219, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Cao P, Gong Y, Tang L, Leung YC, Jiang T. Crystal structure of human pyridoxal kinase. J Struct Biol 2006; 154:327-32. [PMID: 16600635 DOI: 10.1016/j.jsb.2006.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/20/2006] [Accepted: 02/22/2006] [Indexed: 11/23/2022]
Abstract
Pyridoxal kinase, a member of the ribokinase superfamily, catalyzes the ATP-dependent phosphorylation reaction of vitamin B6 and is an essential enzyme in the formation of pyridoxal-5'-phosphate, a key cofactor for over 100 enzymes. Pyridoxal kinase is thus regarded as a potential target for pharmacological agents. In this paper, we report the 2.8 angstroms crystal structure of human pyridoxal kinase (HPLK) expressed in Escherichia coli. The diffraction data revealed unexpected merohedral perfect twinning along the crystallographic c axis. Taking perfect twinning into account, the structure in dimeric form was well refined according to the CNS program. Structure comparison reveals that the key 12-residue peptide over the active site in HPLK is a beta-strand/loop/beta-strand flap, while the corresponding peptide in sheep brain enzyme adopts a loop conformation. Moreover, HPLK possesses a more hydrophobic ATP-binding pocket. This structure will facilitate further biochemical studies and structure-based design of drugs related to pyridoxal kinase.
Collapse
Affiliation(s)
- Peng Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | |
Collapse
|
39
|
Safo MK, Musayev FN, Hunt S, di Salvo ML, Scarsdale N, Schirch V. Crystal structure of the PdxY Protein from Escherichia coli. J Bacteriol 2004; 186:8074-82. [PMID: 15547280 PMCID: PMC529075 DOI: 10.1128/jb.186.23.8074-8082.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of Escherichia coli PdxY, the protein product of the pdxY gene, has been determined to a 2.2-A resolution. PdxY is a member of the ribokinase superfamily of enzymes and has sequence homology with pyridoxal kinases that phosphorylate pyridoxal at the C-5' hydroxyl. The protein is a homodimer with an active site on each monomer composed of residues that come exclusively from each respective subunit. The active site is filled with a density that fits that of pyridoxal. In monomer A, the ligand appears to be covalently attached to Cys122 as a thiohemiacetal, while in monomer B it is not covalently attached but appears to be partially present as pyridoxal 5'-phosphate. The presence of pyridoxal phosphate and pyridoxal as ligands was confirmed by the activation of aposerine hydroxymethyltransferase after release of the ligand by the denaturation of PdxY. The ligand, which appears to be covalently attached to Cys122, does not dissociate after denaturation of the protein. A detailed comparison (of functional properties, sequence homology, active site and ATP-binding-site residues, and active site flap types) of PdxY with other pyridoxal kinases as well as the ribokinase superfamily in general suggested that PdxY is a member of a new subclass of the ribokinase superfamily. The structure of PdxY also permitted an interpretation of work that was previously published about this enzyme.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA .
| | | | | | | | | | | |
Collapse
|