1
|
Chen L, Wang J, Ren Y, Ma Y, Liu J, Jiang H, Liu C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155382. [PMID: 38382280 DOI: 10.1016/j.phymed.2024.155382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by chronic hyperglycaemia. Chronic metabolic abnormalities and long-term hyperglycaemia may result in a wide range of acute and chronic consequences. Previous studies have demonstrated that artesunate(ART) has antidiabetic, anti-inflammatory, antiatherosclerotic, and other beneficial effects, but the specific regulatory mechanism is not completely clear. AIM This study investigated the effects of ART on metabolic disorders in type 2 diabetes mellitus (T2DM) model db/db mice and explored the underlying mechanisms involved. METHODS C57BL/KsJ-db/db mice were used to identify the targets and molecular mechanism of ART. Metabolomic methods were used to evaluate the efficacy of ART in improving T2DM-related metabolic disorders. Network pharmacology and transcriptomic sequencing were used to analyse the targets and pathways of ART in T2DM. Finally, molecular biology experiments were performed to verify the key targets and pathways selected by network pharmacology and transcriptomic analyses. RESULTS After a 7-week ART intervention (160 mg/kg), the glucose and lipid metabolism levels of the db/db mice improved. Additionally, the oxidative stress indices, namely, the MDA and SOD levels, significantly improved (p<0.01). Linoleic acid and glycerophospholipid metabolism, amino acid metabolism, bile acid synthesis, and purine metabolism disorders in db/db mice were partially corrected after ART treatment. Network pharmacology analysis identified important targets of ART for the treatment of metabolic disorders in T2DM . These targets are involved in key signalling pathways, including the highest scores observed for the PI3K/Akt signalling pathway. Transcriptomic analysis revealed that ART could activate the MAPK signalling pathway and two key gene targets, HGK and GADD45. Immunoblotting revealed that ART increases p-PI3K, p-AKT, Glut2, and IRS1 protein expression and suppresses the phosphorylation of p38, ERK1/2, and JNK, returning HGK and GADD45 to their preartesunate levels. CONCLUSION Treatment of db/db mice with 160 mg/kg ART for 7 weeks significantly reduced fasting blood glucose and lipid levels. It also improved metabolic imbalances in amino acids, lipids, purines, and bile acids, thereby improving metabolic disorders. These effects are achieved by activating the PI3K/AKT pathway and inhibiting the MAPK pathway, thus demonstrating the efficacy of the drug.
Collapse
Affiliation(s)
- Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jialin Wang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanshuang Ren
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
2
|
Liu H, Li H, Deng G, Zheng X, Huang Y, Chen J, Meng Z, Gao Y, Qian Z, Liu F, Lu X, Shi Y, Shang J, Yan H, Zheng Y, Shen Z, Qiao L, Zhang W, Wang X. Association of AST/ALT ratio with 90-day outcomes in patients with acute exacerbation of chronic liver disease: a prospective multicenter cohort study in China. Front Med (Lausanne) 2024; 11:1307901. [PMID: 38576715 PMCID: PMC10993385 DOI: 10.3389/fmed.2024.1307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
Background and aim A high aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio is associated with liver injury in liver disease; however, no data exist regarding its relationship with 90-day prognosis in patients with acute exacerbation of chronic liver disease. Methods In this study, 3,758 participants (955 with advanced fibrosis and 2,803 with cirrhosis) from the CATCH-LIFE cohort in China were included. The relationships between different AST/ALT ratios and the risk of adverse 90-day outcomes (death or liver transplantation) were determined in patients with cirrhosis or hepatitis B virus (HBV)-associated advanced fibrosis, respectively. Results In the patients with HBV-associated advanced fibrosis, the risk of 90-day adverse outcomes increased with AST/ALT ratio; after adjusting for all confounding factors, the risk of adverse 90-day outcomes was the highest when AST/ALT ratio was more than 1.08 (OR = 6.91 [95% CI = 1.789-26.721], p = 0.005), and the AST/ALT ratio of >1.9 accelerated the development of adverse outcomes. In patients with cirrhosis, an AST/ALT ratio > 1.38 increased the risk of adverse 90-day outcomes in all univariables (OR = 1.551 [95% CI = 1.216-1.983], p < 0.001) and multivariable-adjusted analyses (OR = 1.847 [95% CI = 1.361-2.514], p < 0.001), and an elevated AST/ALT ratio (<2.65) accelerated the incidence of 90-day adverse outcomes. An AST/ALT ratio of >1.38 corresponded with a more than 20% incidence of adverse outcomes in patients with cirrhosis. Conclusion The AST/ALT ratio is an independent risk factor for adverse 90-day outcomes in patients with cirrhosis and HBV-associated advanced fibrosis. The cutoff values of the AST/ALT ratio could help clinicians monitor the condition of patients when making clinical decisions.
Collapse
Affiliation(s)
- Huimin Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Traditional Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hai Li
- Department of Gastroenterology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Zheng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Huang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongji Meng
- Department of Infectious Diseases, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhiping Qian
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Infectious Diseases and Hepatology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaobo Lu
- Infectious Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yu Shi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huadong Yan
- Department of Hepatology, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwamei Hospital, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yubao Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zixuan Shen
- Department of Gastroenterology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Qiao
- Department of Gastroenterology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weituo Zhang
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianbo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Hasumura T, Kinoshita K, Minegishi Y, Ota N. Combination of tea catechins and ornithine effectively activates the urea cycle: an in vitro and human pilot study. Eur J Appl Physiol 2024; 124:827-836. [PMID: 37707596 DOI: 10.1007/s00421-023-05310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Accumulation of ammonia causes central and peripheral fatigue. This study aimed to investigate the synergistic effect of tea catechins and low-dose ornithine in activating the urea cycle to reduce blood ammonia levels during exercise. METHODS We used hepatocyte-like cells derived from human-induced pluripotent stem (iPS) cells to assess the effect of tea catechins combined with ornithine on urea cycle activity. The urea production and expression of key genes involved in the metabolism of urea were investigated. We then examined the synergistic improvement in ammonia metabolism by tea catechins in combination with ornithine in a human pilot study. RESULTS Tea catechins combined with ornithine increased urea cycle activity in hepatocyte-like cells derived from human iPS cells. Intake of 538.6 mg of tea catechins with 1592 mg of ornithine for 2 consecutive days during exercise loading suppressed the exercise-induced increase in the blood ammonia concentration as well as stabilized blood glucose levels. CONCLUSION Controlling the levels of ammonia, a toxic waste produced in the body, is important in a variety of situations, including exercise. The present study suggests that a heterogeneous combination of polyphenols and amino acids efficiently suppresses elevated ammonia during exercise in humans by a mechanism that includes urea cycle activation. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (No. UMIN000035484, dated January 8, 2019).
Collapse
Affiliation(s)
- Takahiro Hasumura
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| | - Keita Kinoshita
- Health and Wellness Products Research Laboratories, Kao Corporation, Sumida, Tokyo, 131-8501, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| |
Collapse
|
4
|
Cannon SJ, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum Mol Genet 2024; 33:465-474. [PMID: 37988592 PMCID: PMC10877468 DOI: 10.1093/hmg/ddad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.
Collapse
Affiliation(s)
- Stuart J Cannon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Timothy Hall
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kevin Colclough
- Exeter Genomics Laboratory, RILD Building, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Roisin M Boggan
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| |
Collapse
|
5
|
Wang QH, Wu RX, Ji JN, Zhang J, Niu SF, Tang BG, Miao BB, Liang ZB. Integrated Transcriptomics and Metabolomics Reveal Changes in Cell Homeostasis and Energy Metabolism in Trachinotus ovatus in Response to Acute Hypoxic Stress. Int J Mol Sci 2024; 25:1054. [PMID: 38256129 PMCID: PMC10815975 DOI: 10.3390/ijms25021054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L-1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L-1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid β-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars.
Collapse
Affiliation(s)
- Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Jiao-Na Ji
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (Q.-H.W.); (R.-X.W.); (J.-N.J.); (J.Z.); (B.-G.T.); (B.-B.M.); (Z.-B.L.)
| |
Collapse
|
6
|
Nguyen DM, Poveda C, Pollet J, Gusovsky F, Bottazzi ME, Hotez PJ, Jones KM. The impact of vaccine-linked chemotherapy on liver health in a mouse model of chronic Trypanosoma cruzi infection. PLoS Negl Trop Dis 2023; 17:e0011519. [PMID: 37988389 PMCID: PMC10697595 DOI: 10.1371/journal.pntd.0011519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. METHODOLOGY Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25μg Tc24-C4 protein/ 5μg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. RESULTS Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. CONCLUSIONS These data confirm toxicity associated with curative doses of BNZ and suggest that while dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better preserves liver health.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabian Gusovsky
- Global Health Research, Eisai, Inc., Cambridge, Massachusetts, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| | - Kathryn Marie Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
7
|
Xu JM, Wu ZS, Zhao KJ, Xi ZJ, Wang LY, Cheng F, Xue YP, Zheng YG. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin. Biotechnol J 2023; 18:e2300027. [PMID: 37265188 DOI: 10.1002/biot.202300027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhou-Sheng Wu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Ji Zhao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Jie Xi
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
8
|
Nguyen DM, Poveda C, Pollet J, Gusovsky F, Bottazzi ME, Hotez PJ, Jones KM. The impact of vaccine-linked chemotherapy on liver health in a mouse model of chronic Trypanosoma cruzi infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548497. [PMID: 37503013 PMCID: PMC10369866 DOI: 10.1101/2023.07.11.548497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. Methodology Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25μg Tc24-C4 protein/5μg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. Results Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. Conclusions These data confirm toxicity associated with curative doses of BNZ and suggest that the dose sparing low BNZ plus vaccine treatment better preserves liver health.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| | - Kathryn M. Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
9
|
Delta De Ritis Ratio Is Associated with Worse Mortality Outcomes in Adult Trauma Patients with Moderate-to-Severe Traumatic Brain Injuries. Diagnostics (Basel) 2022; 12:diagnostics12123004. [PMID: 36553011 PMCID: PMC9776494 DOI: 10.3390/diagnostics12123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to investigate whether changes in the De Ritis ratio (DRR) can be used to stratify the mortality risk of patients with moderate-to-severe traumatic brain injury (TBI). This retrospective study reviewed data for 1347 adult trauma patients (134 deaths and 1213 survival) with moderate-to-severe TBI between 1 January 2009, and 31 December 2020, from the registered trauma database. The outcomes of the patients allocated into the two study groups were compared based on the best Delta DRR (ΔDRR) cutoff point. The first and second DRR of patients who died were significantly higher than those of patients who survived. Elevation of DRR 72-96 h later was found for patients who died, but not for those who survived; the ΔDRR of the patients who died was significantly higher than that of those who survived (1.4 ± 5.8 vs. -0.1 ± 3.3, p = 0.004). Multivariate logistic regression analysis revealed that ΔDRR was a significant independent risk factor for mortality in these patients. Additionally, a ΔDRR of 0.7 was identified as the cutoff value for mortality stratification of adult trauma patients at high risk of mortality with moderate-to-severe TBI.
Collapse
|
10
|
The discovery of a non-competitive GOT1 inhibitor, hydralazine hydrochloride, via a coupling reaction-based high-throughput screening assay. Bioorg Med Chem Lett 2022; 73:128883. [PMID: 35820623 DOI: 10.1016/j.bmcl.2022.128883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Glutamate oxaloacetate transaminase 1 (GOT1) plays a key role in aberrant glutamine metabolism. GOT1 suppression can arrest tumor growth and prevent the development of cancer, indicating GOT1 as a potential anticancer target. Reported GOT1 inhibitors, on the other hand, are quite restricted. Here, we developed and optimized a coupling reaction-based high-throughput screening assay for the discovery of GOT1 inhibitors. By using this screening assay, we found that the cardiovascular drug hydralazine hydrochloride inhibited GOT1 catalytic activity, with an IC50 of 26.62 ± 7.45 μM, in a non-competitive and partial-reversible manner. In addition, we determined the binding affinity of hydralazine hydrochloride to GOT1, with a Kd of 16.54 ± 8.59 μM, using a microscale thermophoresis assay. According to structure-activity relationship analysis, the inhibitory activity of hydralazine hydrochloride is mainly derived from its hydrazine group. Furthermore, it inhibits the proliferation of cancer cells MCF-7 and MDA-MB-468 with a slight inhibitory effect compared to other tested cancer cells, highlighting GOT1 as a promising therapeutic target for the treatment of breast cancer.
Collapse
|
11
|
Yang Y, Zheng M, Han F, Shang L, Li M, Gu X, Li H, Chen L. Ziprasidone suppresses pancreatic adenocarcinoma cell proliferation by targeting GOT1 to trigger glutamine metabolism reprogramming. J Mol Med (Berl) 2022; 100:599-612. [PMID: 35212782 DOI: 10.1007/s00109-022-02181-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant tumor whose effective treatment has not been found. The redox state and proliferative activity of PDAC cells are maintained by the conversion of aspartic acid in the cytoplasm into oxaloacetate though aspartate aminotransferase 1 (GOT1). Therefore, GOT1 inhibitors as a potential approach for treating PDAC have attracted more attention of researchers. Ziprasidone effectively inhibited GOT1 in a non-competitive manner. The potential cytotoxicity and anti-proliferation effects of ziprasidone against PDAC cells in vitro and in vivo were evaluated. Ziprasidone can induce glutamine metabolism disorder and redox state imbalance of PDAC cells by targeting GOT1, thereby inhibiting proliferation, preventing migration, and inducing apoptosis. Ziprasidone displayed significant in vivo antitumor efficacy in SW1990 cell-derived xenografts. What's more, knockdown of GOT1 in SW1990 reduced the anti-proliferative effects of ziprasidone. As a novel GOT1 inhibitor, ziprasidone may be a lead compound for the treatment of PDAC. KEY MESSAGES: Small molecule inhibitors targeting GOT1 may provide a therapeutic target in PDAC. Ziprasidone effectively inhibited GOT1 enzyme in a non-competitive manner. Ziprasidone repressed glutamine metabolism and inhibited the growth of tumor in vivo. Knockdown of GOT1 decreased the anti-proliferative effects of ziprasidone.
Collapse
Affiliation(s)
- Yueying Yang
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengzhu Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Han
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Shang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Mingxue Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoxia Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Li
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
12
|
Song Z, Yang Y, Wu Y, Zheng M, Sun D, Li H, Chen L. Glutamic oxaloacetic transaminase 1 as a potential target in human cancer. Eur J Pharmacol 2022; 917:174754. [PMID: 35007521 DOI: 10.1016/j.ejphar.2022.174754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Glutamic Oxaloacetic Transaminase 1 (GOT1) is one distinct isoenzyme of glutamic oxaloacetic transaminase in eukaryotic cells, which is located in the cytoplasm. To date, several studies have shown that GOT1 plays a critical role in regulating cell proliferation by participating in amino acid metabolism, especially in glutamine metabolism. In addition, GOT1 is overexpressed in many cancer, so GOT1 has been identified as a potentially therapeutic target. Herein, this review summarizes the structure and function of GOT1 and the important roles of GOT1 in some tumor progress, as well as the characterization of GOT1 inhibitors. It may provide new insight into the discovery of small compounds as potential anti-GOT1 drugs for treatment of cancer.
Collapse
Affiliation(s)
- Zhuorui Song
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanli Wu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Zhou S, Guo Z, Lv X, Zhang X. CircGOT1 promotes cell proliferation, mobility, and glycolysis-mediated cisplatin resistance via inhibiting its host gene GOT1 in esophageal squamous cell cancer. Cell Cycle 2021; 21:247-260. [PMID: 34919012 DOI: 10.1080/15384101.2021.2015671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is a prevalent malignant cancer with high incidence and fatality rate. Surging evidences have revealed that circular RNAs (circRNAs) act key role in ESCC tumorigenesis and progression. Therefore, the purpose of this study is to explore the role and regulatory mechanism of a novel circGOT1 in ESCC. In the present study, the transcriptional expression of circGOT1, miR-606 and GOT1, and the epithelial-mesenchymal transition (EMT) and apoptosis-related markers were examined by quantitative PCR. The protein levels of GOT1 and glycolysis-related proteins were detected by Western blotting. In addition, the glycolytic levels were determined via measuring glucose uptake, lactate production, and ATP levels. Then, the function experiments and rescue experiments were used to investigate the function and mechanism of circGOT1 in ESCC. In addition, RNA immunoprecipitation, pull-down, and luciferase activity reporter gene assays were used to analyze the circGOT1/miR-606/GOT1 axis. The xenograft mouse mode was used to determine the function of circGOT1 in vivo. Here, we identified that circGOT1 and GOT1 upregulate, whereas miR-606 was reduced in ESCC tissues and cell lines. High circGOT1 and GOT1 expression associated with poor survival and worse prognosis of ESCC patients, but miR-606 revealed opposite traits. Mechanically, circGOT1 sponged miR-606 to promote GOT1, which induced cell proliferation, migration, aerobic glycolysis, and cisplatin resistance. The tumor growth was reduced by circGOT1 inhibition in xenograft mouse. Our results indicate the oncogene role of circGOT1 in ESCC via an endogenous competition RNA (ceRNA) mechanism to promote GOT1 expression via sponging miR-606.
Collapse
Affiliation(s)
- Shasha Zhou
- Department of Oncology, Hebei Medical University, Shijiazhuang, P.R. China.,Department of Oncology, Handan Central Hospital, Handan, P.R. China
| | - Zhiyuan Guo
- Department of Oncology, Handan Central Hospital, Handan, P.R. China
| | - Xueli Lv
- Department of Oncology, Shexian Hospital, Shexian, P.R. China
| | - Xueqiang Zhang
- Department of Oncology, Hebei Medical University, Shijiazhuang, P.R. China.,Department of Oncology, Handan Central Hospital, Handan, P.R. China
| |
Collapse
|
14
|
Liu P, Yang Q, Yu N, Cao Y, Wang X, Wang Z, Qiu WY, Ma C. Phenylalanine Metabolism is Dysregulated in Human Hippocampus with Alzheimer's Disease Related Pathological Changes. J Alzheimers Dis 2021; 83:609-622. [PMID: 34334403 DOI: 10.3233/jad-210461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most challenging diseases causing an increasing burden worldwide. Although the neuropathologic diagnosis of AD has been established for many years, the metabolic changes in neuropathologic diagnosed AD samples have not been fully investigated. OBJECTIVE To elucidate the potential metabolism dysregulation in the postmortem human brain samples assessed by AD related pathological examination. METHODS We performed untargeted and targeted metabolomics in 44 postmortem human brain tissues. The metabolic differences in the hippocampus between AD group and control (NC) group were compared. RESULTS The results show that a pervasive metabolic dysregulation including phenylalanine metabolism, valine, leucine, and isoleucine biosynthesis, biotin metabolism, and purine metabolism are associated with AD pathology. Targeted metabolomics reveal that phenylalanine, phenylpyruvic acid, and N-acetyl-L-phenylalanine are upregulated in AD samples. In addition, the enzyme IL-4I1 catalyzing transformation from phenylalanine to phenylpyruvic acid is also upregulated in AD samples. CONCLUSION There is a pervasive metabolic dysregulation in hippocampus with AD-related pathological changes. Our study suggests that the dysregulation of phenylalanine metabolism in hippocampus may be an important pathogenesis for AD pathology formation.
Collapse
Affiliation(s)
- Pan Liu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ning Yu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yan Cao
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Wang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhao Wang
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wen-Ying Qiu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Althurwi SI, Yu JQ, Beale P, Huq F. Sequenced Combinations of Cisplatin and Selected Phytochemicals towards Overcoming Drug Resistance in Ovarian Tumour Models. Int J Mol Sci 2020; 21:ijms21207500. [PMID: 33053689 PMCID: PMC7589098 DOI: 10.3390/ijms21207500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, cisplatin, artemisinin, and oleanolic acid were evaluated alone, and in combination, on human ovarian A2780, A2780ZD0473R, and A2780cisR cancer cell lines, with the aim of overcoming cisplatin resistance and side effects. Cytotoxicity was assessed by MTT reduction assay. Combination index (CI) values were used as a measure of combined drug effect. MALDI TOF/TOF MS/MS and 2-DE gel electrophoresis were used to identify protein biomarkers in ovarian cancer and to evaluate combination effects. Synergism from combinations was dependent on concentration and sequence of administration. Generally, bolus was most synergistic. Moreover, 49 proteins differently expressed by 2 ≥ fold were: CYPA, EIF5A1, Op18, p18, LDHB, P4HB, HSP7C, GRP94, ERp57, mortalin, IMMT, CLIC1, NM23, PSA3,1433Z, and HSP90B were down-regulated, whereas hnRNPA1, hnRNPA2/B1, EF2, GOT1, EF1A1, VIME, BIP, ATP5H, APG2, VINC, KPYM, RAN, PSA7, TPI, PGK1, ACTG and VDAC1 were up-regulated, while TCPA, TCPH, TCPB, PRDX6, EF1G, ATPA, ENOA, PRDX1, MCM7, GBLP, PSAT, Hop, EFTU, PGAM1, SERA and CAH2 were not-expressed in A2780cisR cells. The proteins were found to play critical roles in cell cycle regulation, metabolism, and biosynthetic processes and drug resistance and detoxification. Results indicate that appropriately sequenced combinations of cisplatin with artemisinin (ART) and oleanolic acid (OA) may provide a means to reduce side effects and circumvent platinum resistance.
Collapse
Affiliation(s)
- Safiah Ibrahim Althurwi
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Jun Q. Yu
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Philip Beale
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord NSW 2137, Australia;
| | - Fazlul Huq
- Eman Research Ltd., Canberra ACT 2609, Australia
- Correspondence: ; Tel.: +61-411235462
| |
Collapse
|
16
|
Chen D, Hu G, Zhang S, Zhang H, Teng X. Ammonia-triggered apoptosis via immune function and metabolic process in the thymuses of chickens by proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110619. [PMID: 32344265 DOI: 10.1016/j.ecoenv.2020.110619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), an environmental pollutant with a pungent odor, is not only an important volatile in fertilizer production and ranching, but also main basic component of haze. In present study, we found that ultrastructural changes and 3167 differentially expressed proteins (DEPs) using proteomics analysis in the thymuses of chickens exposed to NH3 on day 42. Obtained DEPs were enriched using GO and KEGG; and 66 DEPs took part in immune function, metabolic process, and apoptosis in the thymuses of chickens treated with NH3. 9 genes of DEPs were validated using qRT-PCR, and mRNA expression of 2 immune-related genes (CTSG and NFATC2), 3 metabolic process-related genes (APOA1, GOT1, and GOLGA3), and 4 apoptosis-related genes (PIK3CD, CTSS, CAMP, and NSD2) were consistent with DEPs in chicken thymuses. Our results indicated that excess NH3 led to immunosuppression, metabolic disorder, and apoptosis in chicken thymuses. Present study gives a novel insight into the mechanism of NH3 toxicity and demonstrated that immune response, metabolism process, and apoptosis were important in the mechanism of NH3 toxicity of chicken exposure to high concentration of NH3.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Guanghui Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Jin M, Shi C, Hua Q, Li T, Yang C, Wu Y, Zhao L, Yang H, Zhang J, Hu C, Huang G. High circ-SEC31A expression predicts unfavorable prognoses in non-small cell lung cancer by regulating the miR-520a-5p/GOT-2 axis. Aging (Albany NY) 2020; 12:10381-10397. [PMID: 32499446 PMCID: PMC7346017 DOI: 10.18632/aging.103264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of circular RNAs (circRNAs) has recently been shown to play important regulatory roles in cancer development and progression, including non-small cell lung cancer (NSCLC). However, the roles of most circRNAs in NSCLC are still unknown. In this study, we found that hsa_circ_0001421 (circ-SEC31A) was upregulated in NSCLC tissues and cell lines. Increased circ-SEC31A expression in NSCLC was significantly correlated with malignant characteristics and served as an independent risk factor for the post-surgical overall survival of NSCLC patients. Reduced circ-SEC31A expression in NSCLC decreased tumor cell proliferation, migration, invasion, and malate-aspartate metabolism. Mechanistically, we demonstrated that silencing circ-SEC31A downregulated GOT-2 expression by relieving the sponging effect of miR-520a-5p, which resulted in significantly reduced malate-aspartate metabolism in NSCLC cells. Taken together, these results revealed the important role of circ-SEC31A in the proliferation, migration, invasion, and metabolic regulation of NSCLC cells, providing a new perspective on circRNAs in NSCLC progression.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Chunzi Shi
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Qian Hua
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Tian Li
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201203, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Licong Zhao
- China Medical University, Shenyang 110011, Liaoning, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jiaqi Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
18
|
Huang CH, Lin WK, Chang SH, Tsai GJ. Evaluation of the hypoglycaemic and antioxidant effects of submerged Ganoderma lucidum cultures in type 2 diabetic rats. Mycology 2020; 12:82-93. [PMID: 34026300 PMCID: PMC8128183 DOI: 10.1080/21501203.2020.1733119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We aim to investigate the hypoglycaemic and antioxidant effects of submerged Ganoderma lucidum cultures and elucidate the potential mechanisms behind these effects using a type 2 diabetic rat model. Diabetic rats were daily fed with a high-fat diet supplemented with 1% or 3% freeze-dried whole submerged cultures of G. lucidum or mycelia for 5 weeks. We observed significantly decreased fasting plasma glucose levels, homoeostasis model assessment equation-insulin resistance, and plasma glucose in oral glucose tolerance test. Furthermore, we observed increased levels of glycogen, hepatic hexokinase, glucose-6-phosphate dehydrogenase, and intestinal disaccharidase activities. G. lucidum supplement downregulated the plasma levels of aspartate aminotransferase, alanine aminotransferase, creatinine, and urea nitrogen as well as liver and kidney levels of thiobarbituric acid reactive substances. Based on the hypoglycaemic and antioxidant effects of G. lucidum submerged cultures, we recommend the potential application of these products as functional foods or additives for controlling type 2 diabetes. Abbreviations ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BUN: Blood urea nitrogen; BW: Body weight; CREA: Creatinine; FPG: Fasting plasma glucose; G6Pase: Glucose-6-phosphatase; G6PD: Glucose-6-phosphate dehydrogenase; HOMA-IR: Homoeostasis model assessment of insulin resistance; OGTT: Oral glucose tolerance test; PTP: Protein tyrosine phosphatase; STZ: Streptozotocin; TBARS: Thiobarbituric acid reactive substances.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Kang Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.,Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
19
|
Wang Q, Zhang Q, Luan S, Yang K, Zheng M, Li K, Chen L, Li H. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg Chem 2019; 93:103315. [DOI: 10.1016/j.bioorg.2019.103315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
|
20
|
Asymmetric biosynthesis of L-phosphinothricin by a novel transaminase from Pseudomonas fluorescens ZJB09-108. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Holt MC, Assar Z, Beheshti Zavareh R, Lin L, Anglin J, Mashadova O, Haldar D, Mullarky E, Kremer DM, Cantley LC, Kimmelman AC, Stein AJ, Lairson LL, Lyssiotis CA. Biochemical Characterization and Structure-Based Mutational Analysis Provide Insight into the Binding and Mechanism of Action of Novel Aspartate Aminotransferase Inhibitors. Biochemistry 2018; 57:6604-6614. [PMID: 30365304 DOI: 10.1021/acs.biochem.8b00914] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitors that target GOT1 could serve as starting points for the development of new therapies for pancreatic cancer. We ran a high-throughput screen for inhibitors of GOT1 and identified a small molecule, iGOT1-01, with in vitro GOT1 inhibitor activity. Application in pancreatic cancer cells revealed metabolic and growth inhibitory activity reflecting a promiscuous inhibitory profile. We then performed an in silico docking analysis to study inhibitor-GOT1 interactions with iGOT1-01 analogues that possess improved solubility and potency properties. These results suggested that the GOT1 inhibitor competed for binding to the pyridoxal 5-phosphate (PLP) cofactor site of GOT1. To analyze how the GOT1 inhibitor bound to GOT1, a series of GOT1 mutant enzymes that abolished PLP binding were generated. Application of the mutants in X-ray crystallography and thermal shift assays again suggested but were unable to formally conclude that the GOT1 inhibitor bound to the PLP site. Mutational studies revealed the relationship between PLP binding and the thermal stability of GOT1 while highlighting the essential nature of several residues for GOT1 catalytic activity. Insight into the mode of action of GOT1 inhibitors may provide leads to the development of drugs that target redox balance in pancreatic cancer.
Collapse
Affiliation(s)
- Melissa C Holt
- Cayman Chemical Company , 1180 East Ellsworth , Ann Arbor , Michigan 48108 , United States
| | - Zahra Assar
- Cayman Chemical Company , 1180 East Ellsworth , Ann Arbor , Michigan 48108 , United States
| | - Reza Beheshti Zavareh
- California Institute for Biomedical Research , 11119 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Lin Lin
- Department of Molecular and Integrative Physiology , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Justin Anglin
- California Institute for Biomedical Research , 11119 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Oksana Mashadova
- Meyer Cancer Center, Department of Medicine , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Daniel Haldar
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Edouard Mullarky
- Meyer Cancer Center, Department of Medicine , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Daniel M Kremer
- Department of Molecular and Integrative Physiology , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine , Weill Cornell Medical College , New York , New York 10065 , United States
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center , NYU Langone Medical Center , New York , New York 10016 , United States
| | - Adam J Stein
- Cayman Chemical Company , 1180 East Ellsworth , Ann Arbor , Michigan 48108 , United States
| | - Luke L Lairson
- California Institute for Biomedical Research , 11119 North Torrey Pines Road , La Jolla , California 92037 , United States.,Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
22
|
Wang H, Fang K, Zhang J, Jiang Y, Wang G, Zhang H, Chen T, Shi X, Li Y, Duan F, Liu J. The significance of De Ritis (aspartate transaminase/alanine transaminase) ratio in predicting pathological outcomes and prognosis in localized prostate cancer patients. Int Urol Nephrol 2017; 49:1391-1398. [PMID: 28550473 DOI: 10.1007/s11255-017-1618-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE To illustrate whether De Ritis (aspartate transaminase-AST/alanine transaminase-ALT) ratio is useful in risk stratification of localized prostate cancer and propose an easy predictive model for biochemical recurrence-free survival (BCRFS). METHODS In total, 438 patients who underwent radical prostatectomy were included in this study. Blood samples including AST and ALT were collected 1-7 days before surgery. An elevated AST and ALT value was defined as over 40 or 56 IU/L. RESULTS The median AST and ALT value was 18.5 (16-22) and 14 (11-18) IU/L. In total, 15 patients (3.4%) and 9 patients (2.1%) exhibited elevated AST value and ALT value. The median De Ritis ratio was 1.33 (1.11-1.60), and ROC curve indicated the best cutoff of 1.325 in predicting the occurrence of biochemical recurrence. Higher De Ritis ratio was found to be related to older age (p < 0.001), higher tumor stages (p < 0.001) and Gleason Score (p < 0.001), presence of seminal invasion (p < 0.001), positive surgical margin (p < 0.001) and lymph node metastasis (p = 0.003). Multivariate logistic regression confirmed that De Ritis ratio was an independent predictor for final Gleason Score (p < 0.001), and multivariate Cox regression demonstrated De Ritis ratio as an independent risk factor for BCRFS. A simple predictive model which incorporated De Ritis ratio, pathological tumor stage and final Gleason Score could help risk stratification for BCRFS. CONCLUSION Higher De Ritis ratio could be predictive for worse pathological outcomes and higher BCR in localized prostate cancer patients. A predictive model which incorporates De Ritis ratio, Gleason Score and pathological tumor stage could help risk stratification for BCRFS.
Collapse
Affiliation(s)
- Huitao Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Kewei Fang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Jinsong Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Yongming Jiang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Haiyan Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Tao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Xin Shi
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Yuhang Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Fei Duan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao Road, Kunming, 650101, Yunnan, People's Republic of China.
| |
Collapse
|
23
|
Zoppini G, Cacciatori V, Negri C, Stoico V, Lippi G, Targher G, Bonora E. The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes. Medicine (Baltimore) 2016; 95:e4821. [PMID: 27787357 PMCID: PMC5089086 DOI: 10.1097/md.0000000000004821] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An increased aspartate aminotransferase-to-alanine aminotransferase ratio (AAR) has been widely used as a marker of advanced hepatic fibrosis. Increased AAR was also shown to be significantly associated with the risk of developing cardiovascular (CV) disease. The aim of this study was to assess the relationship between the AAR and mortality risk in a well-characterized cohort of patients with type 2 diabetes.A cohort of 2529 type 2 diabetic outpatients was followed-up for 6 years to collect cause-specific mortality. Cox regression analyses were modeled to estimate the independent association between AAR and the risk of all-cause and CV mortality.Over the 6-year follow-up period, 12.1% of patients died, 47.5% of whom from CV causes. An increased AAR, but not its individual components, was significantly associated with an increased risk of all-cause (adjusted-hazard risk 1.83, confidence interval [CI] 95% 1.14-2.93, P = 0.012) and CV (adjusted-hazard risk 2.60, CI 95% 1.38-4.90, P < 0.003) mortality after adjustment for multiple clinical risk factors and potential confounding variables.The AAR was independently associated with an increased risk of both all-cause and CV mortality in patients with type 2 diabetes. These findings suggest that an increased AAR may reflect more systemic derangements that are not simply limited to liver damage. Further studies are needed to elucidate the pathophysiological implications of an increased AAR.
Collapse
Affiliation(s)
- Giacomo Zoppini
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Correspondence: Giacomo Zoppini, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, Piazzale Stefani, 1, 37126 Verona, Italy (e-mail: )
| | | | - Carlo Negri
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Vincenzo Stoico
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Enzo Bonora
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|