1
|
Xie N. Application of Protein Expression in Mycoplasma Study. SCIENTIFICA 2024; 2024:4142663. [PMID: 39435316 PMCID: PMC11493480 DOI: 10.1155/2024/4142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
Mycoplasma is a kind of pathogenic microorganism, and its survival and replication need to be parasitic inside the host cell. Therefore, studies on the metabolic pathway, protein composition, and biological characteristics of Mycoplasma require the use of protein expression techniques. In this paper, the application of protein expression in Mycoplasma research was reviewed, including commonly used protein expression systems, optimization strategy of protein expression, protein omics analysis, and protein function research, and the future development direction has been prospected.
Collapse
Affiliation(s)
- Nian Xie
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, VIC, Australia
| |
Collapse
|
2
|
Sun M, Gao AX, Li A, Ledesma-Amaro R, Wang P, Chen W, Bai Z, Liu X. Hyper-production of porcine contagious pleuropneumonia subunit vaccine proteins in Escherichia coli by developing a bicistronic T7 expression system. Biotechnol J 2024; 19:e2300187. [PMID: 38178735 DOI: 10.1002/biot.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
The ApxII toxin and the outer membrane lipoprotein (Oml) of Actinobacillus pleuropneumoniae are important vaccine antigens against porcine contagious pleuropneumonia (PCP), a prevalent infectious disease affecting the swine industry worldwide. Previous studies have reported the recombinant expression of ApxII and Oml in Escherichia coli; however, their yields were not satisfactory. Here, we aimed to enhance the production of ApxII and Oml by constructing a bicistronic expression system based on the widely used T7 promoter. To create efficient T7 bicistronic expression cassettes, 16 different fore-cistron sequences were introduced downstream of the T7 promoter. The expression of three vaccine antigens Oml1, Oml7, and ApxII in the four strongest bicistronic vectors were enhanced compared to the monocistronic control. Further optimization of the fermentation conditions in micro-well plates (MWP) led to improved production. Finally, the production yields reached unprecedented levels of 2.43 g L-1 of Oml1, 2.59 g L-1 of Oml7, and 1.21 g L-1 of ApxII, in a 5 L bioreactor. These three antigens also demonstrated well-protective immunity against A. pleuropneumoniae infection. In conclusion, this study establishes an efficient bicistronic T7 expression system that can be used to express recombinant proteins in E. coli and achieves the hyper-production of PCP vaccine proteins.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - An Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Zilberleyb I, Kugel C, Patel P, Tam C, Hsu PL, Franke Y, Pahuja KB. End-to-End Semi-automated Mid-scale Protein Screening Platform for Drug Discovery Research. Curr Protoc 2023; 3:e872. [PMID: 37671955 DOI: 10.1002/cpz1.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The drug discovery landscape is ever-evolving and constantly demands revolutionary technology advancements in protein expression and production laboratories. We have built a higher-throughput mid-scale semi-automated protein expression and screening platform to accelerate drug discovery research. The workflow described here enables comprehensive expression and purification screening assessment of challenging or difficult-to-express recombinant proteins in a fast and efficient manner by delivering small but sufficient amounts of high-quality proteins. The platform has been implemented for a wide range of applications that include identification of optimal constructs and chaperones for poorly expressing proteins, assessment of co-expression partners for expressing stable multiprotein complexes, and suitable buffer/additive screening for insoluble or aggregation-prone proteins. The approach allows parallel expression, purification, and characterization of 24 different samples using co-infection or a polycistronic approach in insect cells and enables parallel testing of multiple parameters to improve protein yields. The strategy has been successfully adopted for screening intracellular and secreted proteins in Escherichia coli, mammalian transient expression, and baculovirus expression vector systems. Proteins purified from this platform are used for several structural and functional screens, such as negative staining, biochemical activity assays, mass spectrometry, surface plasmon resonance, and DNA-encoded chemical library screens. In this article, for simplicity, we have focused on detailed expression and purification screening of intracellular protein complexes from insect cells. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Baculovirus generation via homologous recombination Support Protocol 1: Anti-glycoprotein 64 antibody assay Basic Protocol 2: Generation of insect cell biomass expressing target protein(s) Basic Protocol 3: Mid-scale affinity purification Support Protocol 2: Automated method for affinity purification on Hamilton STAR Basic Protocol 4: Size exclusion chromatography Support Protocol 3: Chromeleon 7 operation on Vanquish Duo.
Collapse
Affiliation(s)
- Inna Zilberleyb
- Biomolecular Research, Genentech, South San Francisco, California
| | - Christine Kugel
- Biomolecular Research, Genentech, South San Francisco, California
| | - Purvit Patel
- Biomolecular Research, Genentech, South San Francisco, California
| | - Christine Tam
- Biomolecular Research, Genentech, South San Francisco, California
| | - Peter L Hsu
- Structural Biology, Genentech, South San Francisco, California
| | - Yvonne Franke
- Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California
| | | |
Collapse
|
5
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
6
|
Ning Y, Yang Y, Tian Y, Zhang Y, Luo W, Wen Y, Zhou Y, Ding H. Porcine antibody profiles of 33 Mycoplasma hyopneumoniae fusion proteins from M. hyopneumoniae natural infection but not vaccination. Vet Med Sci 2022; 9:203-216. [PMID: 36520664 PMCID: PMC9857121 DOI: 10.1002/vms3.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mycoplasma hyopneumoniae, the primary pathogen responsible for porcine enzootic pneumonia, reduces average daily weight gain and causes substantial economic losses to the pig industry worldwide. Vaccination is the most common strategy to control this disease but offers partial protection. Therefore, developing next-generation vaccines by screening protective antigens is crucial. OBJECTIVES The aim of this study was to evaluate the antibody response to 33 recombinant proteins in pigs naturally infected with M. hyopneumoniae. METHODS The genes encoding 33 (hypothetical) membrane proteins or secretory proteins were ligated into pGEX-6P-1, pGEX-6P-2, pGEX-5X-3 or pGEX-4T-3 vectors and transformed into Escherichia coli BL21(DE3) or E. coli XL-1 Blue to construct recombinant bacteria and to express the recombinant proteins. The recombinant bacteria expressing the target proteins reacted with porcine convalescent sera and negative sera to screen immunodominant proteins by ELISA. Then, recombinant bacteria expressing immunodominant proteins were used to identify the discriminating immunodominant proteins that were recognised by convalescent sera nut not hyperimmune sera. RESULTS All recombinant bacteria could express the target recombinant proteins in soluble form. Twenty-one proteins were shown to present immunodominant antigens, and four proteins were not recognised by convalescent sera. Moreover, six proteins were considered discriminating and reacted with convalescent sera but not with hyperimmune sera. CONCLUSIONS The identified immunodominant proteins were antigenic and expressed during bacterial infection, suggesting that these proteins, especially those capable of discriminating between sera, can be used to identify protective antigens with the view to develop more effective vaccines against M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Yaru Ning
- Laboratory of Veterinary Mycoplasmology, College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yujiao Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yun Zhang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Wenyi Luo
- The 181st Group of the Tenth DivisionXinjiang Production and Construction CorpsBeitunXinjiangChina
| | - Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yaoqin Zhou
- College of Optoelectronic EngineeringChongqing UniversityChongqingChina
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary MedicineSouthwest UniversityChongqingChina
| |
Collapse
|
7
|
Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol 2022; 10:1028691. [PMID: 36561042 PMCID: PMC9763899 DOI: 10.3389/fbioe.2022.1028691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.
Collapse
Affiliation(s)
- Miao Du
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhuru Hou
- Science and Technology Centre, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xiaocong Chen
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Lei Fan
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Zhuoxi Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| |
Collapse
|
8
|
Barros T, Brumano L, Freitas M, Pessoa A, Parachin N, Magalhães PO. Development of Processes for Recombinant L-Asparaginase II Production by Escherichia coli Bl21 (De3): From Shaker to Bioreactors. Pharmaceutics 2020; 13:E14. [PMID: 33374100 PMCID: PMC7823503 DOI: 10.3390/pharmaceutics13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Since 1961, L-asparaginase has been used to treat patients with acute lymphocytic leukemia. It rapidly depletes the plasma asparagine and deprives the blood cells of this circulating amino acid, essential for the metabolic cycles of cells. In the search for viable alternatives to produce L-asparaginase, this work aimed to produce this enzyme from Escherichia coli in a shaker and in a 3 L bioreactor. Three culture media were tested: defined, semi-defined and complex medium. L-asparaginase activity was quantified using the β-hydroxamate aspartic acid method. The defined medium provided the highest L-asparaginase activity. In induction studies, two inducers, lactose and its analog IPTG, were compared. Lactose was chosen as an inducer for the experiments conducted in the bioreactor due to its natural source, lower cost and lower toxicity. Batch and fed-batch cultures were carried out to reach high cell density and then start the induction. Batch cultivation provided a final cell concentration of 11 g L-1 and fed-batch cultivation produced 69.90 g L-1 of cells, which produced a volumetric activity of 43,954.79 U L-1 after lactose induction. L-asparaginase was produced in a shaker and scaled up to a bioreactor, increasing 23-fold the cell concentration and thus, the enzyme productivity.
Collapse
Affiliation(s)
- Thaís Barros
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Larissa Brumano
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Marcela Freitas
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil; (L.B.); (A.P.J.)
| | - Nádia Parachin
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70910-900, Brazil;
| | - Pérola O. Magalhães
- Department of Pharmacy, Health Sciences School, University of Brasília, Brasília 70910-900, Brazil; (T.B.); (M.F.)
| |
Collapse
|
9
|
Maity S, Al-Ameer M, Gundampati RK, Agrawal S, Kumar TKS. Heparin-Binding Affinity Tag: A Novel Affinity Tag for Simple and Efficient Purification of Recombinant Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2178:311-328. [PMID: 33128758 DOI: 10.1007/978-1-0716-0775-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heparin, a polysulfated polyanionic member of the glycosaminoglycan family, is known to specifically bind to a number of functionally important proteins. Based on the available information on structural specificity of heparin-protein interactions, a novel heparin-binding peptide (HB) affinity tag has been designed to achieve simple and cost-effective purification of target recombinant proteins. The HB-fused recombinant target proteins are purified on a heparin-Sepharose column using a stepwise/continuous sodium chloride gradient. A major advantage of the HB tag is that the HB-fused target proteins can be purified under denaturing conditions in the presence of 8 M urea. In addition, polyclonal antibody directed against the HB tag can be used to specifically detect and quantitate the HB-fused recombinant protein(s). Herein, a step-by-step protocol(s) for the purification of different soluble recombinant target proteins is described. In addition, useful tips to troubleshoot potential problems and also suggestions to successfully adopt the HB-tag-based purification to a wide range of target proteins are provided.
Collapse
Affiliation(s)
- Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
10
|
Semiautomated Small-Scale Purification Method for High-Throughput Expression Analysis of Recombinant Proteins. Methods Mol Biol 2019. [PMID: 31267448 DOI: 10.1007/978-1-4939-9624-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The expression analysis of recombinant proteins is a challenging step in any high-throughput protein production pipeline. Often multiple expression systems and a variety of expression construct designs are considered for the production of a protein of interest. There is a strong need to triage constructs rapidly and systematically. This chapter describes a semiautomated method for the simultaneous purification and characterization of proteins expressed from multiple samples of expression cultures from the E. coli, baculovirus expression vector system, and mammalian transient expression systems. This method assists in the selection of the most promising expression construct(s) or the most favorable expression condition(s) to move forward into large-scale protein production.
Collapse
|
11
|
Bernier SC, Cantin L, Salesse C. Systematic analysis of the expression, solubility and purification of a passenger protein in fusion with different tags. Protein Expr Purif 2018; 152:92-106. [DOI: 10.1016/j.pep.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
12
|
Wibowo D, Zhao CX. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 2018; 103:659-671. [DOI: 10.1007/s00253-018-9524-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
|
13
|
Richardson D, Itkonen J, Nievas J, Urtti A, Casteleijn MG. Accelerated pharmaceutical protein development with integrated cell free expression, purification, and bioconjugation. Sci Rep 2018; 8:11967. [PMID: 30097621 PMCID: PMC6086869 DOI: 10.1038/s41598-018-30435-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 12/02/2022] Open
Abstract
The use of living cells for the synthesis of pharmaceutical proteins, though state-of-the-art, is hindered by its lengthy process comprising of many steps that may affect the protein’s stability and activity. We aimed to integrate protein expression, purification, and bioconjugation in small volumes coupled with cell free protein synthesis for the target protein, ciliary neurotrophic factor. Split-intein mediated capture by use of capture peptides onto a solid surface was efficient at 89–93%. Proof-of-principle of light triggered release was compared to affinity chromatography (His6 fusion tag coupled with Ni-NTA). The latter was more efficient, but more time consuming. Light triggered release was clearly demonstrated. Moreover, we transferred biotin from the capture peptide to the target protein without further purification steps. Finally, the target protein was released in a buffer-volume and composition of our choice, omitting the need for protein concentration or changing the buffer. Split-intein mediated capture, protein trans splicing followed by light triggered release, and bioconjugation for proteins synthesized in cell free systems might be performed in an integrated workflow resulting in the fast production of the target protein.
Collapse
Affiliation(s)
- Dominique Richardson
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaakko Itkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Nievas
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of Chemistry, St Petersburg State University, Petergoff, St Petersburg, Russian Federation
| | - Marco G Casteleijn
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
15
|
Beloborodov SS, Bao J, Krylova SM, Shala-Lawrence A, Johnson PE, Krylov SN. Aptamer facilitated purification of functional proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1073:201-206. [PMID: 29287247 DOI: 10.1016/j.jchromb.2017.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
DNA aptamers are attractive capture probes for affinity chromatography since, in contrast to antibodies, they can be chemically synthesized and, in contrast to tag-specific capture probes (such as Nickel-NTA or Glutathione), they can be used for purification of proteins free of genetic modifications (such as His or GST tags). Despite these attractive features of aptamers as capture probes, there are only a few reports on aptamer-based protein purification and none of them includes a test of the purified protein's activity, thus, leaving discouraging doubts about method's ability to purify proteins in their active state. The goal of this work was to prove that aptamers could facilitate isolation of active proteins. We refined a complete aptamer-based affinity purification procedure, which takes 4 h to complete. We further applied this procedure to purify two recombinant proteins, MutS and AlkB, from bacterial cell culture: 0.21 mg of 85%-pure AlkB from 4 mL of culture and 0.24 mg of 82%-pure MutS from 0.5 mL of culture. Finally, we proved protein activity by two capillary electrophoresis based assays: an enzymatic assay for AlkB and a DNA-binding assay for MutS. We suggest that in combination with aptamer selection for non-purified protein targets in crude cell lysate, aptamer-based purification provides a means of fast isolation of tag-free recombinant proteins in their native state without the use of antibodies.
Collapse
Affiliation(s)
- Stanislav S Beloborodov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jiayin Bao
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Agnesa Shala-Lawrence
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
16
|
Jayanthi S, Gundampati RK, Kumar TKS. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 90:6.16.1-6.16.13. [PMID: 29091276 PMCID: PMC5710805 DOI: 10.1002/cpps.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Srinivas Jayanthi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701
| | | |
Collapse
|
17
|
Del Prete S, Perfetto R, Rossi M, Alasmary FAS, Osman SM, AlOthman Z, Supuran CT, Capasso C. A one-step procedure for immobilising the thermostable carbonic anhydrase (SspCA) on the surface membrane of Escherichia coli. J Enzyme Inhib Med Chem 2017; 32:1120-1128. [PMID: 28791907 PMCID: PMC6010132 DOI: 10.1080/14756366.2017.1355794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat = 9.35 × 105 s-1 and kcat/Km = 1.1 × 108 M-1 s-1) which was maintained after heating the enzyme at 80 °C for 3 h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Rosa Perfetto
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Mosè Rossi
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Fatmah A S Alasmary
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Sameh M Osman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Clemente Capasso
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| |
Collapse
|
18
|
Antoniou G, Papakyriacou I, Papaneophytou C. Optimization of Soluble Expression and Purification of Recombinant Human Rhinovirus Type-14 3C Protease Using Statistically Designed Experiments: Isolation and Characterization of the Enzyme. Mol Biotechnol 2017; 59:407-424. [PMID: 28801725 DOI: 10.1007/s12033-017-0032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.
Collapse
Affiliation(s)
- Georgia Antoniou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Ave., 1700, Nicosia, Cyprus
| | - Irineos Papakyriacou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Ave., 1700, Nicosia, Cyprus
| | - Christos Papaneophytou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Ave., 1700, Nicosia, Cyprus.
| |
Collapse
|
19
|
Guijarro-Pardo E, Gómez-Sebastián S, Escribano JM. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors. J Virol Methods 2017; 250:17-24. [PMID: 28943301 DOI: 10.1016/j.jviromet.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/04/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a detailed comparison of production yields reached by injection vs oral infections for different recombinant proteins. In conclusion, these results open the possibility of future industrial scaling-up production of recombinant proteins in insect larvae by reducing manual operations.
Collapse
|
20
|
Fabrick JA, Hull JJ. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells. J Vis Exp 2017:55756. [PMID: 28448055 PMCID: PMC5565091 DOI: 10.3791/55756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture;
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture
| |
Collapse
|
21
|
Chaffey PK, Guan X, Wang LX, Tan Z. Introduction: General Aspects of the Chemical Biology of Glycoproteins. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter is meant to serve as an introduction to the remainder of the book by providing general background on the chemical biology of glycoproteins as well as a brief review of the chapters that follow. The purpose here is to introduce some basic concepts common to many forms of glycosylation for those readers who may be unfamiliar with the field. We begin with a discussion of the strategies and methods used to study protein glycosylation. During the overview, an effort is made to highlight a few relevant aspects of chemical glycobiology, including glycoprotein biosynthesis and a brief description of the synthesis and function of glycoproteins. Finally, we have a summary of the contributions from chemical biology over the years. It is our hope that, after reading this introductory chapter, the reader will have a broad view of the chemical glycobiology field as it currently stands and a deeper appreciation for some of the unique ideas that chemical biology brings to the field.
Collapse
Affiliation(s)
- Patrick K. Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| |
Collapse
|
22
|
Using internal ribosome entry sites to facilitate engineering of insect cells and used in secretion proteins production. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Applied Sciences, Dundalk Institute of Technology, Dundalk, Ireland
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
24
|
Apsana R, Balamurugan V, Veeregowda B, Abraham S, Raju D, Rathnamma D, Byregowda S, Rahman H, Shaila M. Expression and characterization of immunodominant region of fusion protein of peste des petits ruminants virus in E. coli. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Morris J, Jayanthi S, Langston R, Daily A, Kight A, McNabb DS, Henry R, Kumar TKS. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins. Protein Expr Purif 2016; 126:93-103. [DOI: 10.1016/j.pep.2016.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
|
26
|
Bleckmann M, Schmelz S, Schinkowski C, Scrima A, van den Heuvel J. Fast plasmid based protein expression analysis in insect cells using an automated SplitGFP screen. Biotechnol Bioeng 2016; 113:1975-83. [PMID: 26913471 PMCID: PMC5069567 DOI: 10.1002/bit.25956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 12/29/2022]
Abstract
Recombinant protein expression often presents a bottleneck for the production of proteins for use in many areas of animal‐cell biotechnology. Difficult‐to‐express proteins require the generation of numerous expression constructs, where popular prokaryotic screening systems often fail to identify expression of multi domain or full‐length protein constructs. Post‐translational modified mammalian proteins require an alternative host system such as insect cells using the Baculovirus Expression Vector System (BEVS). Unfortunately this is time‐, labor‐, and cost‐intensive. It is clearly desirable to find an automated and miniaturized fast multi‐sample screening method for protein expression in such systems. With this in mind, in this paper a high‐throughput initial expression screening method is described using an automated Microcultivation system in conjunction with fast plasmid based transient transfection in insect cells for the efficient generation of protein constructs. The applicability of the system is demonstrated for the difficult to express Nucleotide‐binding Oligomerization Domain‐containing protein 2 (NOD2). To enable detection of proper protein expression the rather weak plasmid based expression has been improved by a sensitive inline detection system. Here we present the functionality and application of the sensitive SplitGFP (split green fluorescent protein) detection system in insect cells. The successful expression of constructs is monitored by direct measurement of the fluorescence in the BioLector Microcultivation system. Additionally, we show that the results obtained with our plasmid‐based SplitGFP protein expression screen correlate directly to the level of soluble protein produced in BEVS. In conclusion our automated SplitGFP screen outlines a sensitive, fast and reliable method reducing the time and costs required for identifying the optimal expression construct prior to large scale protein production in baculovirus infected insect cells. Biotechnol. Bioeng. 2016;113: 1975–1983. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maren Bleckmann
- Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stefan Schmelz
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Schinkowski
- Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Andrea Scrima
- Structural Biology of Autophagy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joop van den Heuvel
- Recombinant Protein Expression, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
27
|
Joedicke L, Trenker R, Langer JD, Michel H, Preu J. Cell-free synthesis of isotopically labelled peptide ligands for the functional characterization of G protein-coupled receptors. FEBS Open Bio 2015; 6:90-102. [PMID: 27047736 PMCID: PMC4794788 DOI: 10.1002/2211-5463.12008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022] Open
Abstract
Cell‐free systems exploit the transcription and translation machinery of cells from different origins to produce proteins in a defined chemical environment. Due to its open nature, cell‐free protein production is a versatile tool to introduce specific labels such as heavy isotopes, non‐natural amino acids and tags into the protein while avoiding cell toxicity. In particular, radiolabelled peptides and proteins are valuable tools for the functional characterization of protein–protein interactions and for studying binding kinetics. In this study we evaluated cell‐free protein production for the generation of radiolabelled ligands for G protein‐coupled receptors (GPCRs). These receptors are seven‐transmembrane‐domain receptors activated by a plethora of extracellular stimuli including peptide ligands. Many GPCR peptide ligands contain disulphide bonds and are thus inherently difficult to produce in bacterial expression hosts or in Escherichia coli‐based cell‐free systems. Here, we established an adapted E. coli‐based cell‐free translation system for the production of disulphide bond‐containing GPCR peptide ligands and specifically introduce tritium labels for detection. The bacterial oxidoreductase DsbA is used as a chaperone to favour the formation of disulphide bonds and to enhance the yield of correctly folded proteins and peptides. We demonstrate the correct folding and formation of disulphide bonds and show high‐affinity ligand binding of the produced radio peptide ligands to the respective receptors. Thus, our system allows the fast, cost‐effective and reliable synthesis of custom GPCR peptide ligands for functional and structural studies.
Collapse
Affiliation(s)
- Lisa Joedicke
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Raphael Trenker
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Julian D Langer
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Julia Preu
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| |
Collapse
|
28
|
Khow O, Suntrarachun S. Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed 2015; 2:159-62. [PMID: 23569889 DOI: 10.1016/s2221-1691(11)60213-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/20/2011] [Accepted: 09/01/2011] [Indexed: 11/30/2022] Open
Abstract
Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.
Collapse
Affiliation(s)
- Orawan Khow
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | | |
Collapse
|
29
|
Grzelakowski M, Cherenet MF, Shen YX, Kumar M. A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Teng D, Xi D, Zhang J, Wang X, Mao R, Zhang Y, Wang J. Multiple copies of the target gene enhances plectasin secretion in Pichia pastoris X-33. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Gecchele E, Merlin M, Brozzetti A, Falorni A, Pezzotti M, Avesani L. A comparative analysis of recombinant protein expression in different biofactories: bacteria, insect cells and plant systems. J Vis Exp 2015:52459. [PMID: 25867956 PMCID: PMC4401374 DOI: 10.3791/52459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Plant-based systems are considered a valuable platform for the production of recombinant proteins as a result of their well-documented potential for the flexible, low-cost production of high-quality, bioactive products. In this study, we compared the expression of a target human recombinant protein in traditional fermenter-based cell cultures (bacterial and insect) with plant-based expression systems, both transient and stable. For each platform, we described the set-up, optimization and length of the production process, the final product quality and the yields and we evaluated provisional production costs, specific for the selected target recombinant protein. Overall, our results indicate that bacteria are unsuitable for the production of the target protein due to its accumulation within insoluble inclusion bodies. On the other hand, plant-based systems are versatile platforms that allow the production of the selected protein at lower-costs than Baculovirus/insect cell system. In particular, stable transgenic lines displayed the highest-yield of the final product and transient expressing plants the fastest process development. However, not all recombinant proteins may benefit from plant-based systems but the best production platform should be determined empirically with a case-by-case approach, as described here.
Collapse
Affiliation(s)
- Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alberto Falorni
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy;
| |
Collapse
|
32
|
Calçada EO, Korsak M, Kozyreva T. Recombinant Intrinsically Disordered Proteins for NMR: Tips and Tricks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:187-213. [PMID: 26387103 DOI: 10.1007/978-3-319-20164-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growing recognition of the several roles that intrinsically disordered proteins play in biology places an increasing importance on protein sample availability to allow the characterization of their structural and dynamic properties. The sample preparation is therefore the limiting step to allow any biophysical method being able to characterize the properties of an intrinsically disordered protein and to clarify the links between these properties and the associated biological functions. An increasing array of tools has been recruited to help prepare and characterize the structural and dynamic properties of disordered proteins. This chapter describes their sample preparation, covering the most common drawbacks/barriers usually found working in the laboratory bench. We want this chapter to be the bedside book of any scientist interested in preparing intrinsically disordered protein samples for further biophysical analysis.
Collapse
Affiliation(s)
- Eduardo O Calçada
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
| | - Magdalena Korsak
- Giotto Biotech, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy.
| | - Tatiana Kozyreva
- Giotto Biotech, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
33
|
Ben-Mahmoud S, Ramos JE, Shatters RG, Rougé P, Powell CA, Smagghe G, Borovsky D. Cloning and characterization of a basic cysteine-like protease (cathepsin L1) expressed in the gut of larval Diaprepes abbreviatus L. (Coleoptera: Curculionidae). JOURNAL OF INSECT PHYSIOLOGY 2015; 72:1-13. [PMID: 25445662 DOI: 10.1016/j.jinsphys.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Diaprepes abbreviatus is an important pest that causes extensive damage to citrus in the USA. Analysis of an expressed sequence tag (EST) library from the digestive tract of larvae and adult D. abbreviatus identified cathepsins as major putative digestive enzymes. One class, sharing amino acid sequence identity with cathepsin L's, was the most abundant in the EST dataset representing 14.4% and 3.6% of the total sequences in feeding larvae and adults, respectively. The predominant cathepsin (Da-CTSL1) among this class was further studied. Three dimensional modeling of the protein sequence showed that the mature Da-CTSL1 protein folds into an expected cathepsin L structure producing a substrate binding pocket with appropriate positioning of conserved amino acid residues. A full-length cDNA was obtained and the proCTSL1 encoding sequence was expressed in Rosetta™ Escherichia coli cells engineered to express tRNAs specific for eukaryotic codon usage. The Da-CTSL1 was expressed as a fusion protein with GST and His6 tags and purified in the presence of 1% Triton X-100 by Ni-NTA affinity and size exclusion chromatography. Recombinant mature Da-CTSL1 (23 KDa) exhibits optimal activity at pH 8, rather than at acidic pH that was shown of all previously characterized cathepsins L. Substrate specificity supports the hypothesis that Da-CTSL1 is a unique basic cathepsin L and protease inhibitor studies also suggest unique activity, unlike other characterized acidic cathepsin Ls. This paper describes for the first time a prokaryotic expression system for the production of a functional eukaryotic cathepsin L1 from larval gut of D. abbreviatus.
Collapse
Affiliation(s)
- Sulley Ben-Mahmoud
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | | | | | - Pierre Rougé
- Université de Toulouse, UPS, Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-Dev, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France
| | - Charles A Powell
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL, United States
| | | | | |
Collapse
|
34
|
Saul J, Petritis B, Sau S, Rauf F, Gaskin M, Ober-Reynolds B, Mineyev I, Magee M, Chaput J, Qiu J, LaBaer J. Development of a full-length human protein production pipeline. Protein Sci 2014; 23:1123-35. [PMID: 24806540 DOI: 10.1002/pro.2484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022]
Abstract
There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high-throughput (HT) methods, we transferred the genes of 31 full-length proteins into three expression vectors, and expressed the collection as N-terminal HaloTag fusion proteins in Escherichia coli and two commercial cell-free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip(®) GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full-length human proteins in these three expression systems.
Collapse
Affiliation(s)
- Justin Saul
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, 85287-6401
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Avesani L, Merlin M, Gecchele E, Capaldi S, Brozzetti A, Falorni A, Pezzotti M. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Res 2014; 23:281-91. [PMID: 24142387 PMCID: PMC3951962 DOI: 10.1007/s11248-013-9749-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/31/2013] [Indexed: 01/13/2023]
Abstract
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major diabetes autoantigen that can be used for the diagnosis and (more recently) the treatment of autoimmune diabetes. We previously reported that a catalytically-inactive version (hGAD65mut) accumulated to tenfold higher levels than its active counterpart in transgenic tobacco plants, providing a safe and less expensive source of the protein compared to mammalian production platforms. Here we show that hGAD65mut is also produced at higher levels than hGAD65 by transient expression in Nicotiana benthamiana (using either the pK7WG2 or MagnICON vectors), in insect cells using baculovirus vectors, and in bacterial cells using an inducible-expression system, although the latter system is unsuitable because hGAD65mut accumulates within inclusion bodies. The most productive of these platforms was the MagnICON system, which achieved yields of 78.8 μg/g fresh leaf weight (FLW) but this was substantially less than the best-performing elite transgenic tobacco plants, which reached 114.3 μg/g FLW after six generations of self-crossing. The transgenic system was found to be the most productive and cost-effective although the breeding process took 3 years to complete. The MagnICON system was less productive overall, but generated large amounts of protein in a few days. Both plant-based systems were therefore advantageous over the baculovirus-based production platform in our hands.
Collapse
Affiliation(s)
- Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alberto Falorni
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
36
|
Cho HH, Alderman E, Kreder N, Caro RG, Leong K, Miller MF, Hill WAG, Pandey P. Competitive, immunometric assay for fusion protein quantification: protein production prioritization. Anal Biochem 2014; 446:1-8. [PMID: 24121012 DOI: 10.1016/j.ab.2013.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Effective drug discovery demands the availability of microgram to gram quantities of high-quality protein encoded by novel transcripts. Protein expression vectors designed for large-scale protein production often include one or more specific tags to such transcripts, to simplify the purification of the targeted protein. Optimization of the complex expression and purification process requires the evaluation of multiple expression candidate clones to identify a production-suitable construct in terms of quality and final protein yield. Efficiency of the entire expression screening process is typically assessed by direct visualization of the banding patterns from whole-cell lysates on SDS-PAGE gels, by direct staining and/or immunoblotting, using antibodies against the tag or the protein of interest. These techniques, generally run under denaturing conditions, have proven to be only marginally predictive of the purification yield and authentic folding for native proteins. Small-scale, multiparallel affinity purification followed by SDS-PAGE analysis is more predictive for expression screening; however, this approach is labor intensive and time consuming. Here we describe the development of an alternative expression efficiency assessment technique, designed to evaluate the accessibility of affinity tags expressed with the desired fusion proteins, using acoustic membrane microparticle assay technology on the ViBE protein analysis workstation.
Collapse
Affiliation(s)
- Hyun-Hee Cho
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA
| | - Edward Alderman
- Bioscale, Inc., Lexington, MA 02421,USA; Immunologic Consulting, LLC, Framingham, MA 01702, USA.
| | - Natasha Kreder
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA
| | - Roxana Garcia Caro
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA; Bioscale, Inc., Lexington, MA 02421,USA
| | | | | | - W Adam G Hill
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA
| | - Pramod Pandey
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Wang K, Zhou F, Zhu L, Zhu X, Zhang K, Zhu L. High level soluble expression, purification, and characterization of human ciliary neuronotrophic factor in Escherichia coli by single protein production system. Protein Expr Purif 2014; 96:8-13. [PMID: 24486790 DOI: 10.1016/j.pep.2014.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/20/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is characterized as a neuropoietic cytokine for a broad spectrum of neurons, leading to its evaluation in humans suffering from neurodegenerative diseases. Due to its wide range of biological applications, high yield production of soluble biologically active recombinant human CNTF (rhCNTF) in heterologous expression system is demanded. Many attempts had been undertaken to product rhCNTF in Escherichia coli (E. coli), however, the expression level of rhCNTF was low and most of which formed insoluble inclusion bodies. In this study, we described a new and efficient method to express rhCNTF. The human CNTF gene was codon optimized and then expressed by the single protein production (SPP) expression system in E. coli. The results showed that rhCNTF was expressed as a soluble biologically active protein, and upon purification, the final yield was about 250 mg/L in shake flask with a specific neuroprotective activity in Aβ-induced SH-SY5Y cell injury model. Our study might open up a new strategy for large-scale production of functional rhCNTF for clinical applications as well as basic research.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province, China.
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Lan Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province, China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province, China
| | - Ling Zhu
- Save Sight Institute, University of Sydney, NSW 2000, Australia
| |
Collapse
|
38
|
|
39
|
Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif 2013; 94:22-32. [PMID: 24211770 DOI: 10.1016/j.pep.2013.10.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/16/2022]
Abstract
The supply of many valuable proteins that have potential clinical or industrial use is often limited by their low natural availability. With the modern advances in genomics, proteomics and bioinformatics, the number of proteins being produced using recombinant techniques is exponentially increasing and seems to guarantee an unlimited supply of recombinant proteins. The demand of recombinant proteins has increased as more applications in several fields become a commercial reality. Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, producing soluble proteins in E. coli is still a major bottleneck for structural biology projects. One of the most challenging steps in any structural biology project is predicting which protein or protein fragment will express solubly and purify for crystallographic studies. The production of soluble and active proteins is influenced by several factors including expression host, fusion tag, induction temperature and time. Statistical designed experiments are gaining success in the production of recombinant protein because they provide information on variable interactions that escape the "one-factor-at-a-time" method. Here, we review the most important factors affecting the production of recombinant proteins in a soluble form. Moreover, we provide information about how the statistical design experiments can increase protein yield and purity as well as find conditions for crystal growth.
Collapse
Affiliation(s)
- Christos P Papaneophytou
- Veterinary School, University of Thessaly, Trikalon 224, Karditsa 43100, Greece; Institute for Research and Technology - Thessaly (I.RE.TE.TH.), The Centre for Research & Technology Hellas (CE.R.TH.), Technology Park of Thessaly, 1st Industrial Area, Volos 38500, Greece
| | - George Kontopidis
- Veterinary School, University of Thessaly, Trikalon 224, Karditsa 43100, Greece; Institute for Research and Technology - Thessaly (I.RE.TE.TH.), The Centre for Research & Technology Hellas (CE.R.TH.), Technology Park of Thessaly, 1st Industrial Area, Volos 38500, Greece.
| |
Collapse
|
40
|
Orrapin S, Intorasoot S. Recombinant expression of novel protegrin-1 dimer and LL-37-linker-histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner. Protein Expr Purif 2013; 93:46-53. [PMID: 24184402 DOI: 10.1016/j.pep.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) hold great promise as potential therapeutic approach for curing of infectious diseases. Prokaryotic protein expression renders high scalability with an effective purification of several heterogeneous proteins. However, it might be inappropriate for recombinant AMPs expression thereby its antimicrobial activity against the host cells. Several fusion partners demonstrated antimicrobial activity neutralization of AMPs expression and purification in Escherichia coli. In order to improve the antimicrobial effect, several hybrid AMPs have been designed and developed. As expected to increase the antimicrobial activity, a dimeric form of porcine protegrin-1 (PG-1) and human LL-37-linker-histatin-5 (LL-37-linker-Hst-5) hybrid peptide were alternatively constructed in this study. Hydroxylamine hydrochloride and thrombin cleavage sites were designed for releasing of hybrid peptide and PG-1 dimer from biotin carboxyl carrier protein (BCCP) fusion partner. The full-length AMPs gene was connected down-stream of BCCP gene using the overlap extension-PCR, cloned into pET-28a vector and expressed in E. coli BL21(DE3)pLysS. After IPTG induction, approximately 20% of BCCP-AMPs was expressed as intracytoplasmic inclusion bodies with an expected molecular weight of 24.5kDa. The mean of purified and refolded BCCP-AMPs was 1.5mg/L with 76% purity. The presence of expressed protein was subsequently determined by Western blotting analysis. Finally, radial diffusion assay supported that these peptides displayed functional antimicrobial activity against E. coli and Staphylococcus aureus standard strains. Two novel AMPs established in this study would be potentially developed as extensive intervention for treating of infectious diseases.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
41
|
Seo DH, Jung JH, Kim HY, Park CS. Direct and simple detection of recombinant proteins from cell lysates using differential scanning fluorimetry. Anal Biochem 2013; 444:75-80. [PMID: 24096132 DOI: 10.1016/j.ab.2013.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/22/2023]
Abstract
A simple, inexpensive, and universal method to quantify the recombinant proteins in Escherichia coli cell lysate using differential scanning fluorimetry (DSF) is reported. This method is based on the precise correlation between Δ(fluorescence intensity) determined by DSF and the amount of protein in solution. We first demonstrated the effectiveness of the DSF method using two commercially available enzymes, α-amylase and cellobiase, and then confirmed its utility with two recombinant proteins, amylosucrase and maltogenic amylase, expressed in E. coli. The Δ(fluorescence intensity) in DSF analysis accurately correlated with the concentration of the purified enzymes as well as the recombinant proteins in E. coli cell lysates. The main advantage of this method over other techniques such as Western blotting, enzyme-linked immunosorbent assay (ELISA), and green fluorescence protein (GFP) fusion proteins is that intact recombinant protein can be quantified without the requirement of additional chemicals or modifications of the recombinant protein. This DSF assay can be performed using widely available equipment such as a real-time polymerase chain reaction (RT-PCR) instrument, microplates or microtubes, and fluorescent dye. This simple but powerful method can be easily applied in a wide range of research areas that require quantification of expressed recombinant proteins.
Collapse
Affiliation(s)
- Dong-Ho Seo
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Screening of multi-copy mannanase recombinants of Pichia pastoris based on colony size. World J Microbiol Biotechnol 2013; 30:579-84. [PMID: 24002577 DOI: 10.1007/s11274-013-1479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/29/2013] [Indexed: 02/04/2023]
Abstract
Pichia pastoris pGAP (glyceraldehyde dehydrogenase promoter) expression system was widely used for the expression and production of heterologous proteins. Screening multi-copy recombinants was an effective strategy to improve the heterologous protein production in P. pastoris. Because multiple gene insertion events occurred with a low frequency, hundreds to thousands of antibiotic-resistance recombinants need to be screened. The common way of improving screening efficiency was to increase antibiotic concentration in screening plates. Here we developed a screening method by selecting small colonies from low-concentration antibiotic screening plates. This strategy greatly improved the probability of obtaining multi-copy mannanase gene (man) recombinants and it could replace the common strategy by increasing antibiotic concentration in screening plates. The further study in liquid shake flask cultures revealed that cell concentrations, growth rates and substrate consumption rates of recombinants gradually decreased with the increase in man copy number. This indicated that such a screening strategy was effective to screen multi-copy recombinants based on colony size.
Collapse
|
43
|
SAEPULOH UUS, ISKANDRIATI DIAH, HOETAM FUNGKEY, SEPTIMA MARIYA SELA, DURYADI SOLIHIN DEDY, PAMUNGKAS JOKO, SAJUTHI DONDIN. Cloning and Expression of Serotype-2 Simian Betaretrovirus Reverse Transcriptase Gene Isolated from Indonesian Cynomolgus Monkey in Escherichia coli. MICROBIOLOGY INDONESIA 2013. [DOI: 10.5454/mi.7.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Zhang Y, Arcia S, Perez B, Fernandez-Funez P, Rincon-Limas DE. p∆TubHA4C, a new versatile vector for constitutive expression in Drosophila. Mol Biol Rep 2013; 40:5407-15. [PMID: 23681549 DOI: 10.1007/s11033-013-2639-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
Several vectors for gene expression are available in Drosophila, a hub for genetics and genomics innovation. However, the vectors for ubiquitous expression have a complex structure, including coding exons, that makes in-frame cloning of cDNAs very complicated. In this report we describe a new Drosophila expression vector (p∆TubHA4C) for ubiquitous expression of coding sequences under the control of a minimal 0.9 kb promoter of α1 tubulin (α1t). This plasmid was designed to include optimized multiple cloning sites (polylinker) to provide flexibility in cloning strategies. We also added the option of double labeling the expressed proteins with two C-terminal tags, the viral epitope hemagglutinin and a synthetic tetracysteine (4C) tag that binds small fluorescent compounds. This dual tag allows both in situ and biochemical detection of the desired protein. In particular, the new 4C tag technology combines easy fluorescent labeling with small arsenical compounds in live or fixed cells and tissues, while producing minimal alterations to the tagged protein due to its small size. To demonstrate the potent and ubiquitous expression under the control of the ∆Tub promoter, bacterial lacZ was expressed and monitored in cell culture and transgenic flies. We found that the modified 0.9 kb ΔTub promoter induced similar expression levels to the intact 2.6 kb α1t promoter, supporting the inclusion of all critical regulatory elements in the new and flexible ∆TubHA4C vector.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
45
|
Singh MI, Jain V. Tagging the expressed protein with 6 histidines: rapid cloning of an amplicon with three options. PLoS One 2013; 8:e63922. [PMID: 23691118 PMCID: PMC3655076 DOI: 10.1371/journal.pone.0063922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022] Open
Abstract
We report the designing of three expression vectors that can be used for rapid cloning of any blunt-end DNA segment. Only a single set of oligonucleotides are required to perform the amplification of the target DNA and its cloning in all three vectors simultaneously. The DNA thus cloned can express a protein either with or without a hexa-histidine tag depending upon the vector used. The expression occurs from T7 promoter when transformed into E. coli BL21(DE3). Two of the three plasmids have been designed to provide the expressed protein with either N- or C-terminus 6 histidine amino acids in tandem. The third plasmid, however, does not add any tag to the expressed protein. The cloning is achieved quickly with the requirement of phosphorylation of PCR product without any restriction digestion. Additionally, the generated clones can be confirmed with a single step PCR reaction carried out from bacterial colonies (generally termed as “colony PCR”). We show the cloning, expression and purification of Green Fluorescent Protein (GFP) as proof-of-concept. Additionally, we also show the cloning and expression of four sigma factors from Mycobacterium tuberculosis further demonstrating the utility of the designed plasmids. We strongly believe that the vectors and the strategy that we have developed will facilitate the rapid cloning and expression of any gene in E. coli BL21(DE3) with or without a hexa-histidine tag.
Collapse
Affiliation(s)
- Manika Indrajit Singh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
46
|
Rapid screening of membrane protein expression in transiently transfected insect cells. Protein Expr Purif 2013; 88:134-42. [DOI: 10.1016/j.pep.2012.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/09/2023]
|
47
|
Casteleijn MG, Urtti A, Sarkhel S. Expression without boundaries: Cell-free protein synthesis in pharmaceutical research. Int J Pharm 2013; 440:39-47. [DOI: 10.1016/j.ijpharm.2012.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/01/2012] [Accepted: 04/03/2012] [Indexed: 11/15/2022]
|
48
|
Choi JY, Kim YS, Wang Y, Tao XY, Liu Q, Roh JY, Woo SD, Jin BR, Je YH. Fast and efficient generation of recombinant baculoviruses by in vitro transposition. Appl Microbiol Biotechnol 2012; 96:1353-60. [PMID: 23053112 DOI: 10.1007/s00253-012-4468-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
A novel recombinant bacmid, bEasyBac, that enables the easy and fast generation of pure recombinant baculovirus without any purification step was constructed. In bEasyBac, attR recombination sites were introduced to facilitate the generation of a recombinant viral genome by in vitro transposition. Moreover, the extracellular RNase gene from Bacillus amyloliquefaciens, barnase, was expressed under the control of the Cotesia plutellae bracovirus early promoter to negatively select against the non-recombinant background. The bEasyBac bacmid could only replicate in host insect cells when the barnase gene was replaced with the gene of interest by in vitro transposition. When bEasyBac was transposed with pDualBac-EGFP, the resulting recombinant virus, AcEasy-EGFP, showed comparable levels of EGFP expression efficiency to the plaque-purified recombinant virus AcEGFP, which was constructed using the bAcGOZA system. In addition, no non-recombinant backgrounds were detected in unpurified AcEasy-EGFP stocks. Based on these results, a high-throughput system for the generation of multiple recombinant viruses at a time was established.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Koukuntla R, Mandell RB, Flick R. Virus-Like Particle-Based Countermeasures Against Rift Valley Fever Virus. Zoonoses Public Health 2012; 59 Suppl 2:142-50. [DOI: 10.1111/j.1863-2378.2012.01478.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Barbosa Viana AA, Pelegrini PB, Grossi-de-Sá MF. Plant biofarming: Novel insights for peptide expression in heterologous systems. Biopolymers 2012. [DOI: 10.1002/bip.22089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|