1
|
β-NAD as a building block in natural product biosynthesis. Nature 2021; 600:754-758. [PMID: 34880494 DOI: 10.1038/s41586-021-04214-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023]
Abstract
ABSTRATCT β-Nicotinamide adenine dinucleotide (β-NAD) is a pivotal metabolite for all living organisms and functions as a diffusible electron acceptor and carrier in the catabolic arms of metabolism1,2. Furthermore, β-NAD is involved in diverse epigenetic, immunological and stress-associated processes, where it is known to be sacrificially utilized as an ADP-ribosyl donor for protein and DNA modifications, or the generation of cell-signalling molecules3,4. Here we report the function of β-NAD in secondary metabolite biosynthetic pathways, in which the nicotinamide dinucleotide framework is heavily decorated and serves as a building block for the assembly of a novel class of natural products. The gatekeeping enzyme of the discovered pathway (SbzP) catalyses a pyridoxal phosphate-dependent [3+2]-annulation reaction between β-NAD and S-adenosylmethionine, generating a 6-azatetrahydroindane scaffold. Members of this novel family of β-NAD-tailoring enzymes are widely distributed in the bacterial kingdom and are encoded in diverse biosynthetic gene clusters. The findings of this work set the stage for the discovery and exploitation of β-NAD-derived natural products.
Collapse
|
2
|
|
3
|
Saw WG, Wong CF, Dick T, Grüber G. Overexpression, purification, enzymatic and microscopic characterization of recombinant mycobacterial F-ATP synthase. Biochem Biophys Res Commun 2019; 522:374-380. [PMID: 31761325 DOI: 10.1016/j.bbrc.2019.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 01/16/2023]
Abstract
The F-ATP synthase is an essential enzyme in mycobacteria, including the pathogenic Mycobacterium tuberculosis. Several new compounds in the TB-drug pipeline target the F-ATP synthase. In light of the importance and pharmacological attractiveness of this novel antibiotic target, tools have to be developed to generate a recombinant mycobacterial F1FO ATP synthase to achieve atomic insight and mutants for mechanistic and regulatory understanding as well as structure-based drug design. Here, we report the first genetically engineered, purified and enzymatically active recombinant M. smegmatis F1FO ATP synthase. The projected 2D- and 3D structures of the recombinant enzyme derived from negatively stained electron micrographs are presented. Furthermore, the first 2D projections from cryo-electron images are revealed, paving the way for an atomic resolution structure determination.
Collapse
Affiliation(s)
- Wuan-Geok Saw
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Chui-Fann Wong
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
4
|
Bondoc JMG, Gutka HJ, Almutairi MM, Patwell R, Rutter MW, Wolf NM, Samudrala R, Mehboob S, Movahedzadeh F. Rv0100, a proposed acyl carrier protein in Mycobacterium tuberculosis: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 2019; 75:646-651. [PMID: 31584013 PMCID: PMC6777135 DOI: 10.1107/s2053230x19012652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/11/2019] [Indexed: 11/10/2022] Open
Abstract
Acyl carrier proteins (ACPs) are important components in fatty-acid biosynthesis in prokaryotes. Rv0100 is predicted to be an essential ACP in Mycobacterium tuberculosis, the pathogen that is the causative agent of tuberculosis, and therefore has the potential to be a novel antituberculosis drug target. Here, the successful cloning and purification of Rv0100 using Mycobacterium smegmatis as a host is reported. Crystals of the purified protein were obtained that diffracted to a resolution of 1.9 Å. Overall, this work lays the foundation for the future pursuit of drug discovery and development against this potentially novel drug target.
Collapse
Affiliation(s)
- Jasper Marc G. Bondoc
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Hiten J. Gutka
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
- Oncobiologics Inc., 7 Clarke Drive, Cranbury, NJ 08512, USA
| | - Mashal M. Almutairi
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
- Vaccines and Biologics Research Unit, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
- Department of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ryan Patwell
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Room 425, Chicago, IL 60612, USA
| | - Maxwell W. Rutter
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
- Hollingbery and Son Hops Inc., 302 North First Avenue, Yakima, WA 98907, USA
| | - Nina M. Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), University at Buffalo, 77 Goodell Street, Buffalo, NY 14203, USA
| | - Shahila Mehboob
- Neugenica LLC, 2242 West Harrison Street #201, Chicago, IL 60612, USA
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Drenth J, Trajkovic M, Fraaije MW. Chemoenzymatic Synthesis of an Unnatural Deazaflavin Cofactor That Can Fuel F420-Dependent Enzymes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01506] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jeroen Drenth
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
6
|
A revised biosynthetic pathway for the cofactor F 420 in prokaryotes. Nat Commun 2019; 10:1558. [PMID: 30952857 PMCID: PMC6450877 DOI: 10.1038/s41467-019-09534-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
Cofactor F420 plays critical roles in primary and secondary metabolism in a range of bacteria and archaea as a low-potential hydride transfer agent. It mediates a variety of important redox transformations involved in bacterial persistence, antibiotic biosynthesis, pro-drug activation and methanogenesis. However, the biosynthetic pathway for F420 has not been fully elucidated: neither the enzyme that generates the putative intermediate 2-phospho-l-lactate, nor the function of the FMN-binding C-terminal domain of the γ-glutamyl ligase (FbiB) in bacteria are known. Here we present the structure of the guanylyltransferase FbiD and show that, along with its archaeal homolog CofC, it accepts phosphoenolpyruvate, rather than 2-phospho-l-lactate, as the substrate, leading to the formation of the previously uncharacterized intermediate dehydro-F420-0. The C-terminal domain of FbiB then utilizes FMNH2 to reduce dehydro-F420-0, which produces mature F420 species when combined with the γ-glutamyl ligase activity of the N-terminal domain. These new insights have allowed the heterologous production of F420 from a recombinant F420 biosynthetic pathway in Escherichia coli. Cofactor F420 plays crucial roles in bacterial and archaeal metabolism, but its biosynthetic pathway is not fully understood. Here, the authors present the structure of one of the enzymes and provide experimental evidence for a substantial revision of the pathway, including the identification of a new intermediate.
Collapse
|
7
|
Oyugi MA, Bashiri G, Baker EN, Johnson-Winters K. Mechanistic insights into F 420-dependent glucose-6-phosphate dehydrogenase using isotope effects and substrate inhibition studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:387-395. [PMID: 28807886 DOI: 10.1016/j.bbapap.2017.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/24/2017] [Accepted: 08/03/2017] [Indexed: 01/24/2023]
Abstract
F420-dependent glucose-6-phosphate dehydrogenase (FGD) is involved in the committed step of the pentose phosphate pathway within mycobacteria, where it catalyzes the reaction between glucose-6-phosphate (G6P) and the F420 cofactor to yield 6-phosphogluconolactone and the reduced cofactor, F420H2. Here, we aim to probe the FGD reaction mechanism using dead-end inhibition experiments, as well as solvent and substrate deuterium isotope effects studies. The dead-end inhibition studies performed using citrate as the inhibitor revealed competitive and uncompetitive inhibition patterns for G6P and F420 respectively, thus suggesting a mechanism of ordered addition of substrates in which the F420 cofactor must first bind to FGD before G6P binding. The solvent deuterium isotope effects studies yielded normal solvent kinetic isotope effects (SKIE) on kcat and kcat/Km for both G6P and F420. The proton inventory data yielded a fractionation factor of 0.37, suggesting that the single proton responsible for the observed SKIE is likely donated by Glu109 and protonates the cofactor at position N1. The steady state substrate deuterium isotope effects studies using G6P and G6P-d1 yielded KIE of 1.1 for both kcat and kcat/Km, while the pre-steady state KIE on kobs was 1.4. Because the hydride transferred to C5 of F420 was the one targeted for isotopic substitution, these KIE values provide further evidence to support our previous findings that hydride transfer is likely not rate-limiting in the FGD reaction.
Collapse
Affiliation(s)
- Mercy A Oyugi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019-0065, United States
| | - Ghader Bashiri
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Edward N Baker
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019-0065, United States.
| |
Collapse
|
8
|
Discovery and characterization of an F 420-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2016; 101:2831-2842. [PMID: 27966048 PMCID: PMC5352752 DOI: 10.1007/s00253-016-8038-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 12/16/2022]
Abstract
Cofactor F420, a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F420-dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F420-dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F420 + glucose-6-phosphate → F420H2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F420 cofactor required for numerous F420H2-dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F420-dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F420-dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F420H2-dependent reductases in industry and bioremediation.
Collapse
|
9
|
Oyugi MA, Bashiri G, Baker EN, Johnson-Winters K. Investigating the Reaction Mechanism of F 420-Dependent Glucose-6-phosphate Dehydrogenase from Mycobacterium tuberculosis: Kinetic Analysis of the Wild-Type and Mutant Enzymes. Biochemistry 2016; 55:5566-5577. [PMID: 27603793 DOI: 10.1021/acs.biochem.6b00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
F420-dependent glucose-6-phosphate dehydrogenase (FGD) catalyzes the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, using F420 cofactor as the hydride transfer acceptor, within mycobacteria. A previous crystal structure of wild-type FGD led to a proposed mechanism suggesting that the active site residues His40, Trp44, and Glu109 could be involved in catalysis. We have characterized the wild-type FGD and five FGD variants (H40A, W44F, W44Y, W44A, and E109Q) by fluorescence binding assays and steady-state and pre-steady-state kinetic experiments. Compared to wild-type FGD, all the variants had lower binding affinities for F420, thus suggesting that Trp44, His40, and Glu109 aid in F420 binding. While all the variants had decreased catalytic efficiencies, FGD H40A and W44A were the least efficient, having lost ∼1000- and ∼2000-fold activity, respectively. This confirms a crucial catalytic role for His40 in the FGD reaction and suggests that aromaticity at residue 44 aids catalysis. To investigate the proposed roles of Glu109 and His40 in acid-base catalysis, the pH dependence of kinetic parameters has been determined for the E109Q and H40A mutants and compared to those of the wild-type enzyme. The log kcat-pH profile of wild-type FGD and E109Q revealed two ionizable residues in the enzyme-substrate complex, while H40A displayed only one ionization event. The FGD E109Q variant displayed pH-dependent kinetic cooperativity with respect to the F420 cofactor. The multiple-turnover pre-steady-state kinetics were biphasic for wild-type FGD, W44F, W44Y, and E109Q, while the H40A and W44A variants displayed only a single phase because of their reduced catalytic efficiency.
Collapse
Affiliation(s)
- Mercy A Oyugi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| | - Ghader Bashiri
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland , Auckland 1010, New Zealand
| | - Edward N Baker
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland , Auckland 1010, New Zealand
| | - Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Texas at Arlington , Arlington, Texas 76019-0065, United States
| |
Collapse
|
10
|
Boradia VM, Patil P, Agnihotri A, Kumar A, Rajwadi KK, Sahu A, Bhagath N, Sheokand N, Kumar M, Malhotra H, Patkar R, Hasan N, Raje M, Raje CI. Mycobacterium tuberculosis H37Ra: a surrogate for the expression of conserved, multimeric proteins of M.tb H37Rv. Microb Cell Fact 2016; 15:140. [PMID: 27514669 PMCID: PMC4982137 DOI: 10.1186/s12934-016-0537-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obtaining sufficient quantities of recombinant M.tb proteins using traditional approaches is often unsuccessful. Several enzymes of the glycolytic cycle are known to be multifunctional, however relatively few enzymes from M.tb H37Rv have been characterized in the context of their enzymatic and pleiotropic roles. One of the primary reasons is the difficulty in obtaining sufficient amounts of functionally active protein. RESULTS In the current study, using M.tb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) we demonstrate that expression in E. coli or M. smegmatis results in insolubility and improper subcellular localization. In addition, expression of such conserved multisubunit proteins poses the problem of heteromerization with host homologues. Importantly the expression host dramatically affected the yield and functionality of GAPDH in terms of both enzymatic activity and moonlighting function (transferrin binding). The applicability of this system was further confirmed using two additional enzymes i.e. M.tb Pyruvate kinase and Enolase. CONCLUSIONS Our studies establish that the attenuated strain M.tb H37Ra is a suitable host for the expression of highly hydrophobic, conserved, multimeric proteins of M.tb H37Rv. Significantly, this expression host overcomes the limitations of E. coli and M. smegmatis expression and yields recombinant protein that is qualitatively superior to that obtained by traditional methods. The current study highlights the fact that protein functionality (which is an an essential requirement for all in vitro assays and drug development) may be altered by the choice of expression host.
Collapse
Affiliation(s)
- Vishant Mahendra Boradia
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Pravinkumar Patil
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Anushri Agnihotri
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Ajay Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Kalpesh Kumar Rajwadi
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Ankit Sahu
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Naveen Bhagath
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Navdeep Sheokand
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036 India
| | - Manoj Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036 India
| | - Himanshu Malhotra
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036 India
| | - Rachita Patkar
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Navi Hasan
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
| | - Manoj Raje
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Sector 39 A, Chandigarh, 160036 India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education and Research (NIPER), Phase X, Sector 67, SAS Nagar, Punjab 160062 India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Phase X, SAS Nagar, Punjab 160062 India
| |
Collapse
|
11
|
Huang X, Hernick M. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis. Protein J 2016; 34:380-90. [PMID: 26420670 DOI: 10.1007/s10930-015-9632-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA, 24631, USA.
| |
Collapse
|
12
|
Bashiri G, Rehan AM, Sreebhavan S, Baker HM, Baker EN, Squire CJ. Elongation of the Poly-γ-glutamate Tail of F420 Requires Both Domains of the F420:γ-Glutamyl Ligase (FbiB) of Mycobacterium tuberculosis. J Biol Chem 2016; 291:6882-94. [PMID: 26861878 DOI: 10.1074/jbc.m115.689026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 01/21/2023] Open
Abstract
Cofactor F420is an electron carrier with a major role in the oxidoreductive reactions ofMycobacterium tuberculosis, the causative agent of tuberculosis. A γ-glutamyl ligase catalyzes the final steps of the F420biosynthesis pathway by successive additions ofl-glutamate residues to F420-0, producing a poly-γ-glutamate tail. The enzyme responsible for this reaction in archaea (CofE) comprises a single domain and produces F420-2 as the major species. The homologousM. tuberculosisenzyme, FbiB, is a two-domain protein and produces F420with predominantly 5-7l-glutamate residues in the poly-γ-glutamate tail. The N-terminal domain of FbiB is homologous to CofE with an annotated γ-glutamyl ligase activity, whereas the C-terminal domain has sequence similarity to an FMN-dependent family of nitroreductase enzymes. Here we demonstrate that full-length FbiB adds multiplel-glutamate residues to F420-0in vitroto produce F420-5 after 24 h; communication between the two domains is critical for full γ-glutamyl ligase activity. We also present crystal structures of the C-terminal domain of FbiB in apo-, F420-0-, and FMN-bound states, displaying distinct sites for F420-0 and FMN ligands that partially overlap. Finally, we discuss the features of a full-length structural model produced by small angle x-ray scattering and its implications for the role of N- and C-terminal domains in catalysis.
Collapse
Affiliation(s)
- Ghader Bashiri
- From the Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, and
| | - Aisyah M Rehan
- From the Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, and
| | - Sreevalsan Sreebhavan
- the Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Heather M Baker
- From the Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, and
| | - Edward N Baker
- From the Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, and
| | - Christopher J Squire
- From the Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, and
| |
Collapse
|
13
|
Ankisettypalli K, Cheng JJY, Baker EN, Bashiri G. PdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5'-phosphate oxidase family. FEBS Lett 2016; 590:453-60. [PMID: 26823273 DOI: 10.1002/1873-3468.12080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/08/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) biosynthesis is essential for the survival and virulence of Mycobacterium tuberculosis (Mtb). PLP functions as a cofactor for 58 putative PLP-binding proteins encoded by the Mtb genome and could also act as a potential antioxidant. De novo biosynthesis of PLP in Mtb takes place through the 'deoxyxylulose 5'-phosphate (DXP)-independent' pathway, whereas PdxH enzymes, possessing pyridoxine/pyridoxamine 5'-phosphate oxidase (PNPOx) activity, are involved in the PLP salvage pathway. In this study, we demonstrate that the annotated PdxH enzymes from various mycobacterial species are bona fide members of the classical PNPOx enzyme family, capable of producing PLP using both pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) substrates.
Collapse
Affiliation(s)
- Karthik Ankisettypalli
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Jasmin Jo-Yu Cheng
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Edward N Baker
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| | - Ghader Bashiri
- Structural Biology Laboratory and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, New Zealand
| |
Collapse
|
14
|
Andrews ESV, Arcus VL. The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb) 2015; 95:385-94. [PMID: 25999286 DOI: 10.1016/j.tube.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022]
Abstract
PhoH2 proteins are found in a diverse range of organisms that span the bacterial tree and little is known about this large protein family. PhoH2 proteins have two domains: An N-terminal PIN domain fused to a C-terminal PhoH domain. The genome of Mycobacterium tuberculosis encodes 48 PIN domains and 47 of these constitute the VapC components of the 47 VapBC toxin-antitoxins. The 48th member of the M. tuberculosis PIN domain array is found in the single PhoH2 protein encoded in the genome. All characterized PIN domain proteins are RNases and the PhoH domains are predicted ATPases. This fusion of a PIN domain with an ATPase reflects a much wider association between PIN domains and PhoH domains across many prokaryote genomes. Here, we examine PhoH2 proteins from M. tuberculosis, Mycobacterium smegmatis and a thermophilic homologue from Thermobispora bispora and we show that PhoH2 is a sequence-specific RNA helicase and RNAse. In addition, phoH2 from M. tuberculosis and M. smegmatis is part of a longer mRNA transcript which includes a small, unannotated open reading frame (ORF) upstream of the phoH2 gene. This small gene overlaps with the beginning of the phoH2 gene in a manner similar to the PIN domain toxin-antitoxin operons. We have annotated the upstream gene as phoAT and its putative promoter elements satisfy previously characterized consensus sequences at the -10 site. Conditional growth experiments carried out in M. smegmatis revealed a negative effect on growth by the expression of M. tuberculosis PhoH2 that was alleviated by co-expression of the PhoAT peptide. Thus in M. tuberculosis, PhoH2 represents a new variation on a type II PIN domain toxin-antitoxin systems such that the toxin-antitoxin is now coupled to an RNA helicase whose predicted biological function is to unwind and cleave RNA in a sequence specific manner.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Vickery L Arcus
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| |
Collapse
|
15
|
Mashalidis EH, Gittis AG, Tomczak A, Abell C, Barry CE, Garboczi DN. Molecular insights into the binding of coenzyme F420 to the conserved protein Rv1155 from Mycobacterium tuberculosis. Protein Sci 2015; 24:729-40. [PMID: 25644473 DOI: 10.1002/pro.2645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
Coenzyme F420 is a deazaflavin hydride carrier with a lower reduction potential than most flavins. In Mycobacterium tuberculosis (Mtb), F420 plays an important role in activating PA-824, an antituberculosis drug currently used in clinical trials. Although F420 is important to Mtb redox metabolism, little is known about the enzymes that bind F420 and the reactions that they catalyze. We have identified a novel F420 -binding protein, Rv1155, which is annotated in the Mtb genome sequence as a putative flavin mononucleotide (FMN)-binding protein. Using biophysical techniques, we have demonstrated that instead of binding FMN or other flavins, Rv1155 binds coenzyme F420 . The crystal structure of the complex of Rv1155 and F420 reveals one F420 molecule bound to each monomer of the Rv1155 dimer. Structural, biophysical, and bioinformatic analyses of the Rv1155-F420 complex provide clues about its role in the bacterium.
Collapse
Affiliation(s)
- Ellene H Mashalidis
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, 20892; Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Tuberculosis (Edinb) 2015; 95:131-6. [DOI: 10.1016/j.tube.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/05/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
17
|
Bashiri G, Baker EN. Production of recombinant proteins in Mycobacterium smegmatis for structural and functional studies. Protein Sci 2014; 24:1-10. [PMID: 25303009 DOI: 10.1002/pro.2584] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/11/2022]
Abstract
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over-express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non-pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.
Collapse
Affiliation(s)
- Ghader Bashiri
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1010, New Zealand
| | | |
Collapse
|
18
|
Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2014; 1850:13-21. [PMID: 25277548 PMCID: PMC4331664 DOI: 10.1016/j.bbagen.2014.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. Nucleotide-glucose synthesis in Mycobacterium tuberculosis was analyzed. The characterization of four enzymes involved in glucose-1P partitioning is reported. Mycobacterial ADP-glucose pyrophosphorylase is allosterically regulated. Trehalose-6P synthase exhibits higher catalytic efficiency for ADP-glucose. Trehalose-6P synthase is activated by fructose-6P.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Ana M Demonte
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Andrii Gorelik
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
19
|
Saroj DC, Singh KH, Anant A, Biswal BK. Overexpression, purification, crystallization and structure determination of AspB, a putative aspartate aminotransferase from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2014; 70:928-32. [PMID: 25005091 PMCID: PMC4089534 DOI: 10.1107/s2053230x14011820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/21/2014] [Indexed: 11/10/2022] Open
Abstract
A recombinant version of a putative aspartate aminotransferase, AspB (encoded by the ORF Rv3565), from Mycobacterium tuberculosis (Mtb) was overexpressed in M. smegmatis and purified to homogeneity using liquid chromatography. Crystals of AspB were grown in a condition consisting of 0.2 M ammonium phosphate monobasic, 0.1 M calcium chloride dihydrate employing the hanging-drop vapour-diffusion method at 298 K. The crystals diffracted to a limit of 2.50 Å resolution and belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=93.27, b=98.19, c=198.70 Å. The structure of AspB was solved by the molecular-replacement method using a putative aminotransferase from Silicibacter pomeroyi (PDB entry 3h14) as the search model. The template shares 46% amino-acid sequence identity with Mtb AspB. The crystal asymmetric unit contains four AspB molecules (the Mr of each is 42,035 Da).
Collapse
Affiliation(s)
- Deepak Chandra Saroj
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Khundrakpam Herojit Singh
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Avishek Anant
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Bichitra K. Biswal
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
20
|
Svetlíková Z, Baráth P, Jackson M, Korduláková J, Mikušová K. Purification and characterization of the acyltransferase involved in biosynthesis of the major mycobacterial cell envelope glycolipid--monoacylated phosphatidylinositol dimannoside. Protein Expr Purif 2014; 100:33-9. [PMID: 24810911 DOI: 10.1016/j.pep.2014.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Phosphatidylinositol mannosides are essential structural components of the mycobacterial cell envelope. They are implicated in host-pathogen interactions during infection and serve as a basis for biosynthesis of other unique molecules with immunomodulatory properties - mycobacterial lipopolysaccharides lipoarabinomannan and lipomannan. Acyltransferase Rv2611 is involved in one of the initial steps in the assembly of these molecules in Mycobacterium tuberculosis - the attachment of an acyl group to position-6 of the 2-linked mannosyl residue of the phosphatidylinositol mannoside anchor. Although the function of this enzyme was annotated 10 years ago, it has never been completely biochemically characterized due to lack of the pure protein. We have successfully overexpressed and purified MSMEG_2934, the ortholog of Rv2611c from the non-pathogenic model organism Mycobacteriumsmegmatis mc(2)155 using mycobacterial pJAM2 expression system, which allowed confirmation of its in vitro acyltransferase activity, and establishment of its substrate specificity.
Collapse
Affiliation(s)
- Zuzana Svetlíková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | - Peter Baráth
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jana Korduláková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia.
| |
Collapse
|
21
|
Lagautriere T, Bashiri G, Paterson NG, Berney M, Cook GM, Baker EN. Characterization of the proline-utilization pathway in Mycobacterium tuberculosis through structural and functional studies. ACTA ACUST UNITED AC 2014; 70:968-80. [PMID: 24699642 DOI: 10.1107/s1399004713034391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022]
Abstract
The proline-utilization pathway in Mycobacterium tuberculosis (Mtb) has recently been identified as an important factor in Mtb persistence in vivo, suggesting that this pathway could be a valuable therapeutic target against tuberculosis (TB). In Mtb, two distinct enzymes perform the conversion of proline into glutamate: the first step is the oxidation of proline into Δ(1)-pyrroline-5-carboxylic acid (P5C) by the flavoenzyme proline dehydrogenase (PruB), and the second reaction involves converting the tautomeric form of P5C (glutamate-γ-semialdehyde) into glutamate using the NAD(+)-dependent Δ(1)-pyrroline-5-carboxylic dehydrogenase (PruA). Here, the three-dimensional structures of Mtb-PruA, determined by X-ray crystallography, in the apo state and in complex with NAD(+) are described at 2.5 and 2.1 Å resolution, respectively. The structure reveals a conserved NAD(+)-binding mode, common to other related enzymes. Species-specific conformational differences in the active site, however, linked to changes in the dimer interface, suggest possibilities for selective inhibition of Mtb-PruA despite its reasonably high sequence identity to other PruA enzymes. Using recombinant PruA and PruB, the proline-utilization pathway in Mtb has also been reconstituted in vitro. Functional validation using a novel NMR approach has demonstrated that the PruA and PruB enzymes are together sufficient to convert proline to glutamate, the first such demonstration for monofunctional proline-utilization enzymes.
Collapse
Affiliation(s)
- Thomas Lagautriere
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Ghader Bashiri
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Neil G Paterson
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael Berney
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Edward N Baker
- Structural Biology Laboratory, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
22
|
Schnappinger D, Ehrt S. Regulated Expression Systems for Mycobacteria and Their Applications. Microbiol Spectr 2014; 2:03. [PMID: 25485177 PMCID: PMC4254785 DOI: 10.1128/microbiolspec.mgm2-0018-2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
For bacterial model organisms like Escherichia coli and Bacillus subtilis genetic tools to experimentally manipulate the activity of individual genes existed for decades. But for genetically less tractable yet medically important bacteria such as M. tuberculosis such tools have rarely been available. More recently several groups developed genetic switches that function efficiently in M. tuberculosis and other mycobacteria. Together these systems utilize six different transcription factors, eight different regulated promoters, and three different regulatory principles. Here we describe their design features, review their main applications, and discuss advantages and disadvantages of regulating transcription, translation, or protein stability for controlling gene activities in bacteria.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Medical College, and Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Medical College, and Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| |
Collapse
|
23
|
Lee SH, Choi M, Kim P, Myung PK. 3D-QSAR and cell wall permeability of antitubercular nitroimidazoles against Mycobacterium tuberculosis. Molecules 2013; 18:13870-85. [PMID: 24217328 PMCID: PMC6270125 DOI: 10.3390/molecules181113870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Inhibitory activities of monocyclic nitroimidazoles against Mycobacterium tuberculosis (Mtb) deazaflavin-dependent nitroreductase (DDN) were modeled by using docking, pharmacophore alignment and comparative molecular similarity indices analysis (CoMSIA) methods. A statistically significant model obtained from CoMSIA was established based on a training set using pharmacophore-based molecular alignment. The leave-one out cross-validation correlation coefficients q2 (CoMSIA) were 0.681. The CoMSIA model had a good correlation (/CoMSIA = 0.611) between the predicted and experimental activities against excluded test sets. The generated model suggests that electrostatic, hydrophobic and hydrogen bonding interactions all play important roles for interaction between ligands and receptors. The predicted cell wall permeability (logPapp) for substrates with high inhibitory activity against Mtb were investigated. The distribution coefficient (logD) range was 2.41 < logD < 2.89 for the Mtb cell wall membrane permeability. The larger the polar surface area is, the better the permeability is. A larger radius of gyration (rgry) and a small fraction of rotatable bonds (frtob) of these molecules leads to higher cell wall penetration ability. The information obtained from the in silico tools might be useful in the design of more potent compounds that are active against Mtb.
Collapse
Affiliation(s)
- Sang-Ho Lee
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Korea; E-Mails: (S.-H.L.); (P.K.)
| | - Minsung Choi
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea; E-Mail:
| | - Pilho Kim
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 305-600, Korea; E-Mails: (S.-H.L.); (P.K.)
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 306-350, Korea
| | - Pyung Keun Myung
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-42-821-5929; Fax: +82-42-823-6566
| |
Collapse
|
24
|
Genome sequence of Mycobacterium hassiacum DSM 44199, a rare source of heat-stable mycobacterial proteins. J Bacteriol 2013; 194:7010-1. [PMID: 23209251 DOI: 10.1128/jb.01880-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium hassiacum is a rapidly growing mycobacterium isolated from human urine and so far the most thermophilic among mycobacterial species. Its thermotolerance and phylogenetic relationship to M. tuberculosis render its proteins attractive tools for crystallization and structure-guided drug design. We report the draft genome sequence of M. hassiacum DSM 44199.
Collapse
|
25
|
Bashiri G, Perkowski EF, Turner AP, Feltcher ME, Braunstein M, Baker EN. Tat-dependent translocation of an F420-binding protein of Mycobacterium tuberculosis. PLoS One 2012; 7:e45003. [PMID: 23110042 PMCID: PMC3478262 DOI: 10.1371/journal.pone.0045003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 08/14/2012] [Indexed: 01/04/2023] Open
Abstract
F(420) is a unique cofactor present in a restricted range of microorganisms, including mycobacteria. It has been proposed that F(420) has an important role in the oxidoreductive reactions of Mycobacterium tuberculosis, possibly associated with anaerobic survival and persistence. The protein encoded by Rv0132c has a predicted N-terminal signal sequence and is annotated as an F(420)-dependent glucose-6-phosphate dehydrogenase. Here we show that Rv0132c protein does not have the annotated activity. It does, however, co-purify with F(420) during expression experiments in M. smegmatis. We also show that the Rv0132c-F(420) complex is a substrate for the Tat pathway, which mediates translocation of the complex across the cytoplasmic membrane, where Rv0132c is anchored to the cell envelope. This is the first report of any F(420)-binding protein being a substrate for the Tat pathway and of the presence of F(420) outside of the cytosol in any F(420)-producing microorganism. The Rv0132c protein and its Tat export sequence are essentially invariant in the Mycobacterium tuberculosis complex. Taken together, these results show that current understanding of F(420) biology in mycobacteria should be expanded to include activities occurring in the extra-cytoplasmic cell envelope.
Collapse
Affiliation(s)
- Ghader Bashiri
- School of Biological Sciences,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Ellen F. Perkowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina United State of America
| | - Adrian P. Turner
- Microscopy and Graphics Unit, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Meghan E. Feltcher
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina United State of America
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina United State of America
| | - Edward N. Baker
- School of Biological Sciences,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
26
|
Sopitthummakhun K, Thongpanchang C, Vilaivan T, Yuthavong Y, Chaiyen P, Leartsakulpanich U. Plasmodium serine hydroxymethyltransferase as a potential anti-malarial target: inhibition studies using improved methods for enzyme production and assay. Malar J 2012; 11:194. [PMID: 22691309 PMCID: PMC3502260 DOI: 10.1186/1475-2875-11-194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/30/2012] [Indexed: 11/21/2022] Open
Abstract
Background There is an urgent need for the discovery of new anti-malarial drugs. Thus, it is essential to explore different potential new targets that are unique to the parasite or that are required for its viability in order to develop new interventions for treating the disease. Plasmodium serine hydroxymethyltransferase (SHMT), an enzyme in the dTMP synthesis cycle, is a potential target for such new drugs, but convenient methods for producing and assaying the enzyme are still lacking, hampering the ability to screen inhibitors. Methods Production of recombinant Plasmodium falciparum SHMT (PfSHMT) and Plasmodium vivax SHMT (PvSHMT), using auto-induction media, were compared to those using the conventional Luria Bertani medium with isopropyl thio-β-D-galactoside (LB-IPTG) induction media. Plasmodium SHMT activity, kinetic parameters, and response to inhibitors were measured spectrophotometrically by coupling the reaction to that of 5,10-methylenetetrahydrofolate dehydrogenase (MTHFD). The identity of the intermediate formed upon inactivation of Plasmodium SHMTs by thiosemicarbazide was investigated by spectrophotometry, high performance liquid chromatography (HPLC), and liquid chromatography-mass spectrometry (LC-MS). The active site environment of Plasmodium SHMT was probed based on changes in the fluorescence emission spectrum upon addition of amino acids and folate. Results Auto-induction media resulted in a two to three-fold higher yield of Pf- and PvSHMT (7.38 and 29.29 mg/L) compared to that produced in cells induced in LB-IPTG media. A convenient spectrophotometric activity assay coupling Plasmodium SHMT and MTHFD gave similar kinetic parameters to those previously obtained from the anaerobic assay coupling SHMT and 5,10-methylenetetrahydrofolate reductase (MTHFR); thus demonstrating the validity of the new assay procedure. The improved method was adopted to screen for Plasmodium SHMT inhibitors, of which some were originally designed as inhibitors of malarial dihydrofolate reductase. Plasmodium SHMT was slowly inactivated by thiosemicarbazide and formed a covalent intermediate, PLP-thiosemicarbazone. Conclusions Auto-induction media offers a cost-effective method for the production of Plasmodium SHMTs and should be applicable for other Plasmodium enzymes. The SHMT-MTHFD coupled assay is equivalent to the SHMT-MTHFR coupled assay, but is more convenient for inhibitor screening and other studies of the enzyme. In addition to inhibitors of malarial SHMT, the development of species-specific, anti-SHMT inhibitors is plausible due to the presence of differential active sites on the Plasmodium enzymes.
Collapse
Affiliation(s)
- Kittipat Sopitthummakhun
- Department of Biochemistry and Center of Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Rama 6 Road Bangkok 10400, Thailand
| | | | | | | | | | | |
Collapse
|
27
|
Brzozowska I, Brzozowska K, Zielenkiewicz U. Functioning of the TA cassette of streptococcal plasmid pSM19035 in various Gram-positive bacteria. Plasmid 2012; 68:51-60. [PMID: 22309878 DOI: 10.1016/j.plasmid.2012.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
Toxin-antitoxin (TA) systems are common in microorganisms and are frequently found in the chromosomes and low-copy number plasmids of bacterial pathogens. One such system is carried by the low copy number plasmid pSM19035 of the pathogenic bacterium Streptococcus pyogenes. This plasmid encodes an omega-epsilon-zeta cassette that ensures its stable maintenance by post-segregational killing of plasmid-free cells. In this study, the activity of the ω-ε-ζ cassette was examined in various Gram-positive bacteria with a low G/C content in their DNA. The broad host range of pSM19035 was confirmed and the copy number of a truncated derivative in transformed strains was determined by real-time qPCR.
Collapse
Affiliation(s)
- Iwona Brzozowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
28
|
Nasir N, Vyas R, Chugh C, Ahangar MS, Biswal BK. Molecular cloning, overexpression, purification, crystallization and preliminary X-ray diffraction studies of histidinol phosphate aminotransferase (HisC2) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:32-6. [PMID: 22232166 PMCID: PMC3253829 DOI: 10.1107/s1744309111045386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/28/2011] [Indexed: 02/17/2023]
Abstract
HisC2 from Mycobacterium tuberculosis was overexpressed in M. smegmatis and purified to homogeneity using nickel-nitrilotriacetic acid metal-affinity and gel-filtration chromatography. Diffraction-quality crystals were grown using the hanging-drop vapour-diffusion technique from a condition consisting of 7 mg ml(-1) HisC2 (in 20 mM Tris pH 8.8, 50 mM NaCl and 5% glycerol), 1 M succinic acid pH 7.0, 0.1 M HEPES pH 7.0 and 1%(w/v) polyethylene glycol monomethyl ether 2000. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 255.98, b=77.09, c = 117.97 Å. X-ray diffraction data were recorded to 2.45 Å resolution from a single crystal using the in-house X-ray facility.
Collapse
Affiliation(s)
- Nazia Nasir
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rajan Vyas
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Chetna Chugh
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Mohammad Syed Ahangar
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Bichitra K. Biswal
- Protein Crystallography Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
29
|
Rehan AM, Bashiri G, Paterson NG, Baker EN, Squire CJ. Cloning, expression, purification, crystallization and preliminary X-ray studies of the C-terminal domain of Rv3262 (FbiB) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1274-7. [PMID: 22102046 PMCID: PMC3212381 DOI: 10.1107/s1744309111028958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/18/2011] [Indexed: 11/11/2022]
Abstract
During cofactor F(420) biosynthesis, the enzyme F(420)-γ-glutamyl ligase (FbiB) catalyzes the addition of γ-linked L-glutamate residues to form polyglutamylated F(420) derivatives. In Mycobacterium tuberculosis, Rv3262 (FbiB) consists of two domains: an N-terminal domain from the F(420) ligase superfamily and a C-terminal domain with sequence similarity to nitro-FMN reductase superfamily proteins. To characterize the role of the C-terminal domain of FbiB in polyglutamyl ligation, it has been purified and crystallized in an apo form. The crystals diffracted to 2.0 Å resolution using a synchrotron source and belonged to the tetragonal space group P4(1)2(1)2 (or P4(3)2(1)2), with unit-cell parameters a = b = 136.6, c = 101.7 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Aisyah M Rehan
- Structural Biology Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
30
|
Dogra M, Palmer BD, Bashiri G, Tingle MD, Shinde SS, Anderson RF, O'Toole R, Baker EN, Denny WA, Helsby NA. Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in Mycobacteria and a subcellular fraction of human liver. Br J Pharmacol 2011; 162:226-36. [PMID: 20955364 DOI: 10.1111/j.1476-5381.2010.01040.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE PA-824 is a 2-nitroimidazooxazine prodrug currently in Phase II clinical trial for tuberculosis therapy. It is bioactivated by a deazaflavin (F(420) )-dependent nitroreductase (Ddn) isolated from Mycobacterium tuberculosis to form a des-nitro metabolite. This releases toxic reactive nitrogen species which may be responsible for its anti-mycobacterial activity. There are no published reports of mammalian enzymes bioactivating this prodrug. We have investigated the metabolism of PA-824 following incubation with a subcellular fraction of human liver, in comparison with purified Ddn, M. tuberculosis and Mycobacterium smegmatis. EXPERIMENTAL APPROACH PA-824 (250 µM) was incubated with the 9000 × g supernatant (S9) of human liver homogenates, purified Ddn, M. tuberculosis and M. smegmatis for metabolite identification by liquid chromatography mass spectrometry analysis. KEY RESULTS PA-824 was metabolized to seven products by Ddn and M. tuberculosis, with the major metabolite being the des-nitro product. Six of these products, but not the des-nitro metabolite, were also detected in M. smegmatis. In contrast, only four of these metabolites were observed in human liver S9; M3, a reduction product previously proposed as an intermediate in the Ddn-catalyzed des-nitrification and radiolytic reduction of PA-824; two unidentified metabolites, M1 and M4, which were products of M3; and a haem-catalyzed product of imidazole ring hydration (M2). CONCLUSIONS AND IMPLICATIONS PA-824 was metabolized by des-nitrification in Ddn and M. tuberculosis, but this does not occur in human liver S9 and M. smegmatis. Thus, PA-824 was selectively bioactivated in M. tuberculosis and there was no evidence for 'cross-activation' by human enzymes.
Collapse
Affiliation(s)
- M Dogra
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bashiri G, Rehan AM, Greenwood DR, Dickson JMJ, Baker EN. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS One 2010; 5:e15803. [PMID: 21209917 PMCID: PMC3012119 DOI: 10.1371/journal.pone.0015803] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/24/2010] [Indexed: 01/16/2023] Open
Abstract
Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications.
Collapse
Affiliation(s)
- Ghader Bashiri
- Structural Biology Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
32
|
The nitroimidazooxazines (PA-824 and analogs): structure–activity relationship and mechanistic studies. Future Med Chem 2010; 2:1295-304. [DOI: 10.4155/fmc.10.207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PA-824 is an experimental anti-tubercular agent that has a novel mechanism of action. It is effective against both active and persistent forms of the disease and has recently shown early bactericidal activity in a Phase II clinical trial. This review summarizes recent studies on the mode of action of PA-824 and outlines successful efforts to prepare more effective second-generation analogs. PA-824 displays unusual chemistry following both enzymatic and radiolytic reduction, which is clearly related to its activity as an anti-tubercular agent. The nitroreductase enzyme deazaflavin-dependent nitroreductase, reduces PA-824 with loss of the nitro group, generating reactive nitrogen species such as nitric oxide, which appear important in mediating the activity of the drug. Bioreductive drugs such as PA-824 hold the promise of shorter treatment regimens.
Collapse
|
33
|
The vapBC Operon from Mycobacterium smegmatis Is An Autoregulated Toxin–Antitoxin Module That Controls Growth via Inhibition of Translation. J Mol Biol 2009; 390:353-67. [DOI: 10.1016/j.jmb.2009.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 12/19/2022]
|
34
|
Bashiri G, Squire CJ, Moreland NJ, Baker EN. Crystal Structures of F420-dependent Glucose-6-phosphate Dehydrogenase FGD1 Involved in the Activation of the Anti-tuberculosis Drug Candidate PA-824 Reveal the Basis of Coenzyme and Substrate Binding. J Biol Chem 2008; 283:17531-41. [DOI: 10.1074/jbc.m801854200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
35
|
Structural genomics: from genes to structures with valuable materials and many questions in between. Nat Methods 2008; 5:129-32. [PMID: 18235432 DOI: 10.1038/nmeth0208-129] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Protein Structure Initiative (PSI), funded by the US National Institutes of Health (NIH), provides a framework for the development and systematic evaluation of methods to solve protein structures. Although the PSI and other structural genomics efforts around the world have led to the solution of many new protein structures as well as the development of new methods, methodological bottlenecks still exist and are being addressed in this 'production phase' of PSI.
Collapse
|
36
|
Goldstone RM, Moreland NJ, Bashiri G, Baker EN, Shaun Lott J. A new Gateway vector and expression protocol for fast and efficient recombinant protein expression in Mycobacterium smegmatis. Protein Expr Purif 2007; 57:81-7. [PMID: 17949993 DOI: 10.1016/j.pep.2007.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 11/16/2022]
Abstract
A major obstacle associated with recombinant protein over-expression in Escherichia coli is the production of insoluble inclusion bodies, a problem particularly pronounced with Mycobacterium tuberculosis proteins. One strategy to overcome the formation of inclusion bodies is to use an expression host that is more closely related to the organism from which the proteins are derived. Here we describe methods for efficiently identifying M. tuberculosis proteins that express in soluble form in Mycobacterium smegmatis. We have adapted the M. smegmatis expression vector pYUB1049 to the Gateway cloning system by the addition of att recombination recognition sequences. The resulting vector, designated pDESTsmg, is compatible with our in-house Gateway methods for E. coli expression. A target can be subcloned into pDESTsmg by a simple LR reaction using an entry clone generated for E. coli expression, removing the need to design new primers and re-clone target DNA. Proteins are expressed by culturing the M. smegmatis strain mc(2)4517 in autoinduction media supplemented with Tween 80. The media used are the same as those used for expression of proteins in E. coli, simplifying and reducing the cost of the switch to an alternative host. The methods have been applied to a set of M. tuberculosis proteins that form inclusion bodies when expressed in E. coli. We found that five of eight of these previously insoluble proteins become soluble when expressed in M. smegmatis, demonstrating that this is an efficient salvage strategy.
Collapse
Affiliation(s)
- Rachael M Goldstone
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Thomas Building, 3a Symonds Street, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|