1
|
Hao W, Yang S, Sheng Y, Ye C, Han L, Zhou Z, Cui W. Efficient expression of recombinant proteins in Bacillus subtilis using a rewired gene circuit of quorum sensing. Biotechnol Prog 2025:e70007. [PMID: 39968680 DOI: 10.1002/btpr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/15/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Bacillus subtilis is a favored chassis for high productivity of several high value-added product in synthetic biology. Efficient production of recombinant proteins is critical but challenging using this chassis because these expression systems in use, such as constitutive and inducible expression systems, demand for coordination of cell growth with production and addition of chemical inducers. These systems compete for intracellular resources with the host, eventually resulting in dysfunction of cell survival. To overcome the problem, in this study, LuxRI quorum sensing (QS) system from Aliivibrio fischeri was functionally reconstituted in B. subtilis for achieving coordinated protein overproduction with cell growth in a cell-density-dependent manner. Furthermore, the output-controlling promoter, PluxI, was engineered through two rounds of evolution, by which we identified four mutants, P22, P47, P56, and P58 that exhibited elevated activity compared to the original PluxI. By incorporating a strong terminator (TB5) downstream of the target gene further enhanced expression level. The expression level of this system surpasses commonly used promoter-based systems in B. subtilis like P43 and PylbP. The LuxRI QS system proves to be a potent platform for recombinant protein overproduction in B. subtilis.
Collapse
Affiliation(s)
- Wenliang Hao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shihao Yang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuou Sheng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chengfeng Ye
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Le VD, Phan TTP, Nguyen HD. Production of Tobacco Etch Virus Protease (TEV) Expressed in the Endotoxin-Free Bacillus subtilis and Its Application. Curr Microbiol 2024; 81:376. [PMID: 39322786 DOI: 10.1007/s00284-024-03907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Tobacco Etch virus (TEV) protease is one of the most common tools for removing fusion tags, but no study has shown that TEV can be expressed at high levels in the GRAS host strain Bacillus subtilis and purified for further application. In this study, the fusion protein BsLysSN-TEV C/S-His-TEV consisting of a fusion tag, N-terminal domain of a lysyl-tRNA synthetase (BsLysSN) coded by B. subtilis lysS gene, placed at the N-terminus followed by an endoprotease TEV cleavage site and then the expression of this fusion protein in the cytoplasm of B. subtilis was investigated. The SDS-PAGE and Western-blot analysis demonstrated that His-TEV was overexpressed under the induction of IPTG. This result infers that His-TEV protease showed promising activity in the B. subtilis cytoplasm by the cleavage of the fusion protein. These cleavage products could be purified using the Ni-NTA column, which effectively cleaved the purified recombinant protein substrate, which can be applied in the protein purification process to remove the fusion tag. Significantly, since both His-TEV protease and the fusion recombinant protein substrate are expressed in the endotoxin-free host strain, the tag removal and purified product should be theoretically endotoxin-free, which could be a promising approach for producing therapeutic proteins and also for other relevant biomedical applications.
Collapse
Affiliation(s)
- Vuong Duong Le
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu District 5, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu District 5, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu District 5, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu District 5, Ho Chi Minh City, Vietnam.
- Laboratory of Molecular Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu District 5, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Tan Q, Wu Y, Li C, Jin J, Zhang L, Tong S, Chen Z, Ran L, Huang L, Zuo Z. Characterization of Key Aroma Compounds of Soy Sauce-like Aroma Produced in Ferment of Soybeans by Bacillus subtilis BJ3-2. Foods 2024; 13:2731. [PMID: 39272497 PMCID: PMC11395551 DOI: 10.3390/foods13172731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Fermented soybeans are popular among many for their rich soy sauce-like aroma. However, the precise composition of this aroma remains elusive, with key aroma compounds unidentified. In this study, we screened the candidate genes ilvA and serA in BJ3-2 based on previous multi-omics data, and we constructed three mutant strains, BJ3-2-ΔserA, BJ3-2-ΔilvA, and BJ3-2-ΔserAΔilvA, using homologous recombination to fermented soybeans with varying intensities of soy sauce-like aroma. Our objective was to analyze samples that exhibited different aroma intensities resulting from the fermented soybeans of BJ3-2 and its mutant strains, thereby exploring the key flavor compounds influencing soy sauce-like aroma as well analyzing the effects of ilvA and serA on soy sauce-like aroma. We employed quantitative descriptive sensory analysis (QDA), gas chromatography-olfactometry-mass spectrometry (GC-O-MS), relative odor activity value analysis (rOAV), principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and partial least squares regression analysis (PLSR). QDA revealed the predominant soy sauce-like aroma profile of roasted and smoky aromas. GC-MS detected 99 volatile components, predominantly pyrazines and ketones, across the four samples, each showing varying concentrations. Based on rOAV (>1) and GC-O, 12 compounds emerged as primary contributors to soy sauce-like aroma. PCA and OPLS-DA were instrumental in discerning aroma differences among the samples, identifying five compounds with VIP > 1 as key marker compounds influencing soy sauce-like aroma intensity levels. Differential analyses of key aroma compounds indicated that the mutant strains of ilvA and serA affected soy sauce-like aroma mainly by affecting pyrazines. PLSR analysis indicated that roasted and smoky aromas were the two most important sensory attributes of soy sauce-like aroma, with pyrazines associated with roasted aroma and guaiacol associated with smoky aroma. In addition, substances positively correlated with the intensity of soy sauce-like aroma were verified by additional experiments. This study enhances our understanding of the characteristic flavor compounds in soy sauce-like aroma ferments, provides new perspectives for analyzing the molecular mechanisms of soy sauce-like aroma formation, and provides a theoretical framework for the targeted enhancement of soy sauce-like aroma in various foods.
Collapse
Affiliation(s)
- Qibo Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zhaofeng Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Li Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lu Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zeyan Zuo
- Guizhou Institute of Products Quality Inspection & Testing, Guiyang 550016, China
| |
Collapse
|
4
|
Chen Y, Li M, Yan M, Chen Y, Saeed M, Ni Z, Fang Z, Chen H. Bacillus subtilis: current and future modification strategies as a protein secreting factory. World J Microbiol Biotechnol 2024; 40:195. [PMID: 38722426 DOI: 10.1007/s11274-024-03997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.
Collapse
Affiliation(s)
- Yanzhen Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Miaomiao Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yong Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Tian D, Liu Y, Zhang Y, Liu Y, Xia Y, Xu B, Xu J, Yomo T. Implementation of Fluorescent-Protein-Based Quantification Analysis in L-Form Bacteria. Bioengineering (Basel) 2024; 11:81. [PMID: 38247958 PMCID: PMC10813599 DOI: 10.3390/bioengineering11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-wall-less (L-form) bacteria exhibit morphological complexity and heterogeneity, complicating quantitative analysis of them under internal and external stimuli. Stable and efficient labeling is needed for the fluorescence-based quantitative cell analysis of L-forms during growth and proliferation. Here, we evaluated the expression of multiple fluorescent proteins (FPs) under different promoters in the Bacillus subtilis L-form strain LR2 using confocal microscopy and imaging flow cytometry. Among others, Pylb-derived NBP3510 showed a superior performance for inducing several FPs including EGFP and mKO2 in both the wild-type and L-form strains. Moreover, NBP3510 was also active in Escherichia coli and its L-form strain NC-7. Employing these established FP-labeled strains, we demonstrated distinct morphologies in the L-form bacteria in a quantitative manner. Given cell-wall-deficient bacteria are considered protocell and synthetic cell models, the generated cell lines in our work could be valuable for L-form-based research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Chu PTB, Phan TTP, Nguyen TTT, Truong TTT, Schumann W, Nguyen HD. Potent IPTG-inducible integrative expression vectors for production of recombinant proteins in Bacillus subtilis. World J Microbiol Biotechnol 2023; 39:143. [PMID: 37004690 DOI: 10.1007/s11274-023-03566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG. The β-galactosidase (BgaB) protein levels were 9.0%, 15% and 30% of the total cellular protein in the B. subtilis strains carrying single cassettes with the Pgrac01, Pgrac100 or Pgrac212 promoters, respectively. The maximal induction ratio of Pgrac01-bgaB was 35.5 while that of Pgrac100-bgaB was 7.5 and that of Pgrac212-bgaB was 9. The inducible expression of GFP and BgaB protein was stably maintained for 24 h, with the highest yield of GFP being 24% of cell total protein while the maximum amount of BgaB was found to be 38%. A dual integration of two copies of the gfp+ gene into the B. subtilis genome at the lacA and amyE loci resulted in a yield of about 40% of total cellular protein and a 1.74-fold increase in GFP compared with single-integrated strains containing the same Pgrac212 promoter. The capability of protein production from low to high levels of these inducible integrative systems is useful for fundamental and applied research in B. subtilis.
Collapse
Affiliation(s)
- Phuong Thi Bich Chu
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
| | - Tam Thi Thanh Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
7
|
Yin X, Zhou Y, Yang H, Liao Y, Ma T, Wang F. Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis. Appl Microbiol Biotechnol 2023; 107:2843-2854. [PMID: 36941436 DOI: 10.1007/s00253-023-12482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 μg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.
Collapse
Affiliation(s)
- Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yu Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Hulin Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yonghong Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Tengbo Ma
- Biological Defense Department, Institute of Chemical Defence, Zhongxin RD 1, Beijing, 102205, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
| |
Collapse
|
8
|
Sim S, Hui Y, Tirrell DA. 3D-Printable Cellular Composites for the Production of Recombinant Proteins. Biomacromolecules 2022; 23:4687-4695. [DOI: 10.1021/acs.biomac.2c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seunghyun Sim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yue Hui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis. Microbiol Spectr 2022; 10:e0132222. [PMID: 36036634 PMCID: PMC9604022 DOI: 10.1128/spectrum.01322-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of efficient, low-cost, and robust expression systems is important for the mass production of proteins and natural products in large amounts using cell factories. Glycerol is an ideal carbon source for large-scale fermentation due to its low cost and favorable maintenance of the fermentation process. Here, we used the antiterminator protein GlpP and its target promoter PglpD to construct a highly efficient glycerol-inducible expression system (GIES) in Bacillus subtilis. This system was able to express heterologous genes in an autoinducible manner based on the sequential utilization of glucose and glycerol under the regulation of carbon catabolite repression. In such a system, the concentration of glycerol regulated the strength of gene expression, and the concentration of glucose affected both the timing of induction and the strength of gene expression. By enhancing GlpP, the GIES was further strengthened for high-level intracellular expression of aspartase and secretory expression of nattokinase. High yields of nattokinase in a 5-L fermenter through batch and fed-batch fermentation demonstrated the potential to apply the GIES for large-scale enzyme production. Through the evolution of the -10 box of PglpD, mutants with gradient activities were obtained. In addition, hybrid glycerol-inducible promoters were successfully constructed by combining the constitutive promoters and the 5' untranslated region of PglpD. Collectively, this study developed a GIES to obtain high-value products from inexpensive glycerol. More importantly, the great potential of the pair of inherent terminator and antiterminator protein as a portable biological tool for various purposes in synthetic biology is proposed. IMPORTANCE In this study, a GIES was constructed in B. subtilis by employing the antiterminator protein GlpP and the GlpP-regulated promoter PglpD. Based on the sequential utilization of glucose and glycerol by B. subtilis, the GIES was able to express genes in an autoinducible manner. The amounts and ratio of glucose and glycerol can regulate the gene induction timing and expression strength. The GIES was further applied for high yields of nattokinase, and its robustness in production scale-up was confirmed in a 5-L fermenter. The high-level expression of heterologous proteins demonstrated the huge application potential of the GIES. Furthermore, mutants of PglpD with gradient activities and hybrid glycerol-inducible promoters were obtained through the evolution of the -10 box of PglpD and the combination of the constitutive promoters and the 5' untranslated region of PglpD, respectively. These results demonstrated the use of the antiterminator protein as a regulator for various purposes in synthetic biology.
Collapse
|
10
|
Song Y, He S, Jopkiewicz A, Setroikromo R, van Merkerk R, Quax WJ. Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. J Appl Microbiol 2022; 133:2280-2298. [PMID: 35797344 PMCID: PMC9796756 DOI: 10.1111/jam.15704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been developed into a precise and efficient genome editing tool. Since its discovery as an adaptive immune system in prokaryotes, it has been applied in many different research fields including biotechnology and medical sciences. The high demand for rapid, highly efficient and versatile genetic tools to thrive in bacteria-based cell factories accelerates this process. This review mainly focuses on significant advancements of the CRISPR system in Bacillus subtilis, including the achievements in gene editing, and on problems still remaining. Next, we comprehensively summarize this genetic tool's up-to-date development and utilization in other Bacillus species, including B. licheniformis, B. methanolicus, B. anthracis, B. cereus, B. smithii and B. thuringiensis. Furthermore, we describe the current application of CRISPR tools in phages to increase Bacillus hosts' resistance to virulent phages and phage genetic modification. Finally, we suggest potential strategies to further improve this advanced technique and provide insights into future directions of CRISPR technologies for rendering Bacillus species cell factories more effective and more powerful.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern ChinaInstitute of Microbiology, Guangdong Acadamy of SciencesGuangzhouChina
| | - Siqi He
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Anita Jopkiewicz
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| |
Collapse
|
11
|
Le NTP, Phan TTP, Phan HTT, Truong TTT, Schumann W, Nguyen HD. Influence of N-terminal His-tags on the production of recombinant proteins in the cytoplasm of Bacillus subtilis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00754. [PMID: 35911505 PMCID: PMC9326129 DOI: 10.1016/j.btre.2022.e00754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 05/26/2023]
Abstract
The influence of fusion tags to produce recombinant proteins in the cytoplasm of Bacillus subtilis is not well-studied as in E. coli. This study aimed to investigate the influence of His-tags with different codons on the protein production levels of the high expression gene (gfp+) and low expression gene (egfp) in the cytoplasm of B. subtilis cells. We used three different N-terminal His-tags, M-6xHis, MRGS-8xHis and MEA-8xHis, to investigate their effects on the production levels of GFP variants under the control of the Pgrac212 in B. subtilis. The fusions of His-tags with GFP+ caused a reduction compared to the construct without His-tag. When three His-tags fused with egfp, the EGFP production levels were significantly increased up to 3.5-, 12-, and 15-fold. This study suggested that His-tag at the N-terminus could enhance the protein production for the low expression gene and reduce that of the high expression gene in B. subtilis.
Collapse
Affiliation(s)
- Ngan Thi Phuong Le
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Hanh Thi Thu Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer research laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Liu Z, Wu Y, Zhang L, Tong S, Jin J, Gong X, Zhong J. rocF affects the production of tetramethylpyrazine in fermented soybeans with Bacillus subtilis BJ3-2. BMC Biotechnol 2022; 22:18. [PMID: 35787694 PMCID: PMC9254598 DOI: 10.1186/s12896-022-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetramethylpyrazine (TTMP) is a flavoring additive that significantly contributes to the formation of flavor compounds in soybean-based fermented foods. Over recent years, the application of TTMP in the food industry and medicine has been widely investigated. In addition, several methods for the industrial-scale production of TTMP, including chemical and biological synthesis, have been proposed. However, there have been few reports on the synthesis of TTMP through amino acid metabolic flux. In this study, we investigated genetic alterations of arginine metabolic flux in solid-state fermentation (SSF) of soybeans with Bacillus subtilis (B.subtilis) BJ3-2 to enhance the TTMP yield. RESULTS SSF of soybeans with BJ3-2 exhibited a strong Chi-flavour (a special flavour of ammonia-containing smelly distinct from natto) at 37 °C and a prominent soy sauce-like aroma at 45 °C. Transcriptome sequencing and RT-qPCR verification showed that the rocF gene was highly expressed at 45 °C but not at 37 °C. Moreover, the fermented soybeans with BJ3-2ΔrocF (a rocF knockout strain in B. subtilis BJ3-2 were obtained by homologous recombination) at 45 °C for 72 h displayed a lighter color and a slightly decreased pH, while exhibiting a higher arginine content (increased by 14%) than that of BJ3-2. However, the ammonia content of fermented soybeans with BJ3-2ΔrocF was 43% lower than that of BJ3-2. Inversely, the NH4+ content in fermented soybeans with BJ3-2ΔrocF was increased by 28% (0.410 mg/kg). Notably, the TTMP content in fermented soybeans with BJ3-2ΔrocF and BJ3-2ΔrocF + Arg (treated with 0.05% arginine) were significantly increased by 8.6% (0.4617 mg/g) and 18.58% (0.504 mg/g) respectively than that of the BJ3-2. CONCLUSION The present study provides valuable information for understanding the underlying mechanism during the TTMP formation process through arginine metabolic flux.
Collapse
Affiliation(s)
- Zhenli Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xian Gong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Zhong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-Bioengineeringering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
13
|
Shafaati M, Ghorbani M, Mahmoodi M, Ebadi M, Jalalirad R. Expression and characterization of hemagglutinin-neuraminidase protein from Newcastle disease virus in Bacillus subtilis WB800. J Genet Eng Biotechnol 2022; 20:77. [PMID: 35608724 PMCID: PMC9130408 DOI: 10.1186/s43141-022-00357-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Background Newcastle disease virus (NDV) belongs to the genus Avaluvirus and Paramyxoviridae family, and it can cause acute, highly contagious Newcastle disease in poultry. The two proteins, haemagglutinin neuraminidase (HN) and Fusion (F), are the main virulence factor of the virus and play an essential role in immunogenicity against the virus. In most paramyxoviruses, the F protein requires HN protein to fuse the membrane, and HN proteins substantially enhance the viruses’ fusion activity. Results The present study describes the successful cloning and expression of HN protein from NDV in Bacillus subtilis WB800 using the modified shuttle vector pHT43. HN coding sequence was cloned into the pGet II vector. It was then subcloned into the PHT43 shuttle vector and transferred to Escherichia coli for replication. The recombinant plasmid was extracted from E. coli and used to transform B. subtilis by electroporation. After induction of recombinant B. subtilis by IPTG, total cell protein and the protein secreted into the media were analysed through a time course using SDS-PAGE. The expressed HN protein was purified using cation exchange chromatography followed by metal affinity chromatography, using the 6× His epitope introduced at the carboxyl terminus of the recombinant protein. The accuracy of the PHT43-HN construct was confirmed by sequencing and enzymatic digestion. SDS-PAGE results showed that the recombinant HN protein was successfully expressed and secreted into the medium. Moreover, the purified HN protein showed neuraminidase activity with characteristics similar to the indigenous HN NDV protein. B. subtilis is a free endotoxin host that could be a favourite prokaryotic platform for producing the recombinant HN protein. Conclusion The establishment of this expression and purification system has allowed us to explore further the biochemical characteristics of HN protein and obtain material that could be suitable for a new production of NDV candidate vaccine with high immunogenicity.
Collapse
Affiliation(s)
- Mohammadreza Shafaati
- Department of Cellular & Molecular Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Masoud Ghorbani
- Pasteur Institute of Iran, Production and Research Complex, Department of Research and Development, Kilometre 25 Karaj-Tehran Highway, Karaj, Alborz, 31599, Iran.
| | - Minoo Mahmoodi
- Department of Cellular & Molecular Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Sciences, Damaghan Branch, Islamic Azad University, Damghan, Semnan, Iran
| | - Reza Jalalirad
- Pasteur Institute of Iran, Production and Research Complex, Department of Research and Development, Kilometre 25 Karaj-Tehran Highway, Karaj, Alborz, 31599, Iran
| |
Collapse
|
14
|
Ye J, Li Y, Bai Y, Zhang T, Jiang W, Shi T, Wu Z, Zhang YHPJ. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis. BIORESOUR BIOPROCESS 2022; 9:56. [PMID: 38647747 PMCID: PMC10991129 DOI: 10.1186/s40643-022-00540-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
To mimic the Escherichia coli T7 protein expression system, we developed a facile T7 promoter-based protein expression system in an industrial microorganism Bacillus subtilis. This system has two parts: a new B. subtilis strain SCK22 and a plasmid pHT7. To construct strain SCK22, the T7 RNA polymerase gene was inserted into the chromosome, and several genes, such as two major protease genes, a spore generation-related gene, and a fermentation foam generation-related gene, were knocked out to facilitate good expression in high-density cell fermentation. The gene of a target protein can be subcloned into plasmid pHT7, where the gene of the target protein was under tight control of the T7 promoter with a ribosome binding site (RBS) sequence of B. subtilis (i.e., AAGGAGG). A few recombinant proteins (i.e., green fluorescent protein, α-glucan phosphorylase, inositol monophosphatase, phosphoglucomutase, and 4-α-glucanotransferase) were expressed with approximately 25-40% expression levels relative to the cellular total proteins estimated by SDS-PAGE by using B. subtilis SCK22/pHT7-derived plasmid. A fed-batch high-cell density fermentation was conducted in a 5-L fermenter, producing up to 4.78 g/L inositol monophosphatase. This expression system has a few advantageous features, such as, wide applicability for recombinant proteins, high protein expression level, easy genetic operation, high transformation efficiency, good genetic stability, and suitability for high-cell density fermentation.
Collapse
Affiliation(s)
- Jing Ye
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yuqing Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Wei Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
15
|
Jo H, Sim S. Programmable Living Materials Constructed with the Dynamic Covalent Interface between Synthetic Polymers and Engineered B. subtilis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20729-20738. [PMID: 35485836 DOI: 10.1021/acsami.2c03111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report the first example of programmable living materials constructed with a dynamic covalent interface between designed synthetic polymers and engineered B. subtilis cells. We identified a molecular motif that forms reversible dynamic covalent bonds on the B. subtilis cell surface. Combining block copolymers bearing this motif with genetically engineered B. subtilis yields programmable living materials that can be equipped with functionalities such as biosensing and on-demand elution of recombinant proteins. Encapsulated cells in these living materials could be reversibly retrieved and subjected to biological analyses. Further, the block copolymer in these living materials could be recycled to produce a new batch of living materials. This work advances the current capabilities in engineered living materials, establishes the groundwork for building a myriad of synthetic polymeric materials integrating engineered living cells, and provides a platform for understanding the biology of cells confined within materials.
Collapse
Affiliation(s)
- Hyuna Jo
- Department of Chemistry, School of Physical Sciences, University of California Irvine, Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemistry, School of Physical Sciences, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
16
|
Liu Q, Zhang L, Wang Y, Zhang C, Liu T, Duan C, Bian X, Guo Z, Long Q, Tang Y, Du J, Liu A, Dai L, Li D, Chen W. Enhancement of edeine production in Brevibacillus brevis X23 via in situ promoter engineering. Microb Biotechnol 2022; 15:577-589. [PMID: 34310825 PMCID: PMC8867987 DOI: 10.1111/1751-7915.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Edeines, a group of cationic antimicrobial peptides produced by the soil bacterium Brevibacillus, have broad biological effects, such as antimicrobial, anticancer and immunosuppressive activities. However, the yield of edeines in wild-type (WT) Brevibacillus is extremely low, and chemical synthesis of edeines is a time-consuming process. Genetic engineering has proven to be an effective approach to produce antibiotics with high yield. In this study, the edeine biosynthetic gene cluster (ede BGC), which is involved in edeine production, was identified and characterized in Brevibacillus brevis X23. To improve edeine production in B. brevis X23, the ede BGC promoter was replaced with six different promoters, Pmwp , Pspc , PxylA , Pshuttle-09 , Pgrac or P43 , through double-crossover homologous recombination. The new promoters significantly increased the expression of the ede BGC as well as edeine production by 2.9 ± 0.4 to 20.5 ± 1.2-fold and 3.6 ± 0.1to 8.7 ± 0.7-fold respectively. The highest yield of edeines (83.6 mg l-1 ) was obtained in B. brevis X23 with the Pmwp promoter. This study provides a practical approach for producing high yields of edeines in B. brevis.
Collapse
Affiliation(s)
- Qingshu Liu
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Liang Zhang
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
- College of AgronomyHunan Agricultural UniversityChangsha410128China
| | - Yunsheng Wang
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| | - Cuiyang Zhang
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Tianbo Liu
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| | - Caichen Duan
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti‐Infectives, Shandong University‐Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Zhaohui Guo
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Qingshan Long
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Ying Tang
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Jie Du
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Aiyu Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
| | - Liangying Dai
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| | - Dingjun Li
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
- Hunan University of Technology and BusinessChangsha410205China
| | - Wu Chen
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
17
|
Nguyen HD, Phan TTP. A Protocol to Enhance Soluble Protein Expression in the Cytoplasm of Bacillus subtilis. Methods Mol Biol 2022; 2406:233-243. [PMID: 35089561 DOI: 10.1007/978-1-0716-1859-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacillus subtilis is a generally regarded as safe (GRAS) microorganism, which has been used for industrial production of recombinant enzymes. Many inducible and inducer-free expression vectors have been developed for intracellular production; some of those demonstrated the capability for protein expression up to 42% of total cellular proteins. In this chapter, we introduce the method to enhance the expression of soluble protein in B. subtilis. It includes the construction of vectors, the transformation of a plasmid into B. subtilis, and checking the expression of the protein.
Collapse
Affiliation(s)
- Hoang D Nguyen
- University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Trang T P Phan
- University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Rodriguez A, Meadows JA, Sun N, Simmons BA, Gladden JM. Evaluation of bacterial hosts for conversion of lignin-derived p-coumaric acid to 4-vinylphenol. Microb Cell Fact 2021; 20:181. [PMID: 34526022 PMCID: PMC8442356 DOI: 10.1186/s12934-021-01670-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Hydroxycinnamic acids such as p-coumaric acid (CA) are chemically linked to lignin in grassy biomass with fairly labile ester bonds and therefore represent a straightforward opportunity to extract and valorize lignin components. In this work, we investigated the enzymatic conversion of CA extracted from lignocellulose to 4-vinylphenol (4VP) by expressing a microbial phenolic acid decarboxylase in Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The performance of the recombinant strains was evaluated in response to the substrate concentration in rich medium or a lignin liquor and the addition of an organic overlay to perform a continuous product extraction in batch cultures. We found that using undecanol as an overlay enhanced the 4VP titers under high substrate concentrations, while extracting > 97% of the product from the aqueous phase. C. glutamicum showed the highest tolerance to CA and resulted in the accumulation of up to 187 g/L of 4VP from pure CA in the overlay with a 90% yield when using rich media, or 17 g/L of 4VP with a 73% yield from CA extracted from lignin. These results indicate that C. glutamicum is a suitable host for the high-level production of 4VP and that further bioprocess engineering strategies should be explored to optimize the production, extraction, and purification of 4VP from lignin with this organism.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA.,Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Jamie A Meadows
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Ning Sun
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - John M Gladden
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA. .,Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA.
| |
Collapse
|
19
|
Lenz P, Hilgers F, Burmeister A, Zimmermann L, Volkenborn K, Grünberger A, Kohlheyer D, Drepper T, Jaeger KE, Knapp A. The iSplit GFP assay detects intracellular recombinant proteins in Bacillus subtilis. Microb Cell Fact 2021; 20:174. [PMID: 34488765 PMCID: PMC8419962 DOI: 10.1186/s12934-021-01663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bacillus subtilis is one of the most important microorganisms for recombinant protein production. It possesses the GRAS (generally recognized as safe) status and a potent protein secretion capacity. Secretory protein production greatly facilitates downstream processing and thus significantly reduces costs. However, not all heterologous proteins are secreted and intracellular production poses difficulties for quantification. To tackle this problem, we have established a so-called intracellular split GFP (iSplit GFP) assay in B. subtilis as a tool for the in vivo protein detection during expression in batch cultures and at a single-cell level. For the iSplit GFP assay, the eleventh β-sheet of sfGFP is fused to a target protein and can complement a detector protein consisting of the respective truncated sfGFP (GFP1-10) to form fluorescent holo-GFP. RESULTS As proof of concept, the GFP11-tag was fused C-terminally to the E. coli β-glucuronidase GUS, resulting in fusion protein GUS11. Variable GUS and GUS11 production levels in B. subtilis were achieved by varying the ribosome binding site via spacers of increasing lengths (4-12 nucleotides) for the GUS-encoding gene. Differences in intracellular enzyme accumulation were determined by measuring the GUS11 enzymatic activity and subsequently by adding the detector protein to respective cell extracts. Moreover, the detector protein was co-produced with the GUS11 using a two-plasmid system, which enabled the in vivo detection and online monitoring of glucuronidase production. Using this system in combination with flow cytometry and microfluidics, we were able to monitor protein production at a single-cell level thus yielding information about intracellular protein distribution and culture heterogeneity. CONCLUSION Our results demonstrate that the iSplit GFP assay is suitable for the detection, quantification and online monitoring of recombinant protein production in B. subtilis during cultivation as well as for analyzing production heterogeneity and intracellular localization at a single-cell level.
Collapse
Affiliation(s)
- Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alina Burmeister
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615, Bielefeld, Germany
| | - Leonie Zimmermann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kristina Volkenborn
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615, Bielefeld, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- RWTH Aachen University, Microscale Bioengineering (AVT.MSB), 52074, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Bio- and Geoscience, IBG-1: Biotechnology: Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Castrol Germany GmbH, 41179, Mönchengladbach, Germany.
| |
Collapse
|
20
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
21
|
Peng Z, Zhang J, Song Y, Guo R, Du G, Chen J. Engineered pro-peptide enhances the catalytic activity of keratinase to improve the conversion ability of feather waste. Biotechnol Bioeng 2021; 118:2559-2571. [PMID: 33788275 DOI: 10.1002/bit.27771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 01/28/2023]
Abstract
Keratinase is an attractive industrial enzyme that can specifically catalyze keratin waste to obtain value-added products. A challenge to the application of keratinase is improving catalytic capacity to achieve efficient hydrolysis. In this study, we effectively expressed the keratinase gene from Bacillus licheniformis BBE11-1 in Bacillus subtilis WB600 based on pro-peptide engineering. Partial deletion of the pro-peptide sequence and the substitution of amino acid at the pro-peptide cleavage site (P1) suggested that the "chaperone effect" and "cleavage efficiency" of the pro-peptide determine the activity of the mature enzyme. Subsequently, seven target sites that can increase the activity of the mature enzyme by 16%-66% were obtained through the multiple sequence alignment of pro-peptides and site-directed mutation. We further performed combinatorial mutations at six sites based on the design principle of three-codon saturation mutations and obtained mutant 2-D12 (236.8 KU/mg) with a mature enzyme activity of 186% of the original (127.6 KU/mg). Finally, continuous fermentation was carried out in a 5-L bioreactor for 22 h, and the activity of the 2-D12 mature enzyme was increased to 391.6 KU/mg. Most importantly, 2-D12 could degrade more than 90% of feather waste into amino acids and peptides within 12 h with the aid of sulfite.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Rong Guo
- Wuhan Institute of Industrial Control Technology Co., Ltd., Wuhan, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Integrative expression vectors with P grac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00540. [PMID: 33163371 PMCID: PMC7599426 DOI: 10.1016/j.btre.2020.e00540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022]
Abstract
The new inducer-free integrative expression vectors could repress the reporter gene expression in the E. coli cloning strain, thereby facilitating the cloning step. The expression vectors carrying IPTG-inducible Pgrac promoters allow the production of the recombinant protein at high levels in B. subtilis in the absence of the inducer. The single-copy expression levels of integrative constructs, Pgrac01-bgaB, Pgrac100-bgaB, Pgrac212-bgaB could reach to % and 8%, 20.9 % and 42 % of total cellular proteins after 12 h incubation, respectively. The double integration of Pgrac212-bgaB into both amyE and lacA loci resulted in BgaB expression up to 53.4 %.
Inducer-free integrative vectors are often used to create B. subtilis strains for industrial purposes, but employing strong promoters to produce high levels of recombinant proteins in B. subtilis results in high leaky expression that can hamper cloning in Escherichia coli. To overcome the problem, we used strong IPTG-inducible Pgrac promoters harboring lac operators to construct inducer-free integrative vectors able to integrate into the B. subtilis genome at either the lacA or the amyE locus, or both and examined their ability to repress the β-galactosidase (bgaB) gene in E. coli and to overexpress BgaB in B. subtilis. The Pgrac01 vectors could repress bgaB expression about 24-fold in E. coli to low background levels. The integrated Pgrac01-bgaB constructs exhibited inducer-free expression and produced 8% of total cellular proteins, only 1.25 or 1.75 times less compared with their cognates as plasmids. The stronger promoters, Pgrac100-bgaB and Pgrac212-bgaB yielded 20.9 % and 42 % of total intracellular proteins after 12 h of incubation, respectively. Incorporation of the Pgrac212-bgaB into both amyE and lacA loci resulted in BgaB expression up to 53.4 %. In conclusion, integrative vectors containing the Pgrac promoter family have great potential for inducer-free overproduction of recombinant proteins in B. subtilis.
Collapse
|
23
|
Zhang L, Li X, Zhan N, Sun T, Li J, Shan A. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J 2020; 39:383-391. [PMID: 32661730 DOI: 10.1007/s10930-020-09908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cecropin AD (CAD) is a hybrid peptide composed of 37 amino acids with the characters of strong antibacterial, antitumor properties and no hemolytic activity, which was regarded as a promising antibiotic candidate. Thus, a safe method to produce Cecropin AD is necessary to be found. In the study, Bacillus subtilis WB800N was employed as host strain. The CAD coding sequence fused with the signal peptide of SPsacB, the 6 × His gene and the gene of small ubiquitin-like modifier were cloned into the maltose-inducible vector pGJ148. Under the induction by 6% maltose, the recombinant fusion protein was successfully expressed and detected in culture substrate. An optimized amount (26.4 mg/L) of the recombinant CAD was purified of culture supernatant. After purification and digestion, the recombinant CAD was harvested about 4.5 mg/L with a purity of 93%. Recombinant CAD exhibited similar antimicrobial activity with synthetic CAD. This shows that the production of CAD in maltose-induced Bacillus subtilis expression system is a relatively safe method, which is vital for the application of CAD in animal husbandry production.
Collapse
Affiliation(s)
- Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaodan Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Taotao Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
24
|
Zhang S, Mou C, Cao Y, Zhang E, Yang Q. Immune response in piglets orally immunized with recombinant Bacillus subtilis expressing the capsid protein of porcine circovirus type 2. Cell Commun Signal 2020; 18:23. [PMID: 32046726 PMCID: PMC7014726 DOI: 10.1186/s12964-020-0514-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome, and is associated with a number of other diseases. PCV2 is widely distributed in most developed swine industries, and is a severe economic burden. With an eye to developing an effective, safe, and convenient vaccine against PCV2-associated diseases, we have constructed a recombinant Bacillus subtilis strain (B. subtilis-Cap) that expresses the PCV2 capsid protein (Cap). METHODS Electroporation of a plasmid shuttle vector encoding the PCV2 Cap sequence was use to transform Bacillus subtilis. Flow cytometry was used to evaluate in vitro bone marrow derived dendritic cell (BM-DC) maturation and T cell proliferation induced by B. subtilis-Cap. Orally inoculated piglets were used for in vivo experiments; ELISA and western blotting were used to evaluate B. subtilis-Cap induced PCV2-specific IgA and IgG levels, as well as the secretion of cytokines and the expression of Toll-like receptor 2 (TLR2) and Toll-like receptor 9 (TLR9). RESULTS We evaluated the immune response to B. subtilis-Cap in vitro using mouse BM-DCs and in vivo using neonatal piglets orally inoculated with B. subtilis-Cap. Our results showed that the recombinant B. subtilis-Cap activated BM-DCs, significantly increased co-stimulatory molecules (CD40 and CD80) and major histocompatibility complex II, and induced allogenic T cells proliferation. Piglets immunized with B. subtilis-Cap had elevated levels of PCV2-specific IgA in the mucosal tissues of the digestive and respiratory tract, and PCV2-specific IgG in serum (P < 0.05 or P < 0.01). Ileal immunocompetent cells, such as the IgA-secreting cells (P < 0.01), intestinal intraepithelial lymphocytes (IELs) (P < 0.01), CD3+ T lymphocytes (P < 0.01) and CD4+ T lymphocytes (P < 0.01) increased significantly in the B. subtilis-Cap immunized piglets. Additionally, B. subtilis-Cap inoculation resulted in increased the expression of TLR2 and TLR9 (P < 0.01), and induced the secretion of cytokines IL-1β, IL-6, interferon-γ, and β-defensin 2 (P < 0.01). CONCLUSIONS We constructed a prototype PCV2 vaccine that can be administered orally and elicits a more robust humoral and cellular immunity than inactivated PCV2. B. subtilis-Cap is a promising vaccine candidate that is safe, convenient, and inexpensive. Further in vivo research is needed to determine its full range of efficacy in pigs.
Collapse
Affiliation(s)
- Shuai Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Chunxiao Mou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Yanan Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - En Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| |
Collapse
|
25
|
Zhao X, Xu J, Tan M, Zhen J, Shu W, Yang S, Ma Y, Zheng H, Song H. High copy number and highly stable Escherichia coli-Bacillus subtilis shuttle plasmids based on pWB980. Microb Cell Fact 2020; 19:25. [PMID: 32028973 PMCID: PMC7006159 DOI: 10.1186/s12934-020-1296-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background pWB980 derived from pUB110 is a promising expression vector in Bacillus for its high copy number and high stability. However, the low transformation rate of recombinant plasmids to the wild cells limited the application of it. On the basis of pWB980, constructing an E. coli–B. subtilis shuttle plasmid could facilitate the transformation rate to Bacillus cells. Because the insertion site for E. coli replication origin sequence (ori) is not unique in pWB980, in order to investigate the best insertion site, eight shuttle plasmids (pUC980-1 ~ pUC980-8) containing all possible insertion sites and directions were constructed. Results The results showed that all the selected insertion sites could be used to construct shuttle plasmid but some sites required a specific direction. And different insertion sites led to different properties of the shuttle plasmids. The best shuttle plasmids pUC980-1 and pUC980-2, which showed copies more than 450 per cell and segregational stabilities up to 98%, were selected for heterologous expressions of an alkaline pectate lyase gene pelN, an alkaline protease spro1 and a pullulanase gene pulA11, respectively. The highest extracellular activities of PelN, Spro1 and PulA11 were up to 5200 U/mL, 21,537 U/mL and 504 U/mL correspondingly after 54 h, 60 h and 48 h fermentation in a 10 L fermentor. Notably, PelN and Spro1 showed remarkably higher yields in Bacillus than previous reports. Conclusion The optimum ori insertion site was the upstream region of BA3-1 in pWB980 which resulted in shuttle plasmids with higher copy numbers and higher stabilities. The novel shuttle plasmids pUC980-1 and pUC980-2 will be promising expression vectors in B. subtilis. Moreover, the ori insertion mechanism revealed in this work could provide theoretical guidance for further studies of pWB980 and constructions of other shuttle plasmids.
Collapse
Affiliation(s)
- XingYa Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - JianYong Xu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ming Tan
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Zhen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - WenJu Shu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - ShiBin Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - YanHe Ma
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - HongChen Zheng
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Hui Song
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
26
|
Sun W, Wu Y, Ding W, Wang L, Wu L, Lin L, Che Z, Zhu L, Liu Y, Chen X. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis. Bioprocess Biosyst Eng 2019; 43:701-710. [PMID: 31844973 DOI: 10.1007/s00449-019-02268-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over traditional methods. However, beefy meaty peptide (BMP), the focus of umami peptides, has neither been concerned in its safe expression nor its overproduction in fermenter. In this study, multi-copy BMP (8BMP) was successfully auto-inducibly expressed and efficiently produced in Bacillus subtilis 168. First, 8BMP was successfully auto-inducibly expressed with srfA promoter in B. subtilis 168. Further, the efficient production of 8BMP was researched in a 5-L fermenter: the fermentation optimized by Pontryagin's maximum principle obtained the highest 8BMP yield (3.16 g/L), which was 1.2 times and 1.8 times than that of two-stage feeding cultivation (2.67 g/L) and constant-rate feeding cultivation (1.75 g/L), respectively. Overall, the auto-inducible expression of 8BMP in B. subtilis and fermentation with Pontryagin's maximum principle are conductive for overproduction of BMP and other peptides.
Collapse
Affiliation(s)
- Weifeng Sun
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China.
| | - Yuanming Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Wenwu Ding
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Li Wang
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lunjie Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lu Lin
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Zhenming Che
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, Anhui, 241000, China
| | - Yi Liu
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| | - Xiaohua Chen
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| |
Collapse
|
27
|
Le VD, Phan TTP, Nguyen TM, Brunsveld L, Schumann W, Nguyen HD. Using the IPTG-Inducible Pgrac212 Promoter for Overexpression of Human Rhinovirus 3C Protease Fusions in the Cytoplasm of Bacillus subtilis Cells. Curr Microbiol 2019; 76:1477-1486. [PMID: 31612259 DOI: 10.1007/s00284-019-01783-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
Expression and secretion of recombinant proteins in the endotoxin-free bacterium, Bacillus subtilis, has been thoroughly studied, but overexpression in the cytoplasm has been limited to only a few proteins. Here, we used the robust IPTG-inducible promoter, Pgrac212, to overexpress human rhinovirus 3C protease (HRV3C) in the cytoplasm of B. subtilis cells. A novel solubility tag, the N-terminal domain of the lysS gene of B. subtilis coding for a lysyl-tRNA synthetase was placed at the N terminus with a cleavage site for the endoprotease HRV3C, followed by His-HRV3C or His-GST-HRV3C. The recombinant protease was purified by using a Ni-NTA column. In this study, the His-HRV3C and His-GST-HRV3C proteases were overexpressed in the cytoplasm of B. subtilis at 11% and 16% of the total cellular proteins, respectively. The specific protease activities were 8065 U/mg for His-HRV3C and 3623 U/mg for His-GST-HRV3C. The purified enzymes were used to cleave two different substrates followed by purification of the two different protein targets, the green fluorescent protein and the beta-galactosidase. In conclusion, the combination of an inducible promoter Pgrac212 and a solubility tag allowed the overexpression of the HRV3C protease in the cytoplasm of B. subtilis. The resulting fusion protein was purified using a nickel column and was active in cleaving target proteins to remove the fusion tags. This study offers an effective method for producing recombinant proteins in the cytoplasm of endotoxin-free bacteria.
Collapse
Affiliation(s)
- Vuong Duong Le
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Laboratory of Molecular Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Tri Minh Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Str., Binh Thanh Dist., Hochiminh, Vietnam
| | - Luc Brunsveld
- Laboratory of Chemical Biology & Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
- Department of Microbiology, University of Science-VNUHCM, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
| |
Collapse
|
28
|
Liu Y, Shi C, Li D, Chen X, Li J, Zhang Y, Yuan H, Li Y, Lu F. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Int J Biol Macromol 2019; 138:903-911. [DOI: 10.1016/j.ijbiomac.2019.07.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
|
29
|
Lim H, Choi SK. Programmed gRNA Removal System for CRISPR-Cas9-Mediated Multi-Round Genome Editing in Bacillus subtilis. Front Microbiol 2019; 10:1140. [PMID: 31164882 PMCID: PMC6536666 DOI: 10.3389/fmicb.2019.01140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 01/25/2023] Open
Abstract
CRISPR/Cas9 has become a simple and powerful genome editing tool for many organisms. However, multi-round genome editing should replace single-guide RNA (sgRNA) every round, which is laborious and time-consuming. Here, we have developed a multi-round genome editing system in which genome editing and the programmed removal of the sgRNA have sequentially occurred in a growth-dependent manner in Bacillus subtilis. The system contains two plasmids, one containing a cas9 gene and the other containing two sgRNAs and a donor DNA for homology directed repair (HDR). The two sgRNAs are chromosome-targeting (sgRNAct) and self-targeting (sgRNAst) under the control of a constitutive promoter and sporulation-specific promoter, respectively. In the growth phase, the sgRNAct is transcribed and complexed with the Cas9 to edit the chromosomal target, while the sgRNAst is transcribed in the sporulation phase and complexed with the Cas9 to attack its own plasmid. Therefore, the system automatically makes the cell ready for next-round genome editing during cultivation. The system was approved through the sequential deletion of eight extracellular protease genes in the B. subtilis, suggesting that it can be used for versatile applications in multi-round genome editing.
Collapse
Affiliation(s)
- Hayeon Lim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
30
|
Tagliavia M, Nicosia A. Advanced Strategies for Food-Grade Protein Production: A New E. coli/Lactic Acid Bacteria Shuttle Vector for Improved Cloning and Food-Grade Expression. Microorganisms 2019; 7:microorganisms7050116. [PMID: 31035573 PMCID: PMC6560424 DOI: 10.3390/microorganisms7050116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Food-grade production of recombinant proteins in Gram-positive bacteria, especially in LAB (i.e., Lactococcus, Lactobacillus, and Streptococcus), is of great interest in the areas of recombinant enzyme production, industrial food fermentation, gene and metabolic engineering, as well as antigen delivery for oral vaccination. Food-grade expression relies on hosts generally considered as safe organisms and on clone selection not dependent on antibiotic markers, which limit the overall DNA manipulation workflow, as it can be carried out only in the expression host and not in E. coli. Moreover, many commercial expression vectors lack useful elements for protein purification. We constructed a “shuttle” vector containing a removable selective marker, which allows feasible cloning steps in E. coli and subsequent protein expression in LAB. In fact, the cassette can be easily excised from the selected recombinant plasmid, and the resulting marker-free vector transformed into the final LAB host. Further useful elements, as improved MCS, 6xHis-Tag, and thrombin cleavage site sequences were introduced. The resulting vector allows easy cloning in E. coli, can be quickly converted in a food-grade expression vector and harbors additional elements for improved recombinant protein purification. Overall, such features make the new vector an improved tool for food-grade expression.
Collapse
Affiliation(s)
- Marcello Tagliavia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| |
Collapse
|
31
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
32
|
Heinrich J, Drewniok C, Neugebauer E, Kellner H, Wiegert T. The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis. Microb Cell Fact 2019; 18:31. [PMID: 30732606 PMCID: PMC6366066 DOI: 10.1186/s12934-019-1078-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Background Heterologous gene expression is well established for various prokaryotic model systems. However, low yield, incorrect folding and instability still impede the production of soluble, bioactive proteins. To improve protein production with the Gram-positive host Bacillus subtilis, a secretory expression system was designed that enhances translocation, folding and stability of heterologous proteins, and simplifies purification. Based on the theta-replication plasmid pHT01, a B. subtilis secretory expression vector was constructed that encodes a fusion protein consisting of a signal peptide and a StrepII-tag linked to a SUMO-tag serving as a folding catalyst. The gene of a protein of interest can be translationally fused to the SUMO cassette and an additional 6xHis-tag encoding region. In order to maximize secretory expression of the construct by fitting the signal peptide to the StrepII-SUMO part of the fusion protein, a B. subtilis signal-peptide library was screened with the Escherichia coli alkaline phosphatase PhoA as a reporter. Results The YoaW signal peptide-encoding region (SPyoaW) was identified with highest secretory expression capacity in context with the StrepII-SUMO-tag fusion in a B. subtilis eightfold extracellular protease deletion strain. PhoA activity and fusion protein production was elevated by a factor of approximately five when compared to an α-amylase (AmyQ) signal peptide construct. Replacement of PhoA with a single-chain variable fragment antibody specific for GFP or the B. amyloliquefaciens RNase barnase, respectively, resulted in a similar enhancement of secretory expression, demonstrating universality of the YoaW signal peptide-StrepII-SUMO encoding cassette for secretory expression in B. subtilis. Optimisation of codon usage and culture conditions further increased GFP-specific scFv fusion-protein production, and a simple affinity purification strategy from culture supernatant with removal of the StrepII-SUMO-tag by SenP-processing yielded 4 mg of pure, soluble and active GFP-specific scFv from 1 l of culture under standard laboratory conditions. Conclusions The new expression system employing a YoaW signal peptide-StrepII-SUMO fusion will simplify secretory protein production and purification with B. subtilis. It can obviate the need for time consuming individual signal-peptide fitting to maximize yield for many different heterologous proteins of interest. Electronic supplementary material The online version of this article (10.1186/s12934-019-1078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Heinrich
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Chris Drewniok
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Eva Neugebauer
- EUROIMMUN AG, Im Kreppel 1, 02747, Herrnhut/Rennersdorf, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technical University of Dresden, Markt 23, 02763, Zittau, Germany
| | - Thomas Wiegert
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany.
| |
Collapse
|
33
|
Li L, Qu W, Jin M, Di W, Zeng R. Extracellular expression of agarase rAgaM1 in Bacillus subtilis and its ability for neoagaro-oligosaccharide production. J Basic Microbiol 2019; 59:359-367. [PMID: 30672599 DOI: 10.1002/jobm.201800442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/11/2022]
Abstract
An agarase gene (agaM1) was cloned, expressed and characterized by using Escherichia coli as host strain, revealing the outstanding properties of recombinant AgaM1 (rAgaM1) in agarose degradation and neoagaro-oligosaccharides (NAs) production in our previous work. In current study, agaM1 was extracellularly expressed in Bacillus subtilis, and we aim to assess the ability of the supernatant of recombinant B. subtilis fermentation broth containing rAgaM1 to degrade agarose without protein purification, which would save the cost of purification and avoid the activity loss during purification. The pH and temperature optima for the supernatant were 7.0 and 50 °C, respectively. The supernatant containing rAgaM1 has outstanding stability against 40 °C and 50 °C. Besides, we detailedly studied the possible influence factors of rAgaM1 expression in the supernatant, including pH, temperature, isopropyl β-D-thiogalactoside (IPTG) concentration, initial optical density at a wavelength of 600 nm (OD600 ), and induction time, and the optimum conditions for rAgaM1 expression by B. subtilis were confirmed. Moreover, the supernatant was able to produce NAs by using the Gracilaria lemaneiformis, whose cells were broken by autoclaving, as substrate, and a total of 1.41 µmol ml-1 of NA, including neoagarotetraose and neoagarohexaose, was produced after degradation for 48 h. This ability could save the cost of substrates in NA production, although the method requires a further study. Our results reveal that the NAs with great potential in food and pharmaceutical industries could be inexpensive to make by the supernatant containing rAgaM1 of B. subtilis fermentation broth in the foreseeable future.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, China
| | - Wu Qu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, China.,School of Life Sciences, Xiamen University, Xiamen, China
| | - Min Jin
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, China
| | - Wenjie Di
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, China
| | - Runying Zeng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen, China.,Key Laboratory of Marine Genetic Resources, Fujian Province, Xiamen, China
| |
Collapse
|
34
|
Trung NT, Hung NM, Thuan NH, Canh NX, Schweder T, Jürgen B. An auto-inducible phosphate-controlled expression system of Bacillus licheniformis. BMC Biotechnol 2019; 19:3. [PMID: 30626366 PMCID: PMC6327384 DOI: 10.1186/s12896-018-0490-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A promoter that drives high-level, long-term expression of the target gene under substrate limited growth conditions in the absence of an artificial inducer would facilitate the efficient production of heterologous proteins at low cost. A novel phosphate-regulated expression system was constructed using the promoter of the phytase encoding gene phyL from Bacillus licheniformis for the overexpression of proteins in this industrially relevant host. RESULTS It is shown that the phyL promoter enables a strong overexpression of the heterologous genes amyE and xynA in B. licheniformis when cells were subjected to phosphate limitation. Whether B. licheniformis can use phytate as an alternative phosphate source and how this substrate influences the PphyL controlled gene expression under growth conditions with limited inorganic phosphate concentrations were also investigated. It is shown that B. licheniformis cells are able to use sodium phytate as alternative phosphate source. The addition of small amounts of sodium phytate (≤ 5 mM) to the growth medium resulted in a strong induction and overexpression of both model genes in B. licheniformis cells under phosphate limited growth conditions. CONCLUSIONS The PphyL controlled expression of the investigated heterologous genes in B. licheniformis is strongly auto-induced under phosphate limited conditions. The proposed PphyL expression system enables an overexpression of target genes in B. licheniformis under growth conditions, which can be easily performed in a fed-batch fermentation process.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Nguyen Minh Hung
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Britta Jürgen
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.
| |
Collapse
|
35
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
36
|
|
37
|
Kumar N, Pandey R, Prabhu AA, Venkata Dasu V. Genetic and substrate-level modulation of Bacillus subtilis physiology for enhanced extracellular human interferon gamma production. Prep Biochem Biotechnol 2018; 48:391-401. [PMID: 29688129 DOI: 10.1080/10826068.2018.1446157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human interferon-gamma (hIFNG) production is limited by various gene-level bottlenecks including translation, protein folding, and secretion which depends upon the physiological state of the organism. In this study gene-level and substrate-level modulations have been used to control Bacillus subtilis physiology for >15 fold extracellular soluble hIFNG production. Two variants of the native human interferon-gamma gene (hifng) were designed and synthesized, namely, cohifnghis and cohifng having codon adaptation index 25.33 and 26.89% higher than the native gene, respectively. BScoIFNG and BScoIFNGhis with ΔG of -100.0 and -113.7 kcal mol-1 resulted in 30 and 6.5% higher hIFNG compared to the native gene in complex medium. BScoIFNG produced 1.53 fold higher hIFNG using glucose-based defined medium as compared to the complex medium by modulating the physiological parameter growth rate from 0.35 to 0.26 hr-1. Further modulatory effect of various phosphotransferase transport system (PTS) and no-PTS sugars, sugar alcohols, and organic acids was quantified on the physiology of B. subtilis WB800N for extracellular hIFNG production. Sorbitol and glycerol emerged as the best hIFNG producers with lowest growth and substrate consumption rates. BScoIFNG produced maximum 3.15 mg L-1 hIFNG at 50 g L-1 glycerol with highest hIFNG yield (Yp/x = 0.136) and lowest substrate uptake rate (qs = 0.26).
Collapse
Affiliation(s)
- Nitin Kumar
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Rajat Pandey
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Ashish Anand Prabhu
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Veeranki Venkata Dasu
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| |
Collapse
|
38
|
Heterologous signal peptides-directing secretion of Streptomyces mobaraensis transglutaminase by Bacillus subtilis. Appl Microbiol Biotechnol 2018; 102:5533-5543. [PMID: 29691630 DOI: 10.1007/s00253-018-9000-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis has been widely used for crosslinking proteins in order to acquire products with improved properties. To improve the yield and enable a facile and efficient purification process, recombinant vectors, harboring various heterologous signal peptide-encoding fragments fused to the mtg gene, were constructed in Escherichia coli and then expressed in Bacillus subtilis. Signal peptides of both WapA and AmyQ (SP wapA and SP amyQ ) were able to direct the secretion of pre-pro-MTG into the medium. A constitutive promoter (P hpaII ) was used for the expression of SP wapA -mtg, while an inducible promoter (P lac ) was used for SP amyQ -mtg. After purification from the supernatant of the culture by immobilized metal affinity chromatography and proteolysis by trypsin, 63.0 ± 0.6 mg/L mature MTG was released, demonstrated to have 29.6 ± 0.9 U/mg enzymatic activity and shown to crosslink soy protein properly. This is the first report on secretion of S. mobaraensis MTG from B. subtilis, with similar enzymatic activities and yields to that produced from Escherichia coli, but enabling a much easier purification process.
Collapse
|
39
|
Li L, Dong F, Lin L, He D, Chen J, Wei W, Wei D. Biochemical Characterization of a Novel Thermostable Type I Pullulanase Produced Recombinantly inBacillus subtilis. STARCH-STARKE 2018. [DOI: 10.1002/star.201700179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lingmeng Li
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Fengying Dong
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Lin Lin
- Shanghai University of Medicine and Health Sciences; Shanghai 200093 People's Republic of China
| | - Dannong He
- Research Laboratory for Functional Nanomaterial; National Engineering Research Center for Nanotechnology; Shanghai 200241 People's Republic of China
| | - Jingwen Chen
- Department of Pathology; Microbiology and Immunology; School of medicine; University of South Carolina; 6311 Garners Ferry Rd Columbia SC 29209 USA
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
40
|
Heterologous Secretory Expression and Characterization of Dimerized Bone Morphogenetic Protein 2 in Bacillus subtilis. BIOMED RESEARCH INTERNATIONAL 2018; 2017:9350537. [PMID: 29333457 PMCID: PMC5733156 DOI: 10.1155/2017/9350537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022]
Abstract
Recombinant human Bone Morphogenetic Protein 2 (rhBMP2) has important applications in the spine fusion and ortho/maxillofacial surgeries. Here we first report the secretory expression of biological active dimerized rhBMP2 from Bacillus subtilis system. The mature domain of BMP2 gene was amplified from pTz57R/BMP2 plasmid. By using pHT43 expression vector two constructs, pHT43-BMP2-M (single BMP2 gene) and pHT43-BMP2-D (two BMP2 genes coupled with a linker to produce a dimer), were designed. After primary cloning (DH5α strain) and sequence analysis, constructs were transformed into Bacillus subtilis for secretory expression. Expression conditions like media (2xYT) and temperature (30°C) were optimized. Maximum 35% and 25% secretory expression of monomer (~13 kDa) and dimer (~25 kDa), respectively, were observed on SDS-PAGE in SCK6 strain. The expression and dimeric nature of rhBMP2 were confirmed by western blot and native PAGE analysis. For rhBMP2 purification, 200 ml culture supernatant was freeze dried to 10 ml and dialyzed (Tris-Cl, pH 8.5) and Fast Protein Liquid Chromatography (6 ml, Resource Q column) was performed. The rhBMP2 monomer and dimer were eluted at 0.9 M and 0.6 M NaCl, respectively. The alkaline phosphatase assay of rhBMP2 (0, 50, 100, 200, and 400 ng/ml) was analyzed on C2C12 cells and maximum 200 ng/ml activity was observed in dose dependent manner.
Collapse
|
41
|
Ling M, Liu Y, Li J, Shin HD, Chen J, Du G, Liu L. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. BIORESOURCE TECHNOLOGY 2017; 245:1093-1102. [PMID: 28946392 DOI: 10.1016/j.biortech.2017.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
In previous work, a recombinant Bacillus subtilis strain was successfully constructed for microbial production of N-acetylglucosamine (GlcNAc). In this study, GlcNAc titer was further improved by combinatorial promoter engineering of key genes glck encoding glucokinase and pgi encoding phosphoglucoisomerase. First, three promoters including constitutive promoter P43, xylose inducible promoter PxylA, and isopropyl-β-d-thiogalactoside inducible Pgrac were used to replace the native promoters of glcK and pgi, yielding 12 recombinant strains. It was found that when glcK and pgi were both under the control of promoter PxylA, the highest GlcNAc titer in 3-L fed-batch bioreactor reached 35.12g/L, which was 52.6% higher than that of the initial host. Next, the transcriptional levels of the related genes in glycolysis, GlcNAc synthesis pathway, peptidoglycan synthesis pathway, and pentose phosphate pathway were investigated by quantitative real-time PCR analysis. Fine-tuning upper GlcNAc synthesis pathway by combinatorial promoter substitution significantly enhanced GlcNAc production in engineered B. subtilis.
Collapse
Affiliation(s)
- Meixi Ling
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Chen L, Holmes M, Schaefer E, Mulchandani A, Ge X. Highly active spore biocatalyst by self-assembly of co-expressed anchoring scaffoldin and multimeric enzyme. Biotechnol Bioeng 2017; 115:557-564. [PMID: 29131302 DOI: 10.1002/bit.26492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/07/2017] [Accepted: 11/06/2017] [Indexed: 01/16/2023]
Abstract
We report a spore-based biocatalysis platform capable of producing and self-assembling active multimeric enzymes on a spore surface with a high loading density. This was achieved by co-expressing both a spore surface-anchoring scaffoldin protein containing multiple cohesin domains and a dockerin-tagged enzyme of interest in the mother cell compartment during Bacillus subtilis sporulation. Using this method, tetrameric β-galactosidase was successfully displayed on the spore surface with a loading density of 1.4 × 104 active enzymes per spore particle. The resulting spore biocatalysts exhibited high conversion rates of transgalactosylation in water/organic emulsions. With easy manufacture, enhanced thermostability, excellent reusability, and long-term storage stability at ambient temperature, this approach holds a great potential in a wide range of biocatalysis applications especially involving organic phases.
Collapse
Affiliation(s)
- Long Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | - Megan Holmes
- Department of Bioengineering, University of California, Riverside, California
| | - Elise Schaefer
- Department of Bioengineering, University of California, Riverside, California
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| |
Collapse
|
43
|
Han L, Suo F, Jiang C, Gu J, Li N, Zhang N, Cui W, Zhou Z. Fabrication and characterization of a robust and strong bacterial promoter from a semi-rationally engineered promoter library in Bacillus subtilis. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
45
|
Tran DTM, Phan TTP, Huynh TK, Dang NTK, Huynh PTK, Nguyen TM, Truong TTT, Tran TL, Schumann W, Nguyen HD. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Microb Cell Fact 2017; 16:130. [PMID: 28743271 PMCID: PMC5526301 DOI: 10.1186/s12934-017-0747-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/20/2017] [Indexed: 11/30/2022] Open
Abstract
Background Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. Results In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of the inducible vector using the same promoter. Finally, we used gfp as a reporter gene in combination with the two promoters Pgrac01 and Pgrac100 to test the new vector types. The GFP expression levels could be repressed at least 1.5 times for the Pgrac01-gfp+ inducer-free construct in E. coli. The inducer-free constructs Pgrac01-gfp+ and Pgrac100-gfp+ allowed GFP expression at high levels from 23 × 104 to 32 × 104 RFU units and 9–13% of total intracellular proteins. We could reconfirm the two major advantages of the new inducer-free expression plasmids: (1) Strong repression of the target gene expression in the E. coli cloning strain, and (2) production of the target protein at high levels in B. subtilis in the absence of the inducer. Conclusions We propose a general strategy to generate inducer-free expression vector by using IPTG-inducible vectors, and more specifically we developed inducer-free expression plasmids using IPTG-inducible promoters in the absence of the LacI repressor. These plasmids could be an excellent choice for high-level production of recombinant proteins in B. subtilis without the addition of inducer and at the same time maintaining a low basal level of the recombinant proteins in E. coli. The repression of the recombinant gene expression would facilitate cloning of genes that potentially inhibit the growth of E. coli cloning strains. The inducer-free expression plasmids will be extended versions of the current available IPTG-inducible expression vectors for B. subtilis, in which all these vectors use the same cognate promoters. These inducer-free and previously developed IPTG-inducible expression plasmids will be a useful cassette to study gene expression at a small scale up to a larger scale up for the production of recombinant proteins.
Collapse
Affiliation(s)
- Dinh Thi Minh Tran
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.,Department of Biology, Hochiminh City University of Education, 280 An Duong Vuong, Disct. 5, Hochiminh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.,Laboratory of Molecular Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Thanh Kieu Huynh
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Ngan Thi Kim Dang
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Phuong Thi Kim Huynh
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Tri Minh Nguyen
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Thuoc Linh Tran
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.,Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam. .,Department of Microbiology, VNUHCMC-University of Science, 227 Nguyen Van Cu Dist. 5, Hochiminh, Vietnam.
| |
Collapse
|
46
|
Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microb Cell Fact 2017; 16:88. [PMID: 28532451 PMCID: PMC5440981 DOI: 10.1186/s12934-017-0704-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. Results In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. Conclusions We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher γ-PGA production than the NK-1 strain. This work proposed a new strategy for improving the target product in microbial cell factories. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0704-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Feng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.,Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yufen Quan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yanyan Gu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.,Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Fenghong Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaozhong Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Haosheng Shen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Weixia Gao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Cunjiang Song
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
47
|
Phan T, Huynh P, Truong T, Nguyen H. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis. Methods Mol Biol 2017; 1586:325-334. [PMID: 28470615 DOI: 10.1007/978-1-4939-6887-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.
Collapse
Affiliation(s)
- Trang Phan
- VNUHCM-University of Science, 227 Nguyen Van Cu, District 5, Hochiminh City, Vietnam
| | - Phuong Huynh
- VNUHCM-University of Science, 227 Nguyen Van Cu, District 5, Hochiminh City, Vietnam
| | - Tuom Truong
- VNUHCM-University of Science, 227 Nguyen Van Cu, District 5, Hochiminh City, Vietnam
| | - Hoang Nguyen
- VNUHCM-University of Science, 227 Nguyen Van Cu, District 5, Hochiminh City, Vietnam.
| |
Collapse
|
48
|
Song Y, Fu G, Dong H, Li J, Du Y, Zhang D. High-Efficiency Secretion of β-Mannanase in Bacillus subtilis through Protein Synthesis and Secretion Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2540-2548. [PMID: 28262014 DOI: 10.1021/acs.jafc.6b05528] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The manno endo-1,4-mannosidase (β-mannanase, EC. 3.2.1.78) catalyzes the random hydrolysis of internal (1 → 4)-β-mannosidic linkages in the mannan polymers. A codon optimized β-mannanase gene from Bacillus licheniformis DSM13 was expressed in Bacillus subtilis. When four Sec-dependent and two Tat-dependent signal peptide sequences cloned from B. subtilis were placed upstream of the target gene, the highest activity of β-mannanase was observed using SPlipA as a signal peptide. Then a 1.25-fold activity of β-mannanase was obtained when another copy of groESL operon was inserted into the genome of host strain. Finally, five different promoters were separately used to enhance the synthesis of the target protein. The results showed that promoter Pmglv, a modified maltose-inducible promoter, significantly elevated the production of β-mannanase. After 72 h of flask fermentation, the enzyme activity of β-mannanase in the supernatant when using locust bean gum as substrate reached 2207 U/mL. This work provided a promising β-mannanase production strain in industrial application.
Collapse
Affiliation(s)
- Yafeng Song
- Tianjin Institute of Industrial Biotechnology and ‡Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, P. R. China
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9713 AV, Groningen, The Netherlands
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology and ‡Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, P. R. China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology and ‡Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, P. R. China
| | - Jianjun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology , Beijing 100190, China
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology , Beijing 100190, China
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology and ‡Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, P. R. China
| |
Collapse
|
49
|
Chen J, Zhu Y, Fu G, Song Y, Jin Z, Sun Y, Zhang D. High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. ACTA ACUST UNITED AC 2016; 43:1577-1591. [DOI: 10.1007/s10295-016-1819-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/30/2016] [Indexed: 01/22/2023]
Abstract
Abstract
d-Psicose 3-epimerase (DPEase) converts d-fructose into d-psicose which exists in nature in limited quantities and has key physiological functions. In this study, RDPE (DPEase from Ruminococcus sp. 5_1_39BFAA) was successfully constitutively expressed in Bacillus subtilis, which is the first report of its kind. Three sugar-inducible promoters were compared, and the xylose-inducible promoter PxylA was proved to be the most efficient for RDPE production. Based on the analysis of the inducer concentration and RDPE expression, we surmised that there was an extremely close correlation between the intracellular RDPE expression and xylose accumulation level. Subsequently, after the metabolic pathway of xylose was blocked by deletion of xylAB, the intra- and extra-cellular RDPE expression was significantly enhanced. Meanwhile, the optimal xylose induction concentration was reduced from 4.0 to 0.5 %. Eventually, the secretion level of RDPE reached 95 U/mL and 2.6 g/L in a 7.5-L fermentor with the fed-batch fermentation, which is the highest production of DPEase by a microbe to date.
Collapse
Affiliation(s)
- Jingqi Chen
- grid.458513.e 0000000417633963 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
| | - Yueming Zhu
- grid.458513.e 0000000417633963 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- National Engineering Laboratory for Industrial Enzymes 300308 Tianjin People’s Republic of China
| | - Gang Fu
- grid.458513.e 0000000417633963 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- National Engineering Laboratory for Industrial Enzymes 300308 Tianjin People’s Republic of China
| | - Yafeng Song
- grid.458513.e 0000000417633963 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
| | - Zhaoxia Jin
- grid.440692.d School of Biological Engineering Dalian Polytechnic University 116034 Dalian People’s Republic of China
| | - Yuanxia Sun
- grid.458513.e 0000000417633963 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- National Engineering Laboratory for Industrial Enzymes 300308 Tianjin People’s Republic of China
| | - Dawei Zhang
- grid.458513.e 0000000417633963 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin People’s Republic of China
- National Engineering Laboratory for Industrial Enzymes 300308 Tianjin People’s Republic of China
| |
Collapse
|
50
|
Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis. Appl Environ Microbiol 2016; 82:4876-95. [PMID: 27260361 PMCID: PMC4968543 DOI: 10.1128/aem.01159-16] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The establishment of a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system for strain construction in Bacillus subtilis is essential for its progression toward industrial utility. Here we outline the development of a CRISPR-Cas9 tool kit for comprehensive genetic engineering in B. subtilis In addition to site-specific mutation and gene insertion, our approach enables continuous genome editing and multiplexing and is extended to CRISPR interference (CRISPRi) for transcriptional modulation. Our tool kit employs chromosomal expression of Cas9 and chromosomal transcription of guide RNAs (gRNAs) using a gRNA transcription cassette and counterselectable gRNA delivery vectors. Our design obviates the need for multicopy plasmids, which can be unstable and impede cell viability. Efficiencies of up to 100% and 85% were obtained for single and double gene mutations, respectively. Also, a 2.9-kb hyaluronic acid (HA) biosynthetic operon was chromosomally inserted with an efficiency of 69%. Furthermore, repression of a heterologous reporter gene was achieved, demonstrating the versatility of the tool kit. The performance of our tool kit is comparable with those of systems developed for Escherichia coli and Saccharomyces cerevisiae, which rely on replicating vectors to implement CRISPR-Cas9 machinery. IMPORTANCE In this paper, as the first approach, we report implementation of the CRISPR-Cas9 system in Bacillus subtilis, which is recognized as a valuable host system for biomanufacturing. The study enables comprehensive engineering of B. subtilis strains with virtually any desired genotypes/phenotypes and biochemical properties for extensive industrial application.
Collapse
Affiliation(s)
- Adam W Westbrook
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|