1
|
Lehman SJ, Meller A, Solieva SO, Lotthammer JM, Greenberg L, Langer SJ, Greenberg MJ, Tardiff JC, Bowman GR, Leinwand L. Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547580. [PMID: 37461648 PMCID: PMC10349964 DOI: 10.1101/2023.07.03.547580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and left ventricular non-compaction (LVNC) (Ile467Thr, I467T). To investigate how these missense mutations lead to independent diseases, we studied the molecular effects of each mutation using recombinant human β-MHC Subfragment 1 (S1) in in vitro assays. Both HCM-I467V and LVNC-I467T S1 mutations exhibited similar mechanochemical function, including unchanged ATPase and enhanced actin velocity but had opposing effects on the super-relaxed (SRX) state of myosin. HCM-I467V S1 showed a small reduction in the SRX state, shifting myosin to a more actin-available state that may lead to the "gain-of-function" phenotype commonly described in HCM. In contrast, LVNC-I467T significantly increased the population of myosin in the ultra-slow SRX state. Interestingly, molecular dynamics simulations reveal that I467T allosterically disrupts interactions between ADP and the nucleotide-binding pocket, which may result in an increased ADP release rate. This predicted change in ADP release rate may define the enhanced actin velocity measured in LVNC-I467T, but also describe the uncoupled mechanochemical function for this mutation where the enhanced ADP release rate may be sufficient to offset the increased SRX population of myosin. These contrasting molecular effects may lead to contractile dysregulation that initiates LVNC-associated signaling pathways that progress the phenotype. Together, analysis of these mutations provides evidence that phenotypic complexity originates at the molecular level and is critical to understanding disease progression and developing therapies.
Collapse
Affiliation(s)
- Sarah J Lehman
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Artur Meller
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahlo O Solieva
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - Jeffrey M Lotthammer
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Lina Greenberg
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Stephen J Langer
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Michael J Greenberg
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Jil C Tardiff
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, USA
| | - Gregory R Bowman
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - Leslie Leinwand
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| |
Collapse
|
2
|
Zhang J, Sun L, Cui P, Zou L, Chen Y, Liang J, Ji S, Walayat N, Lyu F, Ding Y. Effects of combined treatment of electrolytic water and chitosan on the quality and proteome of large yellow croaker (Pseudosciaena crocea) during refrigerated storage. Food Chem 2023; 406:135062. [PMID: 36462361 DOI: 10.1016/j.foodchem.2022.135062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The labeled quantitative proteomic method was used to study the changes in muscle proteins of large yellow croaker (Pseudosciaena crocea) treated with electrolytic water (EW) and chitosan (CHI) combined preservation during 12 days of refrigeration storage (4 °C). The analysis indicated that the freshness instructed by total viable count (TVC), total volatile basic nitrogen (TVB-N) and K value was significantly maintained after combined preservation during storage at 4 °C for 12 days (CS12). Furthermore, 46 differentially abundant proteins (DAPs) were detected in storage at 4 °C for 12 days (S12) compared to the freshness group (F), which bioinformatics confirmed were mainly skeletal proteins and enzymes. Correlation analysis showed that 19 highly correlated DAPs could be used as potential protein markers of freshness. Changes in the relation of freshness and protein were shown in further correlative analysis of F and CS12, which were caused by combined preservation. Therefore, combined preservation is promising in the quality and stability of large yellow croakers.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Yutong Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Jianqin Liang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shengqiang Ji
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Tas RP, Albertazzi L, Voets IK. Small Peptide-Protein Interaction Pair for Genetically Encoded, Fixation Compatible Peptide-PAINT. NANO LETTERS 2021; 21:9509-9516. [PMID: 34757759 PMCID: PMC8631740 DOI: 10.1021/acs.nanolett.1c02895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/01/2021] [Indexed: 05/08/2023]
Abstract
Super-resolution microscopy via PAINT has been widely adopted in life sciences to interrogate the nanoscale architecture of many cellular structures. However, obtaining quantitative information in fixed cellular samples remains challenging because control of labeling stoichiometry is hampered in current approaches due to click-chemistry and additional targeting probes. To overcome these challenges, we have identified a small, PDZ-based, peptide-protein interaction pair that is genetically encodable and compatible with super-resolution imaging upon cellular fixation without additional labeling. Stoichiometric labeling control by genetic incorporation of this probe into the cellular vimentin network and mitochondria resulted in super-resolved 3D reconstructions with high specificity and spatial resolution. Further characterization reveals that this peptide-protein interaction is compatible with quantitative PAINT and that its binding kinetics remains unaltered upon fixation. Finally, by fusion of our probe to nanobodies against conventional expression markers, we show that this approach provides a versatile addition to the super-resolution toolbox.
Collapse
Affiliation(s)
- Roderick P. Tas
- Laboratory
of Self-Organizing Soft Matter, Institute for Complex Molecular Systems
and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| | - Lorenzo Albertazzi
- Laboratory
of Nanoscopy for Nanomedicine, Institute for Complex Molecular Systems
and Department of Biomedical Engineering, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Institute for Complex Molecular Systems
and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| |
Collapse
|
4
|
Lv Y, Fu L. The potential mechanism for Hydroxysafflor yellow A attenuating blood-brain barrier dysfunction via tight junction signaling pathways excavated by an integrated serial affinity chromatography and shotgun proteomics analysis approach. Neurochem Int 2017; 112:38-48. [PMID: 29107696 DOI: 10.1016/j.neuint.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Our previous studies elucidated that hydroxysafflor yellow A (HSYA) exerted anti-inflammatory effects against ischemia stroke by inhibiting TLR4 pathway-mediated signaling transduction. However, only several targets were verified in that limited work. The integrated method of serial affinity chromatography (SAC) and shotgun proteomics analysis (SPA) might be an alternative approach for exploring a potential therapeutic role. SAC was induced to extract specific binding proteins in the brain tissue of 2 h of ischemia stroke mice via HSYA affinity matrices. SPA was conducted by nanoLC-MS/MS, while the identified proteins were mapped on to Gene Ontology and KEGG pathway components analysis. The protection of HSYA for blood-brain barrier in mice with ischemia stroke was assessed with the leakage of Evans Blue. The expression of tight junction proteins of blood-brain barrier: occludin, claudin-5, and ZO-1 were detected with ischemia boundary positive areas staining. The regulation of nonmuscle myosin heavy chain IIA (NMMHC IIA), TLR4-mediated PI3K/AKT/JNK1/2/14-3-3ε/NF-κB p65 signaling pathway were evaluated using western blot analysis. A total of 35 proteins with molecular eights ranging from 27,841.22 to 234,122.79 KD were identified. Gene Ontology annotation and KEGG pathways analysis of the identified proteins were conducted with tight junction and PI3K/AKT signaling pathways. HSYA could significantly reduce the leakage of Evans Blue in mice with ischemia stroke, while attenuating the expression of occludin, claudin-5, and ZO-1. Western blot demonstrated that regulation of NMMHC IIA, TLR4-mediated PI3K/AKT/JNK1/2/14-3-3ε/NF-κB p65 signaling pathway played an essential role in the protective effect of HSYA. The integrated method of SAC and SPA provides the promising explanations for exploring the mechanism underlying blood-brain barrier dysfunction via the tight junction pathway. HSYA could attenuate blood-brain barrier dysfunction in anti-inflammatory patterns in ischemia stroke mice via the tight junction pathway.
Collapse
Affiliation(s)
- Yanni Lv
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Longsheng Fu
- Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 2016; 612:57-77. [DOI: 10.1016/j.abb.2016.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
|
6
|
Walkup WG, Mastro TL, Schenker LT, Vielmetter J, Hu R, Iancu A, Reghunathan M, Bannon BD, Kennedy MB. A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density. eLife 2016; 5. [PMID: 27623146 PMCID: PMC5040590 DOI: 10.7554/elife.16813] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
SynGAP is a Ras/Rap GTPase-activating protein (GAP) that is a major constituent of postsynaptic densities (PSDs) from mammalian forebrain. Its α1 isoform binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and can occupy as many as 15% of these PDZ domains. We present evidence that synGAP-α1 regulates the composition of the PSD by restricting binding to the PDZ domains of PSD-95. We show that phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Polo-like kinase-2 (PLK2) decreases its affinity for the PDZ domains by several fold, which would free PDZ domains for occupancy by other proteins. Finally, we show that three critical postsynaptic signaling proteins that bind to the PDZ domains of PSD-95 are present in higher concentration in PSDs isolated from mice with a heterozygous deletion of synGAP.
Collapse
Affiliation(s)
- Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Tara L Mastro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Leslie T Schenker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jost Vielmetter
- Beckman Institute Protein Expression Center, California Institute of Technology, Pasadena, United States
| | - Rebecca Hu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ariella Iancu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Meera Reghunathan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Barry Dylan Bannon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mary B Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
7
|
Baliova M, Juhasova A, Jursky F. The elution of certain protein affinity tags with millimolar concentrations of diclofenac. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1006:187-193. [PMID: 26551210 DOI: 10.1016/j.jchromb.2015.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/13/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
Diclofenac (2-[(2, 6-dichlorophenyl)amino] benzeneacetic acid) is a sparingly soluble, nonsteroidal anti-inflammatory drug therapeutically acting at low micromolar concentrations. In pH range from 8 to 11, its aqueous solubility can be increased up to 200 times by the presence of counter ions such as sodium. Our protein interaction studies revealed that a millimolar concentration of sodium diclofenac is able to elute glutathione S-transferase (GST), cellulose binding protein (CBD), and maltose binding protein (MBP) but not histidine-tagged or PDZ-tagged proteins from their affinity resins. The elution efficiency of diclofenac is comparable with the eluting agents normally used at similar concentrations. Native gel electrophoresis of sodium diclofenac-treated proteins showed that the interaction is non-covalent and non-denaturing. These results suggest that sodium diclofenac, in addition to its pharmaceutical applications, can also be exploited as a lead for the development of new proteomics reagents.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Anna Juhasova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
8
|
Walkup WG, Kennedy MB. Protein purification using PDZ affinity chromatography. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2015; 80:9.10.1-9.10.37. [PMID: 25829303 PMCID: PMC4435810 DOI: 10.1002/0471140864.ps0910s80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.
Collapse
Affiliation(s)
- Ward G. Walkup
- Department of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Mail Code 216-76, Pasadena, California 91125
| | - Mary B. Kennedy
- Department of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Mail Code 216-76, Pasadena, California 91125
| |
Collapse
|