1
|
Rehman IU, Park JS, Choe K, Park HY, Park TJ, Kim MO. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: Peripheral and CNS insights. Ageing Res Rev 2024; 100:102447. [PMID: 39111409 DOI: 10.1016/j.arr.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht 6202 AZ, the Netherlands.
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, United Kingdom.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Alz-Dementia Korea Co., Jinju 52828, Republic of Korea.
| |
Collapse
|
2
|
Singh V, Hallan V, Pati PK. Withania somnifera osmotin (WsOsm) confers stress tolerance in tobacco and establishes novel interactions with the defensin protein (WsDF). PHYSIOLOGIA PLANTARUM 2024; 176:e14513. [PMID: 39262029 DOI: 10.1111/ppl.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vipin Hallan
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Park EJ, Kim TH. Arabidopsis OSMOTIN 34 Functions in the ABA Signaling Pathway and Is Regulated by Proteolysis. Int J Mol Sci 2021; 22:ijms22157915. [PMID: 34360680 PMCID: PMC8347876 DOI: 10.3390/ijms22157915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plants have evolutionarily established resistance responses to a variety of abiotic stress conditions, in which ABA mediates the integrated regulation of these stress responses. Numerous proteins function at the transcription level or at the protein level when contributing to controls of the ABA signaling process. Although osmotin is identified as a salt-inducible protein, its function in the abiotic stress response is yet to be elucidated. To examine the role of Arabidopsis OSMOTIN 34 (OSM34) in the ABA signaling pathway, a deletion mutant osm34 generated by a CRISPR/Cas9 system and the double mutant osm34 osml (osmotin 34-like) were analyzed for various ABA responses. Both osm34 and osm34 osml showed reduced levels of ABA responses in seeds and leaves. Moreover, proline level and expression of the proline biosynthesis gene P5CS1 was significantly reduced in osm34 osml. Interestingly, OSM34 binds to SKP2A, an F-Box protein whose transcription is induced by ABA. The protein stability of OSM34 was determined to be under the control of the 26S proteasome. In conclusion, our data suggest that OSM34 functions as a positive regulator in the generation of ABA responses and is under post-translational control.
Collapse
Affiliation(s)
- Eun-Joo Park
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Korea;
| | - Tae-Houn Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Korea;
- Department of Biotechnology, Duksung Women’s University, Seoul 01369, Korea
- Correspondence: ; Tel.: +82-2-901-8357
| |
Collapse
|
4
|
Bashir MA, Silvestri C, Ahmad T, Hafiz IA, Abbasi NA, Manzoor A, Cristofori V, Rugini E. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. PLANTS 2020; 9:plants9080992. [PMID: 32759884 PMCID: PMC7464907 DOI: 10.3390/plants9080992] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
- Correspondence: ; Tel.: +39-761-357533
| | - Touqeer Ahmad
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ishfaq Ahmad Hafiz
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Nadeem Akhtar Abbasi
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ayesha Manzoor
- Barani Agricultural Research Institute, Chakwal 48800, Pakistan;
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Eddo Rugini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| |
Collapse
|
5
|
Zhao Q, Qiu B, Li S, Zhang Y, Cui X, Liu D. Osmotin-Like Protein Gene from Panax notoginseng Is Regulated by Jasmonic Acid and Involved in Defense Responses to Fusarium solani. PHYTOPATHOLOGY 2020; 110:1419-1427. [PMID: 32301678 DOI: 10.1094/phyto-11-19-0410-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Osmotin and osmotin-like proteins (OLPs) play important roles in plant defense responses. The full-length cDNA sequence of an OLP gene was cloned from Panax notoginseng using rapid amplification of cDNA-end technology and named PnOLP1. A quantitative reverse transcription-PCR analysis showed that the signaling molecules methyl jasmonate, salicylic acid, ethylene, and hydrogen peroxide induced PnOLP1 expression to different degrees. In addition, the expression level of PnOLP1 rapidly increased within 48 h of inoculating P. notoginseng with the root rot pathogen Fusarium solani. Subcellular localization revealed that PnOLP1 localized to the cell wall. A prokaryotic expression vector containing PnOLP1 was constructed and transformed into Escherichia coli BL21 (DE3), and in vitro antifungal assays were performed using the purified recombinant PnOLP1 protein. The recombinant PnOLP1 protein had strong inhibitory effects on the mycelial growth of F. oxysporum, F. graminearum, and F. solani. A plant PnOLP1-overexpression vector was constructed and transfected into tobacco, and the resistance of T2 transgenic tobacco against F. solani was significantly enhanced compared with wild-type tobacco. Moreover, a PnOLP1 RNAi vector was constructed and transferred to the P. notoginseng leaves for transient expression, and the decrease of PnOLP1 expression level in P. notoginseng leaves increased the susceptibility to F. solani. Thus, PnOLP1 is an important disease resistance gene involved in the defense responses of P. notoginseng to F. solani.
Collapse
Affiliation(s)
- Qin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Yingpeng Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| |
Collapse
|
6
|
Viktorova J, Klcova B, Rehorova K, Vlcko T, Stankova L, Jelenova N, Cejnar P, Kundu JK, Ohnoutkova L, Macek T. Recombinant expression of osmotin in barley improves stress resistance and food safety during adverse growing conditions. PLoS One 2019; 14:e0212718. [PMID: 31075104 PMCID: PMC6510477 DOI: 10.1371/journal.pone.0212718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although many genetic manipulations of crops providing biofortified or safer food have been done, the acceptance of biotechnology crops still remains limited. We report on a transgenic barley expressing the multi-functional protein osmotin that improves plant defense under stress conditions. METHODS An Agrobacterium-mediated technique was used to transform immature embryos of the spring barley cultivar Golden Promise. Transgenic barley plants of the T0 and T1 generation were evaluated by molecular methods. Transgenic barley tolerance to stress was determined by chlorophyll, total protein, malondialdehyde and ascorbate peroxidase content. Methanol extracts of i) Fusarium oxysporum infected or ii) salt-stressed plants, were characterized by their acute toxicity effect on human dermal fibroblasts (HDF), genotoxicity and affection of biodiversity interactions, which was tested through monitoring barley natural virus pathogen-host interactions-the BYDV and WDV viruses transmitted to the plants by aphids and leafhoppers. RESULTS Transgenic plants maintained the same level of chlorophyll and protein, which significantly declined in wild-type barley under the same stressful conditions. Salt stress evoked higher ascorbate peroxidase level and correspondingly less malondialdehyde. Osmotin expressing barley extracts exhibited a lower cytotoxicity effect of statistical significance than that of wild-type plants under both types of stress tested on human dermal fibroblasts. Extract of Fusarium oxysporum infected transgenic barley was not able to damage DNA in the Comet assay, which is in opposite to control plants. Moreover, this particular barley did not affect the local biodiversity. CONCLUSION Our findings provide a new perspective that could help to evaluate the safety of products from genetically modified crops.
Collapse
Affiliation(s)
- Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Barbora Klcova
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Vlcko
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Lucie Stankova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Cejnar
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Ludmila Ohnoutkova
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tomas Macek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
7
|
Lopes FES, da Costa HPS, Souza PFN, Oliveira JPB, Ramos MV, Freire JEC, Jucá TL, Freitas CDT. Peptide from thaumatin plant protein exhibits selective anticandidal activity by inducing apoptosis via membrane receptor. PHYTOCHEMISTRY 2019; 159:46-55. [PMID: 30577001 DOI: 10.1016/j.phytochem.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Osmotin- and thaumatin-like proteins (OLPs and TLPs) have been associated with plant defense responses to different biotic stresses. In the present work, several in silico sequences from OLPs and TLPs were investigated by means of bioinformatics tools aiming to prospect for antimicrobial peptides. The peptide sequences chosen were further synthesized and characterized, and their activities and action mechanisms were assayed against some phytopathogenic fungi, bacteria and yeasts of clinical importance. From this survey approach, four peptide sequences (GDCKATSC, CPRALKVPGGCN, IVGQCPAKLKA, and CAADIVGQCPAKLK) were selected considering some chemical parameters commonly attributed to antimicrobial peptides. Antimicrobial assays showed that these peptides were unable to inhibit mycelial growth of phytopathogenic fungi and they did not affect bacterial cell growth. Nevertheless, significant inhibitory activity was found for CPRALKVPGGCN and CAADIVGQCPAKLK against Candida albicans and Saccharomyces cerevisiae. Fluorescence and scanning electron microscopy assays suggested that CAADIVGQCPAKLK did not damage the overall cell structure, or its activity was negligible on yeast membrane and cell wall integrity. However, it induced the production of reactive oxygen species (ROS) and apoptosis. Molecular docking analysis showed that CAADIVGQCPAKLK had strong affinity to interact with specific plasma membrane receptors of C. albicans and S. cerevisiae, which have been described as promoting the induction of apoptosis. The results indicate that CAADIVGQCPAKLK can be a valuable target for the development of a desired antimicrobial agent against the pathogen C. albicans.
Collapse
Affiliation(s)
- Francisco E S Lopes
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - Helen P S da Costa
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - Pedro F N Souza
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - João P B Oliveira
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - Márcio V Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - José E C Freire
- Faculdade UniNassau, Campus Parangaba, Av. Dr. Silas Munguba, 403-433, Parangaba, Fortaleza, Ceará, Brazil
| | - Thiago L Jucá
- Refinaria de Lubrificantes e Derivados do Nordeste (Lubnor), Petrobras, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Pluskota WE, Pupel P, Głowacka K, Okorska SB, Jerzmanowski A, Nonogaki H, Górecki RJ. Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:74-81. [PMID: 30537615 DOI: 10.1016/j.jplph.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 05/18/2023]
Abstract
The expression of SlNP24 encoding osmotin was studied in germinating tomato seeds Solanum lycopersicum L. cv. Moneymaker. The results show that the accumulation of the transcripts of SlNP24 and its potential upstream regulator TERF1 encoding an ethylene response factor was induced by ethylene and methyl jasmonate in germinating tomato seeds. There was no effect of gibberellins on the expression of the genes studied. The expression of SlNP24 was localized in the micropylar region of the endosperm of tomato seeds. The promoter of tomato osmotin was active in the endosperm cells of transgenic Arabidopsis thaliana seeds, which contain reporter genes under control of SlNP24 promoter. The activity of SlNP24 promoter in A. thaliana reporter line seeds was visible when the expression of its ortholog gene in A. thaliana (AtOMS34) was observed. The mechanism of induction and a possible role of NP24 in germinating tomato seeds are discussed.
Collapse
Affiliation(s)
- Wioletta E Pluskota
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland.
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Sylwia B Okorska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Andrzej Jerzmanowski
- Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryszard J Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| |
Collapse
|
9
|
Takahashi Y, Watanabe R, Sato Y, Ozawa N, Kojima M, Watanabe-Kominato K, Shirai R, Sato K, Hirano T, Watanabe T. Novel phytopeptide osmotin mimics preventive effects of adiponectin on vascular inflammation and atherosclerosis. Metabolism 2018; 83:128-138. [PMID: 29410350 DOI: 10.1016/j.metabol.2018.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The novel phytohormone, osmotin, has been reported to act like mammalian adiponectin through PHO36/AdipoR1 in various in vitro and in vivo models. However, there have been no reports regarding the precise effects of osmotin on atherosclerosis. METHODS We assessed the atheroprotective effects of osmotin on inflammatory molecules in human umbilical vein endothelial cells (HUVECs), human leukemic monocyte (THP-1) adhesion, inflammatory responses, and foam cell formation in THP-1-derived macrophages, and the migration, proliferation, and extracellular matrix expression in human aortic smooth muscle cells (HASMCs). We examined whether 4-week infusion of osmotin could suppress the development of aortic atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice. RESULTS AdipoR1 was abundantly expressed in HUVECs, HASMCs, THP-1, and derived macrophages. Osmotin suppressed lipopolysaccharide-induced upregulation of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-selectin in HUVECs, and TNF-α-induced THP-1-HUVEC adhesion. In THP-1-derived macrophages, osmotin suppressed the inflammatory M1 phenotype, lipopolysaccharide-induced secretion of interleukin-6 and TNF-α, and oxidized low-density lipoprotein-induced foam cell formation associated with CD36 and acyl-CoA:cholesterol acyltransferase 1 downregulation and ATP-binding cassette transporter A1 upregulation. In HASMCs, osmotin suppressed angiotensin II-induced migration, proliferation, collagen-1 and fibronectin expression, and matrix metalloproteinase-2 activity without inducing apoptosis. Infusion of osmotin into ApoE-/- mice prevented the development of aortic atherosclerotic lesions with reductions of intraplaque pentraxin-3 expression, fasting plasma glucose, and insulin resistance. CONCLUSIONS This study provided the first evidence that osmotin exerts preventive effects on vascular inflammation and atherosclerosis, which may facilitate the development of new therapeutic modalities for combating atherosclerosis and related diseases.
Collapse
Affiliation(s)
- Yui Takahashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yuki Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Nana Ozawa
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Miho Kojima
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Remina Shirai
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| |
Collapse
|
10
|
Ullah A, Hussain A, Shaban M, Khan AH, Alariqi M, Gul S, Jun Z, Lin S, Li J, Jin S, Munis MFH. Osmotin: A plant defense tool against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:149-159. [PMID: 29245030 DOI: 10.1016/j.plaphy.2017.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/18/2023]
Abstract
Plants are prone to a number of pathogens and abiotic stresses that cause various disorders. However, plants possess a defense mechanism to cope with these stresses. The osmotin protein belongs to the PR-5 family of Pathogenesis-related (PR) proteins, which are produced in response to diseases caused by various biotic and abiotic stresses. Osmotin uses a signal transduction pathway to inhibit the activity of defensive cell wall barriers and increases its own cytotoxic efficiency. However, in response to cytotoxic effects, this pathway stimulates a mitogen-activated protein kinase (MAPK) cascade that triggers changes in the cell wall and enables osmotin's entrance into the plasma membrane. This mechanism involves cell wall binding and membrane perturbation, although the complete mechanism of osmotin activity has not been fully elucidated. Osmotin possesses an acidic cleft that is responsible for communication with its receptor in the plasma membrane of fungi. Osmotin is also involved in the initiation of apoptosis and programmed cell death, whereas its overexpression causes the accumulation of proline in transgenic plants. A higher concentration of osmotin can cause the lysis of hyphae tips. This review highlights the role of osmotin protein in the plant defense mechanism and its mode of action against numerous pathogens in wild and transgenic plants.
Collapse
Affiliation(s)
- Abid Ullah
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Shaban
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Aamir Hamid Khan
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muna Alariqi
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Summia Gul
- Department of Biology, Institute of Microbiology, Heinrich Heine University Düsseldorf, Germany
| | - Zhang Jun
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sun Lin
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianying Li
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangxia Jin
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Muhammad Farooq Hussain Munis
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; University of California, Department of Plant Pathology, 354 Hutchison Hall, One Shields Ave, Davis, CA 95616-8680, USA.
| |
Collapse
|