1
|
Fatti E, Khawaja S, Weis K. The dark side of fluorescent protein tagging-the impact of protein tags on biomolecular condensation. Mol Biol Cell 2025; 36:br10. [PMID: 39878648 DOI: 10.1091/mbc.e24-11-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Biomolecular condensation has emerged as an important mechanism to control various cellular processes through the formation of membraneless organelles. Fluorescent protein tags have been extensively used to study the formation and the properties of condensates in vitro and in vivo, but there is evidence that tags may perturb the condensation properties of proteins. In this study, we carefully assess the effects of protein tags on the yeast DEAD-box ATPase Dhh1, a central regulator of processing bodies (P-bodies), which are biomolecular condensates involved in mRNA metabolism. We show that fluorescent tags as well as a polyhistidine tag greatly affect Dhh1 condensation in vitro and lead to condensates with different dynamic properties. Tagging of Dhh1 with various fluorescent proteins in vivo alters the number of P-bodies upon glucose starvation and some tags even show constitutive P-bodies in nonstressed cells. These data raise concerns about the accuracy of tagged protein condensation experiments, highlighting the need for caution when interpreting the results.
Collapse
Affiliation(s)
- Edoardo Fatti
- Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, Zürich 8093, Switzerland
| | - Sarah Khawaja
- Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, Zürich 8093, Switzerland
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, Zürich 8093, Switzerland
| |
Collapse
|
2
|
Hu Y, Schwab S, Deiss S, Escudeiro P, van Heesch T, Joiner J, Vreede J, Hartmann M, Lupas A, Alvarez B, Alva V, Dame R. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res 2024; 52:8193-8204. [PMID: 38864377 PMCID: PMC11317129 DOI: 10.1093/nar/gkae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Silvia Deiss
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Thor van Heesch
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Joe D Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jocelyne Vreede
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
von Ehr J, Oberstrass L, Yazgan E, Schnaubelt LI, Blümel N, McNicoll F, Weigand JE, Zarnack K, Müller-McNicoll M, Korn SM, Schlundt A. Arid5a uses disordered extensions of its core ARID domain for distinct DNA- and RNA-recognition and gene regulation. J Biol Chem 2024; 300:107457. [PMID: 38866324 PMCID: PMC11262183 DOI: 10.1016/j.jbc.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024] Open
Abstract
AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.
Collapse
Affiliation(s)
- Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Lasse Oberstrass
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marburg, Germany
| | - Ege Yazgan
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lara Ina Schnaubelt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Nicole Blümel
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Francois McNicoll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia E Weigand
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marburg, Germany
| | - Kathi Zarnack
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany; Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Sophie Marianne Korn
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany; University of Greifswald, Institute of Biochemistry, Greifswald, Germany.
| |
Collapse
|
4
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Garaeva N, Fatkhullin B, Murzakhanov F, Gafurov M, Golubev A, Bikmullin A, Glazyrin M, Kieffer B, Jenner L, Klochkov V, Aganov A, Rogachev A, Ivankov O, Validov S, Yusupov M, Usachev K. Structural aspects of RimP binding on small ribosomal subunit from Staphylococcus aureus. Structure 2024; 32:74-82.e5. [PMID: 38000368 DOI: 10.1016/j.str.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.
Collapse
Affiliation(s)
- Nataliia Garaeva
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Bulat Fatkhullin
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France; Institute of Protein Research RAS, 4 Institutskaya, Pushchino 142290, Russian Federation
| | - Fadis Murzakhanov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Alexander Golubev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Aydar Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Maxim Glazyrin
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Vladimir Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Albert Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation; Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Oleksandr Ivankov
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Shamil Validov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Yusupov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France.
| | - Konstantin Usachev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation.
| |
Collapse
|
6
|
Stehle J, Fleming JR, Bauer PM, Mayans O, Drescher M. Titin UN2A Acts as a Stable, Non-Polymorphic Scaffold in its Binding to CARP. Chembiochem 2023; 24:e202300408. [PMID: 37503755 DOI: 10.1002/cbic.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The N2A segment of titin functions as a pivotal hub for signal transduction and interacts with various proteins involved in structural support, chaperone activities, and transcriptional regulation. Notably, the "unique N2A" (UN2A) subdomain has been shown to interact with the stress-regulated cardiac ankyrin repeat protein (CARP), which contributes to the regulation of sarcomeric stiffness. Previously, the UN2A domain's three-dimensional structure was modelled based on its secondary structure content identified by NMR spectroscopy, considering the domain in isolation. In this study, we report experimental long-range distance distributions by electron paramagnetic resonance (EPR) spectroscopy between the three helixes within the UN2A domain linked to the immunoglobulin domain I81 in the presence and absence of CARP. The data confirm the central three-helix bundle fold of UN2A and show that this adopts a compact and stable conformation in absence of CARP. After binding to CARP, no significant conformational change was observed, suggesting that the UN2A domain retains its structure upon binding to CARP thereby, mediating the interaction approximately as a rigid-body.
Collapse
Affiliation(s)
- Juliane Stehle
- Department of Chemistry and Konstanz Research School of Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jennifer R Fleming
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Piera-Maria Bauer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School of Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
7
|
Hainzl T, Bonde M, Almqvist F, Johansson J, Sauer-Eriksson A. Structural insights into CodY activation and DNA recognition. Nucleic Acids Res 2023; 51:7631-7648. [PMID: 37326020 PMCID: PMC10415144 DOI: 10.1093/nar/gkad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands-branched chain amino acids and GTP-induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Zhang S, Zhang L, Greule A, Tailhades J, Marschall E, Prasongpholchai P, Leng DJ, Zhang J, Zhu J, Kaczmarski JA, Schittenhelm RB, Einsle O, Jackson CJ, Alberti F, Bechthold A, Zhang Y, Tosin M, Si T, Cryle MJ. P450-mediated dehydrotyrosine formation during WS9326 biosynthesis proceeds via dehydrogenation of a specific acylated dipeptide substrate. Acta Pharm Sin B 2023; 13:3561-3574. [PMID: 37655329 PMCID: PMC10465960 DOI: 10.1016/j.apsb.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Anja Greule
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | | | - Daniel J. Leng
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jingfan Zhang
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Joe A. Kaczmarski
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton 3800, VIC, Australia
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Fabrizio Alberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Andreas Bechthold
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg 79104, Germany
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Max J. Cryle
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| |
Collapse
|
9
|
Osetrina DA, Kusova AM, Bikmullin AG, Klochkova EA, Yulmetov AR, Semenova EA, Mukhametzyanov TA, Usachev KS, Klochkov VV, Blokhin DS. Extent of N-Terminus Folding of Semenogelin 1 Cleavage Product Determines Tendency to Amyloid Formation. Int J Mol Sci 2023; 24:ijms24108949. [PMID: 37240295 DOI: 10.3390/ijms24108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into β-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.
Collapse
Affiliation(s)
- Daria A Osetrina
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Aleksandra M Kusova
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420111, Russia
| | - Aydar G Bikmullin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia
| | - Evelina A Klochkova
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia
| | - Aydar R Yulmetov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Evgenia A Semenova
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Timur A Mukhametzyanov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Konstantin S Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan 420111, Russia
| | - Vladimir V Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Dmitriy S Blokhin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| |
Collapse
|
10
|
Pulido S, Rückert H, Falsone SF, Göbl C, Meyer NH, Zangger K. The membrane-binding bacterial toxin long direct repeat D inhibits protein translation. Biophys Chem 2023; 298:107040. [PMID: 37229877 DOI: 10.1016/j.bpc.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Bacterial plasmids and chromosomes widely contain toxin-antitoxin (TA) loci, which are implicated in stress response, growth regulation and even tolerance to antibiotics and environmental stress. Type I TA systems consist of a stable toxin-expressing mRNA, which is counteracted by an unstable RNA antitoxin. The Long Direct Repeat (LDR-) D locus, a type I TA system of Escherichia Coli (E. coli) K12, encodes a 35 amino acid toxic peptide, LdrD. Despite being characterized as a bacterial toxin, causing rapid killing and nucleoid condensation, little was known about its function and its mechanism of toxicity. Here, we show that LdrD specifically interacts with ribosomes which potentially blocks translation. Indeed, in vitro translation of LdrD-coding mRNA greatly reduces translation efficiency. The structure of LdrD in a hydrophobic environment, similar to the one found in the interior of ribosomes was determined by NMR spectroscopy in 100% trifluoroethanol solution. A single compact α-helix was found which would fit nicely into the ribosomal exit tunnel. Therefore, we conclude that rather than destroying bacterial membranes, LdrD exerts its toxic activity by inhibiting protein synthesis through binding to the ribosomes.
Collapse
Affiliation(s)
- Sergio Pulido
- Institute of Chemistry, University of Graz, Graz, Austria; LifeFactors ZF S.A.S., Zona France Rionegro, Rionegro, Colombia
| | - Hanna Rückert
- Institute of Chemistry, University of Graz, Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Christoph Göbl
- Dept. of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - N Helge Meyer
- Institute of Chemistry, University of Graz, Graz, Austria; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Germany.
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
11
|
von Ehr J, Korn SM, Weiß L, Schlundt A. 1H, 13C, 15N backbone chemical shift assignments of the extended ARID domain in human AT-rich interactive domain protein 5a (Arid5a). BIOMOLECULAR NMR ASSIGNMENTS 2023:10.1007/s12104-023-10130-w. [PMID: 37129704 DOI: 10.1007/s12104-023-10130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
The family of AT-rich interactive domain (ARID) containing proteins -Arids- contains 15 members that have almost exclusively been described as DNA-binding proteins. Interestingly, a decade ago the family member Arid5a was found to bind and stabilize mRNAs of immune system key players and thereby account for driving inflammatory and autoimmune diseases. How exactly binding to DNA and RNA is coordinated by the Arid5a ARID domain remains unknown, mainly due to the lack of atom-resolved information on nucleic acid-binding. This in particular applies to the protein's ARID domain, despite the comfortable size of its core unit for NMR-based investigations. Furthermore, the core domain of ARID domains is found to be extended by functionally relevant, often flexible stretches, but whether such elongations are present and crucial for the versatile Arid5a functions is unknown. We here provide a near-complete NMR backbone resonance assignment of the Arid5a ARID domain with N- and C-terminal extensions, which serves as a basis for further studies of its nucleic acid-binding preferences and targeted inhibition by means of NMR. Our data thus significantly contribute to unravelling mechanisms of Arid5a-mediated gene regulation and diseases.
Collapse
Affiliation(s)
- Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ) of Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7-9, 60438, Frankfurt am Main, Germany
| | - Sophie Marianne Korn
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ) of Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438, Frankfurt am Main, Germany
| | - Lena Weiß
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ) of Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438, Frankfurt am Main, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ) of Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Fatti E, Hirth A, Švorinić A, Günther M, Stier G, Cruciat CM, Acebrón SP, Papageorgiou D, Sinning I, Krijgsveld J, Höfer T, Niehrs C. DEAD box RNA helicases act as nucleotide exchange factors for casein kinase 2. Sci Signal 2023; 16:eabp8923. [PMID: 37098120 DOI: 10.1126/scisignal.abp8923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
DDX RNA helicases promote RNA processing, but DDX3X also activates casein kinase 1 (CK1ε). We show that other DDX proteins also stimulate the protein kinase activity of CK1ε and that this extends to casein kinase 2 (CK2). CK2 enzymatic activity was stimulated by various DDX proteins at high substrate concentrations. DDX1, DDX24, DDX41, and DDX54 were required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X indicated that CK1 and CK2 kinase stimulation engages its RNA binding but not catalytic motifs. Mathematical modeling of enzyme kinetics and stopped-flow spectroscopy showed that DDX proteins function as nucleotide exchange factors toward CK2 and reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as important for kinase regulation and as a generic function of DDX proteins.
Collapse
Affiliation(s)
- Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Sergio P Acebrón
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
13
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
14
|
Conformational ensemble of amyloid-forming semenogelin 1 peptide SEM1(68-107) by NMR spectroscopy and MD simulations. J Struct Biol 2022; 214:107900. [PMID: 36191746 DOI: 10.1016/j.jsb.2022.107900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022]
Abstract
SEM1(68-107) is a peptide corresponding to the region of semenogelin 1 protein from 68 to 107 amino acid position. SEM1(68-107) is an abundant component of semen, which participates in HIV infection enhanced by amyloid fibrils forming. To understand the causes influencing amyloid fibril formation, it is necessary to determine the spatial structure of SEM1(68-107). It was shown that the determination of SEM1(68-107) structure is complicated by the non-informative NMR spectra due to the high intramolecular mobility of peptides. The complementary approach based on the geometric restrictions of individual peptide fragments and molecular modeling was used for the determination of the spatial structure of SEM1(68-107). The N- (SEM1(68-85)) and C-terminuses (SEM1(86-107)) of SEM1(68-107) were chosen as two individual peptide fragments. SEM1(68-85) and SEM1(86-107) structures were established with NMR and circular dichroism CD spectroscopies. These regions were used as geometric restraints for the SEM1(68-107) structure modeling. Even though most of the SEM1(68-107) peptide is unstructured, our detailed analysis revealed the following structured elements: N-terminus (70His-84Gln) forms an α-helix, (86Asp-94Thr) and (101Gly-103Ser) regions fold into 310-helixes. The absence of a SEM1(68-107) rigid conformation leads to instability of these secondary structure regions. The calculated SEM1(68-107) structure is in good agreement with experimental values of hydrodynamic radius and dihedral angles obtained by NMR spectroscopy. This testifies the adequacy of a combined approach based on the use of peptide fragment structures for the molecular modeling formation of full-size peptide spatial structure.
Collapse
|
15
|
Garaeva NS, Bikmullin AG, Fatkhullin BF, Validov SZ, Keiffer B, Yusupov MM, Usachev KS. Backbone and side chain NMR assignments for the ribosome maturation factor P (RimP) from Staphylococcus aureus. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:373-377. [PMID: 36070063 DOI: 10.1007/s12104-022-10106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the early stages of the 30S subunit maturation, and this process may occur before the head domain assembly and later stages of the 30S assembly, but the mechanism of this interaction is still not fully understood. Here we report the assignment of the 1H, 13C and 15N chemical shift in the backbone and side chains of RimP from Staphylococcus aureus. Analysis of chemical shifts of the main chain using TALOS + suggests that the RimP contains eight β-strands and three α-helices with the topology α1-β1-β2-α2- β3- α3- β4- β5- β6- β7- β8. Structural studies of RimP and its complex with the ribosome by integrated structural biology approaches (NMR spectroscopy, X-ray diffraction analysis and cryoelectron microscopy) will allow further screening of highly selective inhibitors of the translation of S. aureus.
Collapse
Affiliation(s)
- Natalia S Garaeva
- Kazan Federal University, 18 Kremlevskaya, Kazan, Russian Federation, 420008
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008
| | - Aydar G Bikmullin
- Kazan Federal University, 18 Kremlevskaya, Kazan, Russian Federation, 420008
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008
| | - Bulat F Fatkhullin
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
- Institute of Protein Research, Russian Academy of Science, Institutskaya 4, Pushchino, Moscow Region, Russian Federation, 142290
| | - Shamil Z Validov
- Kazan Federal University, 18 Kremlevskaya, Kazan, Russian Federation, 420008
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008
| | - Bruno Keiffer
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Marat M Yusupov
- Kazan Federal University, 18 Kremlevskaya, Kazan, Russian Federation, 420008
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Konstantin S Usachev
- Kazan Federal University, 18 Kremlevskaya, Kazan, Russian Federation, 420008.
- Federal Research Center, «Kazan Scientific Center of Russian Academy of Sciences», Russia, Lobachevskogo, 2/31, Kazan, Russian Federation, 420008.
| |
Collapse
|
16
|
Beniamino Y, Cenni V, Piccioli M, Ciurli S, Zambelli B. The Ni(II)-Binding Activity of the Intrinsically Disordered Region of Human NDRG1, a Protein Involved in Cancer Development. Biomolecules 2022; 12:1272. [PMID: 36139110 PMCID: PMC9496542 DOI: 10.3390/biom12091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nickel exposure is associated with tumors of the respiratory tract such as lung and nasal cancers, acting through still-uncharacterized mechanisms. Understanding the molecular basis of nickel-induced carcinogenesis requires unraveling the mode and the effects of Ni(II) binding to its intracellular targets. A possible Ni(II)-binding protein and a potential focus for cancer treatment is hNDRG1, a protein induced by Ni(II) through the hypoxia response pathway, whose expression correlates with higher cancer aggressiveness and resistance to chemotherapy in lung tissue. The protein sequence contains a unique C-terminal sequence of 83 residues (hNDRG1*C), featuring a three-times-repeated decapeptide, involved in metal binding, lipid interaction and post-translational phosphorylation. In the present work, the biochemical and biophysical characterization of unmodified hNDRG1*C was performed. Bioinformatic analysis assigned it to the family of the intrinsically disordered regions and the absence of secondary and tertiary structure was experimentally proven by circular dichroism and NMR. Isothermal titration calorimetry revealed the occurrence of a Ni(II)-binding event with micromolar affinity. Detailed information on the Ni(II)-binding site and on the residues involved was obtained in an extensive NMR study, revealing an octahedral paramagnetic metal coordination that does not cause any major change of the protein backbone, which is coherent with CD analysis. hNDRG1*C was found in a monomeric form by light-scattering experiments, while the full-length hNDRG1 monomer was found in equilibrium between the dimer and tetramer, both in solution and in human cell lines. The results are the first essential step for understanding the cellular function of hNDRG1*C at the molecular level, with potential future applications to clarify its role and the role of Ni(II) in cancer development.
Collapse
Affiliation(s)
- Ylenia Beniamino
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Mario Piccioli
- Department of Chemistry, Center for Magnetic Resonance, University of Florence, 50121 Florence, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| |
Collapse
|
17
|
Recombinantly expressed MeICT, a new toxin from Mesobuthus eupeus scorpion, inhibits glioma cell proliferation and downregulates Annexin A2 and FOXM1 genes. Biotechnol Lett 2022; 44:703-712. [PMID: 35524923 DOI: 10.1007/s10529-022-03254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Gliomas are highly invasive and lethal malignancy that do not respond to current therapeutic approaches. Novel therapeutic agents are required to target molecular mechanisms involved in glioma progression. MeICT is a new short-chain toxin isolated from Mesobuthus eupeus scorpion venom. This toxin contained 34 amino acid residues and belongs to chloride channels toxins. In this study, the coding sequence of MeICT was cloned into the pET32Rh vector and a high yield of soluble recombinant MeICT was expressed and purified. Recombinant MeICT-His significantly inhibited the proliferation and migration of glioma cells at low concentration. In vivo studies showed that MeICT was not toxic when administrated to mice at high doses. We also determined the effect of MeICT on the mRNA expression of MMP-2, Annexin A2 and FOXM-2 that are key molecules in the progression and invasion of glioma. Expression of Annexin A2 and FOXM1 mRNA was significantly down-regulated following treatment with MeICT. However, no significant decrease in the expression of MMP-2 gene was identified. In this study a short toxin with four disulfide bonds was successfully produced and its anti-cancer effects was detected. Our findings suggest that recombinant MeICT can be considered as a new potent agent for glioma targeting.
Collapse
|
18
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS (BASEL, SWITZERLAND) 2022; 11:280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| |
Collapse
|
19
|
Hongdusit A, Liechty ET, Fox JM. Analysis of Three Architectures for Controlling PTP1B with Light. ACS Synth Biol 2022; 11:61-68. [PMID: 34898189 DOI: 10.1021/acssynbio.1c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Evan T. Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
20
|
Agboigba E, Kuchaev E, Garaeva N, Klochkova E, Varfolomeev A, Usachev K, Yusupov M, Validov S. ORF19.2286 Gene: Isolation and Purification of Deoxyhypusine Hydroxylase from the Human Pathogenic Yeast Candida albicans. Mol Biol 2022. [DOI: 10.1134/s0026893322020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Bikmullin A, Klochkova E, Krasnovid F, Blokhin D. The data of heterologous expression protocol for synthesis of 15N, 13C-labeled SEM1(68-107) peptide fragment of homo sapiens semenogelin 1. MethodsX 2021; 8:101512. [PMID: 34754783 PMCID: PMC8563649 DOI: 10.1016/j.mex.2021.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/06/2021] [Indexed: 10/31/2022] Open
Abstract
The semenogelin 1 protein is secreted in the seminal vesicles. After ejaculation it is split into small peptide fragments using internal proteases. It was shown that the fragments SEM1(45-107), SEM1(49-107), SEM1(68-107) (SEM1(86-107) form amyloid fibrils, which increase the possibility of HIV infection. The article presents a protocol for the synthesis and purification of a 15N, 13C-labeled SEM1(68-107) peptide for further structural studies by high-resolution NMR spectroscopy. The work describes cloning, expression of fusion protein GB1-SEM1(68-107) in E.coli, its purification, removal of GB1 and purification of SEM1(68-107). The purity of SEM1(68-107) samples on each purification steps was evaluated by polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) and tricine-SDS-PAGE. The developed protocol allows to obtain SEM1(68-107) peptide for NMR studies (using 3D experiments), instead of costly solid-phase synthesis.
Collapse
Affiliation(s)
- Aydar Bikmullin
- Kazan Federal University, 18 Kremlevskaya, Kazan 420008, Russia
| | | | | | - Dmitriy Blokhin
- Kazan Federal University, 18 Kremlevskaya, Kazan 420008, Russia
| |
Collapse
|
22
|
Omidvar R, Vosseler N, Abbas A, Gutmann B, Grünwald-Gruber C, Altmann F, Siddique S, Bohlmann H. Analysis of a gene family for PDF-like peptides from Arabidopsis. Sci Rep 2021; 11:18948. [PMID: 34556705 PMCID: PMC8460643 DOI: 10.1038/s41598-021-98175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.
Collapse
Affiliation(s)
- Reza Omidvar
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Nadine Vosseler
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Amjad Abbas
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Birgit Gutmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- RIVIERA Pharma and Cosmetics GmbH, Holzhackerstraße 1, Tulln, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
23
|
Structural and DNA-binding properties of the cytoplasmic domain of Vibrio cholerae transcription factor ToxR. J Biol Chem 2021; 297:101167. [PMID: 34487759 PMCID: PMC8517210 DOI: 10.1016/j.jbc.2021.101167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
ToxR represents an essential transcription factor of Vibrio cholerae, which is involved in the regulation of multiple, mainly virulence associated genes. Its versatile functionality as activator, repressor or coactivator suggests a complex regulatory mechanism, whose clarification is essential for a better understanding of the virulence expression system of V. cholerae. Here, we provide structural information elucidating the organization and binding behavior of the cytoplasmic DNA-binding domain of ToxR (cToxR), containing a winged helix–turn–helix (wHTH) motif. Our analysis reveals unexpected structural features of this domain expanding our knowledge of a poorly defined subfamily of wHTH proteins. cToxR forms an extraordinary long α-loop and furthermore has an additional C-terminal beta strand, contacting the N-terminus and thus leading to a compact fold. The identification of the exact interactions between ToxR and DNA contributes to a deeper understanding of this regulatory process. Our findings not only show general binding of the soluble cytoplasmic domain of ToxR to DNA, but also indicate a higher affinity for the toxT motif. These results support the current theory of ToxR being a “DNA-catcher” to enable binding of the transcription factor TcpP and thus activation of virulence-associated toxT transcription. Although, TcpP and ToxR interaction is assumed to be crucial in the activation of the toxT genes, we could not detect an interaction event of their isolated cytoplasmic domains. We therefore conclude that other factors are needed to establish this protein–protein interaction, e.g., membrane attachment, the presence of their full-length proteins and/or other intermediary proteins that may facilitate binding.
Collapse
|
24
|
Höng K, Austerlitz T, Bohlmann T, Bohlmann H. The thionin family of antimicrobial peptides. PLoS One 2021; 16:e0254549. [PMID: 34260649 PMCID: PMC8279376 DOI: 10.1371/journal.pone.0254549] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
Thionins are antimicrobial peptides found only in plants. They are first produced as preproproteins and then processed to yield the usually 5 kDa, basic thionin peptide with three or four disulfide bridges. So far, thionins had only been found in some plant families of angiosperms. The One Thousand Plant Transcriptomes Initiative (1KP project) has sequenced the transcriptomes of more than 1000 plant species. We have used these data to search for new thionin sequences which gave 225 hits. After removing doublets these resulted in 133 new thionins. No sequences were found in algae and mosses. The phylogenetically earliest hits were from Selaginella species and from conifers. Many hits were from angiosperm plant families which were previously not known to contain thionins. A large gene family for thionins was found in Papaver. We isolated a genomic clone from Papaver somniferum which confirmed the general genomic structure with two small introns within the acidic domain. We also expressed the thionin encoded by the genomic clone and found that it had antimicrobial activity in vitro, especially against fungi. Previously, we had grouped thionins into four classes. The new data reported here led us to revise this classification. We now recognize only class 1 thionins with eight cysteine residues and class 2 thionins with six cysteine residues. The different variants that we found (and also previously known variants) can all be traced back to one of these two classes. Some of the variants had an uneven number of cysteine residues and it is not clear at the moment what that means for their threedimensional structure.
Collapse
Affiliation(s)
- Katharina Höng
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tina Austerlitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Timo Bohlmann
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Bohlmann
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
25
|
Milligram scale expression, refolding, and purification of Bombyx mori cocoonase using a recombinant E. coli system. Protein Expr Purif 2021; 186:105919. [PMID: 34044132 DOI: 10.1016/j.pep.2021.105919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
Silk is one of the most versatile biomaterials with signature properties of outstanding mechanical strength and flexibility. A potential avenue for developing more environmentally friendly silk production is to make use of the silk moth (Bombyx mori) cocoonase, this will at the same time increase the possibility for using the byproduct, sericin, as a raw material for other applications. Cocoonase is a serine protease utilized by the silk moth to soften the cocoon to enable its escape after completed metamorphosis. Cocoonase selectively degrades the glue protein of the cocoon, sericin, without affecting the silk-fiber made of the protein fibroin. Cocoonase can be recombinantly produced in E. coli, however, it is exclusively found as insoluble inclusion bodies. To solve this problem and to be able to utilize the benefits associated with an E. coli based expression system, we have developed a protocol that enables the production of soluble and functional protease in the milligram/liter scale. The core of the protocol is refolding of the protein in a buffer with a redox potential that is optimized for formation of native and intramolecular di-sulfide bridges. The redox potential was balanced with defined concentrations of reduced and oxidized glutathione. This E.coli based production protocol will, in addition to structure determination, also enable modification of cocoonase both in terms of catalytic function and stability. These factors will be valuable components in the development of alternate silk production methodology.
Collapse
|
26
|
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, Schlundt A. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Front Mol Biosci 2021; 8:653148. [PMID: 34041264 PMCID: PMC8141814 DOI: 10.3389/fmolb.2021.653148] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sophie Marianne Korn
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Martí Ninot-Pedrosa
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Jose Abi Saad
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Fabio C. L. Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisele Cardoso de Amorim
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Thomas K. Anderson
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cristiane D. Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chelsea Anorma
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriaan Bax
- LCP, NIDDK, NIH, Bethesda, MD, United States
| | | | - Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Louis Brigandat
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Anna Bula
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Matthias Bütikofer
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Teresa Carlomagno
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Icaro Putinhon Caruso
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Marquise G. Crosby
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karthikeyan Dhamotharan
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Isabella C. Felli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yanick Fleischmann
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Juan Atilio Gerez
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Dhiman Ghosh
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | | | - Sabine Häfner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - K. Henzler-Wildman
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie T. Hutchison
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Katarina Jović
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Janina Kaderli
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Kaņepe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert N. Kirchdoerfer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - John Kirkpatrick
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Robin Krishnathas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felicitas Kutz
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne zur Lage
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roderick Lambertz
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andras Lang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Douglas Laurents
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Löhr
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anas Malki
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Damien Maurin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Seth W. McNutt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Nathane Cunha Mebus-Antunes
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beat H. Meier
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Celine Moser
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Thais Cristtina Neves-Martins
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xiamonin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Roberta Pierattelli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | - Julien Orts
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roland Riek
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Chad M. Rienstra
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anderson S. Pinheiro
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Linda Schulte
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marco Schiavina
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mara Silber
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcius da Silva Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | | | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Felix Torres
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sabrina Töws
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Á. Treviño
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ying Wang
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Marco E. Weber
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Julia E. Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Zehnder
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Vida I, Fazekas Z, Gyulai G, Nagy‐Fazekas D, Pálfy G, Stráner P, Kiss É, Perczel A. Bacterial fermentation and isotope labelling optimized for amyloidogenic proteins. Microb Biotechnol 2021; 14:1107-1119. [PMID: 33739615 PMCID: PMC8085922 DOI: 10.1111/1751-7915.13778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
We developed a cost sensitive isotope labelling procedure using a fed-batch fermentation method and tested its efficiency producing the 15 N-, 13 C- and 15 N/13 C-labelled variants of an amyloidogenic miniprotein (E5: EEEAVRLYIQWLKEGGPSSGRPPPS). E5 is a surface active protein, which forms amyloids in solution. Here, we confirm, using both PM-IRRAS and AFM measurements, that the air-water interface triggers structural rearrangement and promotes the amyloid formation of E5, and thus it is a suitable test protein to work out efficient isotope labelling schemes even for such difficult sequences. E. coli cells expressing the recombinant, ubiquitin-fused miniprotein were grown in minimal media containing either unlabelled nutrients, or 15 N-NH4 Cl and/or 13 C-D-Glc. The consumption rates of NH4 Cl and D-Glc were quantitatively monitored during fermentation and their ratio was established to be 1:5 (for NH4 Cl: D-Glc). One- and two-step feeding schemes were custom-optimized to enhance isotope incorporation expressing five different E5 miniprotein variants. With the currently optimized protocols we could achieve a 1.5- to 5-fold increase of yields of several miniproteins coupled to a similar magnitude of cost reduction as compared to flask labelling protocols.
Collapse
Affiliation(s)
- István Vida
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - Zsolt Fazekas
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and NanostructuresInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - Dóra Nagy‐Fazekas
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
- MTA‐ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH)Institute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - Pál Stráner
- MTA‐ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH)Institute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - Éva Kiss
- Laboratory of Interfaces and NanostructuresInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
- MTA‐ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH)Institute of ChemistryEötvös Loránd UniversityPázmány P. stny. 1/ABudapestH‐1117Hungary
| |
Collapse
|
28
|
The Effect of a Unique Region of Parvovirus B19 Capsid Protein VP1 on Endothelial Cells. Biomolecules 2021; 11:biom11040606. [PMID: 33921883 PMCID: PMC8073096 DOI: 10.3390/biom11040606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells (EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral capsid has been reported to act as a major determinant of viral tropism for erythroid precursor cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-related pathways. Our data suggest that high levels of circulating B19V during acute infection can cause endothelial damage, even without active replication or direct internalization into the cells.
Collapse
|
29
|
Heidler TV, Ernits K, Ziolkowska A, Claesson R, Persson K. Porphyromonas gingivalis fimbrial protein Mfa5 contains a von Willebrand factor domain and an intramolecular isopeptide. Commun Biol 2021; 4:106. [PMID: 33495563 PMCID: PMC7835359 DOI: 10.1038/s42003-020-01621-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins. Here we report the X-ray structure of the N-terminal half of Mfa5, which reveals a von Willebrand factor domain and two IgG-like domains. One of the IgG-like domains is stabilized by an intramolecular isopeptide bond, which is the first such bond observed in a Gram-negative bacterium. These features make Mfa5 structurally more related to streptococcal adhesins than to the other P. gingivalis Mfa proteins. The structure reported here indicates that horizontal gene transfer has occurred among the bacteria within the oral biofilm.
Collapse
Affiliation(s)
- Thomas V. Heidler
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Karin Ernits
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Agnieszka Ziolkowska
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Rolf Claesson
- grid.12650.300000 0001 1034 3451Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Karina Persson
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
30
|
Chiapparino A, Grbavac A, Jonker HR, Hackmann Y, Mortensen S, Zatorska E, Schott A, Stier G, Saxena K, Wild K, Schwalbe H, Strahl S, Sinning I. Functional implications of MIR domains in protein O-mannosylation. eLife 2020; 9:61189. [PMID: 33357379 PMCID: PMC7759382 DOI: 10.7554/elife.61189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) represent a conserved family of multispanning endoplasmic reticulum membrane proteins involved in glycosylation of S/T-rich protein substrates and unfolded proteins. PMTs work as dimers and contain a luminal MIR domain with a β-trefoil fold, which is susceptive for missense mutations causing α-dystroglycanopathies in humans. Here, we analyze PMT-MIR domains by an integrated structural biology approach using X-ray crystallography and NMR spectroscopy and evaluate their role in PMT function in vivo. We determine Pmt2- and Pmt3-MIR domain structures and identify two conserved mannose-binding sites, which are consistent with general β-trefoil carbohydrate-binding sites (α, β), and also a unique PMT2-subfamily exposed FKR motif. We show that conserved residues in site α influence enzyme processivity of the Pmt1-Pmt2 heterodimer in vivo. Integration of the data into the context of a Pmt1-Pmt2 structure and comparison with homologous β-trefoil – carbohydrate complexes allows for a functional description of MIR domains in protein O-mannosylation.
Collapse
Affiliation(s)
| | - Antonija Grbavac
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Hendrik Ra Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Yvonne Hackmann
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sofia Mortensen
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andrea Schott
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
31
|
Oscarsson J, Claesson R, Bao K, Brundin M, Belibasakis GN. Phylogenetic Analysis of Filifactor alocis Strains Isolated from Several Oral Infections Identified a Novel RTX Toxin, FtxA. Toxins (Basel) 2020; 12:toxins12110687. [PMID: 33143036 PMCID: PMC7692872 DOI: 10.3390/toxins12110687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod of the phylum Firmicutes, and is considered an emerging pathogen in various oral infections, including periodontitis. We here aimed to perform phylogenetic analysis of a genome-sequenced F. alocis type strain (ATCC 35896; CCUG 47790), as well as nine clinical oral strains that we have independently isolated and sequenced, for identification and deeper characterization of novel genomic elements of virulence in this species. We identified that 60% of the strains carried a gene encoding a hitherto unrecognized member of the large repeats-in-toxins (RTX) family, which we have designated as FtxA. The clinical infection origin of the ftxA-positive isolates largely varied. However, according to MLST, a clear monophylogeny was reveled for all ftxA-positive strains, along with a high co-occurrence of lactate dehydrogenase (ldh)-positivity. Cloning and expression of ftxA in E. coli, and purification of soluble FtxA yielded a protein of the predicted molecular size of approximately 250 kDa. Additional functional and proteomics analyses using both the recombinant protein and the ftxA-positive, and -negative isolates may reveal a possible role and mechanism(s) of FtxA in the virulence properties of F.alocis, and whether the gene might be a candidate diagnostic marker for more virulent strains.
Collapse
Affiliation(s)
- Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
- Correspondence:
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (G.N.B.)
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (G.N.B.)
| |
Collapse
|
32
|
Zhao Y, Ho YTC, Tailhades J, Cryle M. Understanding the Glycopeptide Antibiotic Crosslinking Cascade: In Vitro Approaches Reveal the Details of a Complex Biosynthesis Pathway. Chembiochem 2020; 22:43-51. [PMID: 32696500 DOI: 10.1002/cbic.202000309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 11/06/2022]
Abstract
The glycopeptide antibiotics (GPAs) are a fascinating example of complex natural product biosynthesis, with the nonribosomal synthesis of the peptide core coupled to a cytochrome P450-mediated cyclisation cascade that crosslinks aromatic side chains within this peptide. Given that the challenges associated with the synthesis of GPAs stems from their highly crosslinked structure, there is great interest in understanding how biosynthesis accomplishes this challenging set of transformations. In this regard, the use of in vitro experiments has delivered important insights into this process, including the identification of the unique role of the X-domain as a platform for P450 recruitment. In this minireview, we present an analysis of the results of in vitro studies into the GPA cyclisation cascade that have demonstrated both the tolerances and limitations of this process for modified substrates, and in turn developed rules for the future reengineering of this important antibiotic class.
Collapse
Affiliation(s)
- Yongwei Zhao
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Y T Candace Ho
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Max Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Sci Rep 2020; 10:12164. [PMID: 32699335 PMCID: PMC7376037 DOI: 10.1038/s41598-020-69039-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Cryptdins are disulfide-rich cationic antimicrobial peptides secreted by mouse Paneth cells and are known to exhibit potent antimicrobial activity against various deadly pathogens. Keeping in view the extremely low yield obtained from mouse Paneth cells and high cost of synthetic peptide(s), herein, we have attempted to produce cryptdin-2 in Escherichia coli using recombinant technology. To avoid lethal effects of peptide on the host cells, cryptdin-2 was expressed as a fusion protein with thioredoxin as fusion partner which yielded 40 mg/L protein in the soluble fraction. Subsequently, mature cryptdin-2 was cleaved from the fusion partner and purified by cation exchange chromatography. Since conjugation of poly(ethylene) glycol (PEG) has been known to improve the biological properties of biomolecules, therefore, we further attempted to prepare PEG-conjugated variant of cryptdin-2 using thiol specific PEGylation. Though the antimicrobial activity of PEGylated cryptdin-2 was compromised to some extent, but it was found to have enhanced serum stability for longer duration as compared to its un-modified forms. Also, it was found to exhibit reduced toxicity to the host cells. Further, its synergism with gentamicin suggests that PEGylated cryptdin-2 can be used with conventional antibiotics, thereby indicating its possibility to be used as an adjunct therapy.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India.,CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Amrita Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Girish Sahni
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
34
|
Kaniusaite M, Tailhades J, Kittilä T, Fage CD, Goode RJA, Schittenhelm RB, Cryle MJ. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. FEBS J 2020; 288:507-529. [PMID: 32359003 DOI: 10.1111/febs.15350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross-linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)-stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1-4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS-mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)-amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems.
Collapse
Affiliation(s)
- Milda Kaniusaite
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| | - Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | - Robert J A Goode
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| |
Collapse
|
35
|
Kramberger-Kaplan L, Austerlitz T, Bohlmann H. Positive Selection of Specific Antibodies Produced against Fusion Proteins. Methods Protoc 2020; 3:E37. [PMID: 32397084 PMCID: PMC7359703 DOI: 10.3390/mps3020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022] Open
Abstract
A method for the positive selection of specific antibodies for target proteins expressed as fusion proteins for the production of antiserum is presented. As proof of concept, the fusion protein FLAG::His::GFP::His::FLAG was expressed in Escherichia coli, purified, and used for the immunization of rabbits. The obtained serum was precleared via protein A affinity. A CusF::FLAG fusion protein was expressed in the periplasm of E. coli and purified. GFP without tags was also expressed in E. coli and purified via organic extraction. These proteins were then coupled to NHS-activated sepharose and used for the positive selection of Anti-GFP and Anti-FLAG antibodies. The obtained sera were tested for their specificity against different protein samples and fusion proteins in Western blots. A high specificity of the antibodies could be achieved by a single affinity chromatography step. In general, we advise to express the target protein with different tags and in different E. coli compartments for antibody production and affinity chromatography.
Collapse
Affiliation(s)
| | | | - Holger Bohlmann
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (L.K.-K.); (T.A.)
| |
Collapse
|
36
|
Structural basis for the complex DNA binding behavior of the plant stem cell regulator WUSCHEL. Nat Commun 2020; 11:2223. [PMID: 32376862 PMCID: PMC7203112 DOI: 10.1038/s41467-020-16024-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Stem cells are one of the foundational evolutionary novelties that allowed the independent emergence of multicellularity in the plant and animal lineages. In plants, the homeodomain (HD) transcription factor WUSCHEL (WUS) is essential for the maintenance of stem cells in the shoot apical meristem. WUS has been reported to bind to diverse DNA motifs and to act as transcriptional activator and repressor. However, the mechanisms underlying this remarkable behavior have remained unclear. Here, we quantitatively delineate WUS binding to three divergent DNA motifs and resolve the relevant structural underpinnings. We show that WUS exhibits a strong binding preference for TGAA repeat sequences, while retaining the ability to weakly bind to TAAT elements. This behavior is attributable to the formation of dimers through interactions of specific residues in the HD that stabilize WUS DNA interaction. Our results provide a mechanistic basis for dissecting WUS dependent regulatory networks in plant stem cell control.
Collapse
|
37
|
Rosenstein S, Vaisman-Mentesh A, Levy L, Kigel A, Dror Y, Wine Y. Production of F(ab') 2 from Monoclonal and Polyclonal Antibodies. ACTA ACUST UNITED AC 2020; 131:e119. [PMID: 32319727 DOI: 10.1002/cpmb.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antibodies are widely used in therapeutic, diagnostic, and research applications, and antibody derivatives such as F(ab')2 fragments are used when only a particular antibody region is required. F(ab')2 can be produced through antibody engineering, but some applications require F(ab')2 produced from an original formulated antibody or directly from a polyclonal antibody pool. The cysteine protease immunoglobulin-degrading enzyme (IdeS) from Streptococcus pyogenes digests immunoglobulin G (IgG) specifically and efficiently to produce F(ab')2 . Here we detail the production and purification of recombinant IdeS; its utilization to digest monoclonal or polyclonal antibodies to F(ab')2 fragments; and F(ab')2 purification through consecutive affinity chromatography steps. The resultant F(ab')2 exhibit high purity, retain antigen-binding functionality, and are readily utilizable in various downstream applications. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Production and purification of F(ab')2 fragments from monoclonal and polyclonal antibodies using IdeS Alternate Protocol: Purification of polyclonal antigen-specific F(ab')2 fragments from human serum or secretions Support Protocol: Production and purification of IdeS.
Collapse
Affiliation(s)
- Shai Rosenstein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Anna Vaisman-Mentesh
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Limor Levy
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Aya Kigel
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Yael Dror
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Yariv Wine
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
38
|
Ki MR, Pack SP. Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 2020; 104:2411-2425. [DOI: 10.1007/s00253-020-10402-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
|
39
|
SrnR from Streptomyces griseus is a nickel-binding transcriptional activator. J Biol Inorg Chem 2019; 25:187-198. [PMID: 31853648 DOI: 10.1007/s00775-019-01751-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023]
Abstract
Nickel ions are crucial components for the catalysis of biological reactions in prokaryotic organisms. As an uncontrolled nickel trafficking is toxic for living organisms, nickel-dependent bacteria have developed tightly regulated strategies to maintain the correct intracellular metal ion quota. These mechanisms require transcriptional regulator proteins that respond to nickel concentration, activating or repressing the expression of specific proteins related to Ni(II) metabolism. In Streptomyces griseus, a Gram-positive bacterium used for antibiotic production, SgSrnR and SgSrnQ regulate the nickel-dependent antagonistic expression of two superoxide dismutase (SOD) enzymes, a Ni-SOD and a FeZn-SOD. According to a previously proposed model, SgSrnR and SgSrnQ form a protein complex in which SgSrnR works as repressor, binding directly to the promoter of the gene coding for FeZn-SOD, while SgSrnQ is the Ni(II)-dependent co-repressor. The present work focuses on the determination of the biophysical and functional properties of SgSrnR. The protein was heterologously expressed and purified from Escherichia coli. The structural and metal-binding analysis, carried out by circular dichroism, light scattering, fluorescence and isothermal titration calorimetry, showed that the protein is a well-structured homodimer, able to bind nickel with moderate affinity. DNase I footprinting and β-galactosidase gene reporter assays revealed that apo-SgSrnR is able to bind its DNA operator and activates a transcriptional response. The structural and functional properties of this protein are discussed relatively to its role as a Ni(II)-dependent sensor.
Collapse
|
40
|
Kaniusaite M, Tailhades J, Marschall EA, Goode RJA, Schittenhelm RB, Cryle MJ. A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics. Chem Sci 2019; 10:9466-9482. [PMID: 32055321 PMCID: PMC6993612 DOI: 10.1039/c9sc03678d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
A complex interplay of non-ribosomal peptide synthetase domains works together with trans-acting enzymes to ensure effective GPA biosynthesis.
Non-ribosomal peptide biosynthesis produces highly diverse natural products through a complex cascade of enzymatic reactions that together function with high selectivity to produce bioactive peptides. The modification of non-ribosomal peptide synthetase (NRPS)-bound amino acids can introduce significant structural diversity into these peptides and has exciting potential for biosynthetic redesign. However, the control mechanisms ensuring selective modification of specific residues during NRPS biosynthesis have previously been unclear. Here, we have characterised the incorporation of the non-proteinogenic amino acid 3-chloro-β-hydroxytyrosine during glycopeptide antibiotic (GPA) biosynthesis. Our results demonstrate that the modification of this residue by trans-acting enzymes is controlled by the selectivity of the upstream condensation domain responsible for peptide synthesis. A proofreading thioesterase works together with this process to ensure that effective peptide biosynthesis proceeds even when the selectivity of key amino acid activation domains within the NRPS is low. Furthermore, the exchange of condensation domains with altered amino acid specificities allows the modification of such residues within NRPS biosynthesis to be controlled, which will doubtless prove important for reengineering of these assembly lines. Taken together, our results indicate the importance of the complex interplay of NRPS domains and trans-acting enzymes to ensure effective GPA biosynthesis, and in doing so reveals a process that is mechanistically comparable to the hydrolytic proofreading function of tRNA synthetases in ribosomal protein synthesis.
Collapse
Affiliation(s)
- Milda Kaniusaite
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . .,EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . .,EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia
| | - Edward A Marschall
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . .,EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia
| | - Robert J A Goode
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . .,Monash Proteomics and Metabolomics Facility , Monash University , Clayton , Victoria 3800 , Australia
| | - Ralf B Schittenhelm
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . .,Monash Proteomics and Metabolomics Facility , Monash University , Clayton , Victoria 3800 , Australia
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . .,EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
41
|
Greule A, Izoré T, Iftime D, Tailhades J, Schoppet M, Zhao Y, Peschke M, Ahmed I, Kulik A, Adamek M, Goode RJA, Schittenhelm RB, Kaczmarski JA, Jackson CJ, Ziemert N, Krenske EH, De Voss JJ, Stegmann E, Cryle MJ. Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nat Commun 2019; 10:2613. [PMID: 31197182 PMCID: PMC6565677 DOI: 10.1038/s41467-019-10384-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/07/2019] [Indexed: 01/25/2023] Open
Abstract
Kistamicin is a divergent member of the glycopeptide antibiotics, a structurally complex class of important, clinically relevant antibiotics often used as the last resort against resistant bacteria. The extensively crosslinked structure of these antibiotics that is essential for their activity makes their chemical synthesis highly challenging and limits their production to bacterial fermentation. Kistamicin contains three crosslinks, including an unusual 15-membered A-O-B ring, despite the presence of only two Cytochrome P450 Oxy enzymes thought to catalyse formation of such crosslinks within the biosynthetic gene cluster. In this study, we characterise the kistamicin cyclisation pathway, showing that the two Oxy enzymes are responsible for these crosslinks within kistamicin and that they function through interactions with the X-domain, unique to glycopeptide antibiotic biosynthesis. We also show that the kistamicin OxyC enzyme is a promiscuous biocatalyst, able to install multiple crosslinks into peptides containing phenolic amino acids.
Collapse
Affiliation(s)
- Anja Greule
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Thierry Izoré
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Dumitrita Iftime
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Melanie Schoppet
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Yongwei Zhao
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Madeleine Peschke
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Iftekhar Ahmed
- Department of Chemistry, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Robert J A Goode
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Monash Biomedical Proteomics Facility, Monash University, Clayton, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Monash Biomedical Proteomics Facility, Monash University, Clayton, VIC, 3800, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elizabeth H Krenske
- Department of Chemistry, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - James J De Voss
- Department of Chemistry, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
42
|
Krishna B, Gubensäk N, Wagner GE, Zechner E, Raffl S, Becker W, Schrank E, Zangger K. 1H, 13C, 15N resonance assignment of the C-terminal domain of the bifunctional enzyme TraI of plasmid R1. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:121-125. [PMID: 30617945 PMCID: PMC6439144 DOI: 10.1007/s12104-018-9863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Transfer of genetic material is the main mechanism underlying the spread of antibiotic resistance and virulence factors within the bacterial community. Conjugation is one such process by which the genetic material is shared from one bacterium to another. The DNA substrate is processed and prepared for transfer by a multi-protein complex called the relaxosome .The relaxosome of plasmid R1 possesses the most crucial enzyme TraI which, both nicks and unwinds the dsDNA substrate. TraI comprises 1765 residues and multiple functional domains, including those catalyzing the DNA trans-esterase (relaxase) on the dsDNA designated for a conjugative transfer and DNA helicase activities. Structural and functional studies have been reported for most of the TraI except the C-terminal domain spanning from residue 1630 to 1765. This region is the least understood part of TraI and is thought to be highly disordered and flexible. This region, being intrinsically disordered, is hypothesized to be serving as an interacting platform for other proteins involved in this DNA transfer initiation mechanism. In this work, we report the 1H, 13C, 15N resonance assignment of this region as well as the secondary structure information based on the backbone chemical shifts.
Collapse
Affiliation(s)
| | - Nina Gubensäk
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Ellen Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, 8010, Graz, Austria
| | - Sandra Raffl
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, 8010, Graz, Austria
| | - Walter Becker
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Evelyne Schrank
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
43
|
Greule A, Charkoudian LK, Cryle MJ. Studying trans-acting enzymes that target carrier protein-bound amino acids during nonribosomal peptide synthesis. Methods Enzymol 2019; 617:113-154. [PMID: 30784400 DOI: 10.1016/bs.mie.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Nonribosomal peptide biosynthesis is a complex enzymatic assembly responsible for producing a great diversity of bioactive peptide natural products. Due to the recurring arrangement of catalytic domains within these machineries, great interest has been shown in reengineering these pathways to produce novel, designer peptide products. However, in order to realize such ambitions, it is first necessary to develop a comprehensive understanding of the selectivity, mechanisms, and structure of these complex enzymes, which in turn requires significant in vitro experiments. Within nonribosomal biosynthesis, some modifications are performed by enzymatic domains that are not linked to the main nonribosomal peptide synthetase but rather act in trans: these systems offer great potential for redesign, but in turn require detailed study. In this chapter, we present an overview of in vitro experiments that can be used to characterize examples of such trans-interacting enzymes from nonribosomal peptide biosynthesis: Cytochrome P450 monooxygenases and flavin-dependent halogenases.
Collapse
Affiliation(s)
- Anja Greule
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia
| | | | - Max J Cryle
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
44
|
Schoppet M, Peschke M, Kirchberg A, Wiebach V, Süssmuth RD, Stegmann E, Cryle MJ. The biosynthetic implications of late-stage condensation domain selectivity during glycopeptide antibiotic biosynthesis. Chem Sci 2019; 10:118-133. [PMID: 30713624 PMCID: PMC6333238 DOI: 10.1039/c8sc03530j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/10/2018] [Indexed: 01/27/2023] Open
Abstract
Non-ribosomal peptide synthesis is a highly important biosynthetic pathway for the formation of many secondary metabolites of medical relevance. Due to the challenges associated with the chemical synthesis of many of the products of these assembly lines, understanding the activity and selectivity of non-ribosomal peptide synthetase (NRPS) machineries is an essential step towards the redesign of such machineries to produce new bioactive peptides. Whilst the selectivity of the adenylation domains responsible for amino acid activation during NRPS synthesis has been widely studied, the selectivity of the essential peptide bond forming domains - known as condensation domains - is not well understood. Here, we present the results of a combination of in vitro and in vivo investigations into the final condensation domain from the NRPS machinery that produces the glycopeptide antibiotics (GPAs). Our results show that this condensation domain is tolerant for a range of peptide substrates and even those with unnatural stereochemistry of the peptide C-terminus, which is in contrast to the widely ascribed role of these domains as a stereochemical gatekeeper during NRPS synthesis. Furthermore, we show that this condensation domain has a significant preference for linear peptide substrates over crosslinked peptides, which indicates that the GPA crosslinking cascade targets the heptapeptide bound to the final module of the NRPS machinery and reinforces the role of the unique GPA X-domain in this process. Finally, we demonstrate that the peptide bond forming activity of this condensation domain is coupled to the rate of amino acid activation performed by the subsequent adenylation domain. This is a significant result with implications for NRPS redesign, as it indicates that the rate of amino acid activation of modified adenylation domains must be maintained to prevent unwanted peptide hydrolysis from the NRPS due to a loss of the productive coupling of amino acid selection and peptide bond formation. Taken together, our results indicate that assessing condensation domain activity is a vital step in not only understanding the biosynthetic logic and timing of NRPS-mediated peptide assembly, but also the rules which redesign efforts must obey in order to successfully produce functional, modified NRPS assembly lines.
Collapse
Affiliation(s)
- Melanie Schoppet
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia .
- Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg , Germany
| | - Madeleine Peschke
- Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg , Germany
| | - Anja Kirchberg
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia .
| | - Vincent Wiebach
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 124 , 10623 Berlin , Germany
| | - Roderich D Süssmuth
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 124 , 10623 Berlin , Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen , Microbiology/Biotechnology , University of Tübingen , Auf der Morgenstelle 28, 72076 Tübingen , Germany .
- German Centre for Infection Research (DZIF) , Partner Site Tübingen, Tübingen , Germany
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia .
- Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg , Germany
- ARC Centre of Excellence in Advanced Molecular Imaging , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
45
|
Characterization of MCU-Binding Proteins MCUR1 and CCDC90B - Representatives of a Protein Family Conserved in Prokaryotes and Eukaryotic Organelles. Structure 2019; 27:464-475.e6. [PMID: 30612859 DOI: 10.1016/j.str.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/12/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
Membrane-bound coiled-coil proteins are important mediators of signaling, fusion, and scaffolding. Here, we delineate a heterogeneous group of trimeric membrane-anchored proteins in prokaryotes and eukaryotic organelles with a characteristic head-neck-stalk-anchor architecture, in which a membrane-anchored coiled-coil stalk projects an N-terminal head domain via a β-layer neck. Based on sequence analysis, we identify different types of head domains and determine crystal structures of two representatives, the archaeal protein Kcr-0859 and the human CCDC90B, which possesses the most widespread head type. Using mitochondrial calcium uniporter regulator 1 (MCUR1), the functionally characterized paralog of CCDC90B, we study the role of individual domains, and find that the head interacts directly with the mitochondrial calcium uniporter (MCU) and is destabilized upon Ca2+ binding. Our data provide structural details of a class of membrane-bound coiled-coil proteins and identify the conserved head domain of the most widespread type as a mediator of their function.
Collapse
|
46
|
Bernier SC, Cantin L, Salesse C. Systematic analysis of the expression, solubility and purification of a passenger protein in fusion with different tags. Protein Expr Purif 2018; 152:92-106. [DOI: 10.1016/j.pep.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
47
|
Hallin EI, Eriksen MS, Baryshnikov S, Nikolaienko O, Grødem S, Hosokawa T, Hayashi Y, Bramham CR, Kursula P. Structure of monomeric full-length ARC sheds light on molecular flexibility, protein interactions, and functional modalities. J Neurochem 2018; 147:323-343. [DOI: 10.1111/jnc.14556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Erik I. Hallin
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - Maria S. Eriksen
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Sergei Baryshnikov
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Oleksii Nikolaienko
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Sverre Grødem
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Tomohisa Hosokawa
- Department of Pharmacology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Yasunori Hayashi
- Department of Pharmacology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Clive R. Bramham
- Department of Biomedicine; University of Bergen; Bergen Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders; University of Bergen; Bergen Norway
| | - Petri Kursula
- Department of Biomedicine; University of Bergen; Bergen Norway
- Faculty of Biochemistry and Molecular Medicine; University of Oulu; Oulu Finland
| |
Collapse
|
48
|
Karlberg T, Hornyak P, Pinto AF, Milanova S, Ebrahimi M, Lindberg M, Püllen N, Nordström A, Löverli E, Caraballo R, Wong EV, Näreoja K, Thorsell AG, Elofsson M, De La Cruz EM, Björkegren C, Schüler H. 14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Nat Commun 2018; 9:3785. [PMID: 30224724 PMCID: PMC6141617 DOI: 10.1038/s41467-018-06194-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas are a common cause of hospital-acquired infections that may be lethal. ADP-ribosyltransferase activities of Pseudomonas exotoxin-S and -T depend on 14-3-3 proteins inside the host cell. By binding in the 14-3-3 phosphopeptide binding groove, an amphipathic C-terminal helix of ExoS and ExoT has been thought to be crucial for their activation. However, crystal structures of the 14-3-3β:ExoS and -ExoT complexes presented here reveal an extensive hydrophobic interface that is sufficient for complex formation and toxin activation. We show that C-terminally truncated ExoS ADP-ribosyltransferase domain lacking the amphipathic binding motif is active when co-expressed with 14-3-3. Moreover, swapping the amphipathic C-terminus with a fragment from Vibrio Vis toxin creates a 14-3-3 independent toxin that ADP-ribosylates known ExoS targets. Finally, we show that 14-3-3 stabilizes ExoS against thermal aggregation. Together, this indicates that 14-3-3 proteins activate exotoxin ADP-ribosyltransferase domains by chaperoning their hydrophobic surfaces independently of the amphipathic C-terminal segment. The cellular toxicity of Pseudomonas exotoxin-S and -T depends on their activation by 14-3-3 but the underlying molecular mechanism is not fully understood. Here, the authors show that a previously unrecognized 14-3-3:exotoxin binding interface is sufficient for complex formation and toxin activation.
Collapse
Affiliation(s)
- Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Peter Hornyak
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Ana Filipa Pinto
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Stefina Milanova
- Department of Cellular and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 17165, Solna, Sweden
| | - Mahsa Ebrahimi
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Mikael Lindberg
- Protein Expertise Platform, Umeå University, Kemihuset, 90187, Umeå, Sweden
| | - Nikolai Püllen
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Axel Nordström
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Elinor Löverli
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, Kemihuset, 90187, Umeå, Sweden
| | - Emily V Wong
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,University of California, San Francisco Medical School, Department of Biochemistry and Biophysics, San Francisco, CA, 94158, USA
| | - Katja Näreoja
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, Kemihuset, 90187, Umeå, Sweden
| | - Enrique M De La Cruz
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Camilla Björkegren
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden.,Department of Cellular and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 17165, Solna, Sweden
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 4c, 14157, Huddinge, Sweden.
| |
Collapse
|
49
|
Tarsia C, Danielli A, Florini F, Cinelli P, Ciurli S, Zambelli B. Targeting Helicobacter pylori urease activity and maturation: In-cell high-throughput approach for drug discovery. Biochim Biophys Acta Gen Subj 2018; 1862:2245-2253. [PMID: 30048738 DOI: 10.1016/j.bbagen.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori is a bacterium strongly associated with gastric cancer. It thrives in the acidic environment of the gastric niche of large portions of the human population using a unique adaptive mechanism that involves the catalytic activity of the nickel-dependent enzyme urease. Targeting urease represents a key strategy for drug design and H. pylori eradication. METHOD Here, we describe a novel method to screen, directly in the cellular environment, urease inhibitors. A ureolytic Escherichia coli strain was engineered by cloning the entire urease operon in an expression plasmid and used to test in-cell urease inhibition with a high-throughput colorimetric assay. A two-plasmid system was further developed to evaluate the ability of small peptides to block the protein interactions that lead to urease maturation. RESULTS The developed assay is a robust cellular model to test, directly in the cell environment, urease inhibitors. The efficacy of a co-expressed peptide to affect the interaction between UreF and UreD, two accessory proteins necessary for urease activation, was observed. This event involves a process that occurs through folding upon binding, pointing to the importance of intrinsically disordered hot spots in protein interfaces. CONCLUSIONS The developed system allows the concomitant screening of a large number of drug candidates that interfere with the urease activity both at the level of the enzyme catalysis and maturation. GENERAL SIGNIFICANCE As inhibition of urease has the potential of being a global antibacterial strategy for a large number of infections, this work paves the way for the development of new candidates for antibacterial drugs.
Collapse
Affiliation(s)
- Cinzia Tarsia
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Francesca Florini
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Paolo Cinelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy.
| |
Collapse
|
50
|
Purification and Characterization of Native and Vaccine Candidate Mutant Enterotoxigenic Escherichia coli Heat-Stable Toxins. Toxins (Basel) 2018; 10:toxins10070274. [PMID: 29970812 PMCID: PMC6071264 DOI: 10.3390/toxins10070274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), which secretes the heat-stable toxin (ST) is among the four most important enteropathogens that cause moderate-to-severe diarrhea in children in low- and middle-income countries. ST is an intestinal molecular antagonist causing diarrhea and hence an attractive vaccine target. A non-toxic and safe ST vaccine should include one or more detoxifying mutations, and rigorous characterization of such mutants requires structurally intact peptides. To this end, we established a system for purification of ST and ST mutants by fusing the sequence encoding the mature ST peptide to the disulfide isomerase DsbC. A Tobacco Etch Virus protease cleavage site facilitates the proteolytic release of free ST with no additional residues. The purified ST peptides have the expected molecular masses, the correct number of disulfide bridges, and have biological activities and antigenic properties comparable to ST isolated from ETEC. We also show that free DsbC can assist in refolding denatured and misfolded ST in vitro. Finally, we demonstrate that the purification system can be used to produce ST mutants with an intact neutralizing epitope, that two single mutations, L9S and A14T, reduce toxicity more than 100-fold, and that the L9S/A14T double mutant has no measurable residual toxicity.
Collapse
|