1
|
Zhang CQ, Wan Y, Shi ZW, Luo JC, Li HY, Li SS, Li YZ, Dai XY, Bai X, Tian H, Zheng HX. Colloidal gold and fluorescent immunochromatographic test strips for canine parvovirus detection. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12604-2. [PMID: 37314455 DOI: 10.1007/s00253-023-12604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Canine parvovirus (CPV) is an acute and highly infectious virus causing disease in puppies and, thus, affecting the global dog industry. The current CPV detection methods are limited by their sensitivity and specificity. Hence, the current study sought to develop a rapid, sensitive, simple, and accurate immunochromatographic (ICS) test to detect and control the spread and prevalence of CPV infection. More specifically, 6A8, a monoclonal antibody (mAb) with high specificity and sensitivity, was obtained by preliminary screening. The 6A8 antibody was labelled with colloidal gold particles. Subsequently, 6A8 and goat anti-mouse antibodies were coated onto a nitrocellulose membrane (NC) as the test and control lines, respectively. Furthermore, 6A8 and rabbit IgG antibodies were labelled with fluorescent microspheres and evenly sprayed onto a glass fibre membrane. Both strips could be prepared in 15 min with no noticeable cross-reactivity with other common canine intestinal pathogens. The strips were simultaneously used to detect CPV in 60 clinical samples using real-time quantitative PCR, hemagglutination, and hemagglutination inhibition assays. The colloidal gold (fluorescent) ICS test strip was stable for 6 (7) and 4 (5) months at 4 °C and room temperature (18-25 °C). Both test strips were easy to prepare and rapidly detected CPV with high sensitivity and specificity. Moreover, the results were easily interpretable. This study establishes a simple method for two CPV diseases, colloidal gold and fluorescent immunochromatographic (ICS) test strips. KEY POINTS: • CPV test strips do not exhibit cross-reactivity with other canine intestinal pathogens. • The strips are stable for months at 4 °C and at room temperature (18-25 °C). • These strips are a promising approach for the timely diagnosis and treatment of CPV.
Collapse
Affiliation(s)
- Cheng-Qi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Wan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zheng-Wang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jun-Cong Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hong-Ye Li
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Shuang-Shuang Li
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yun-Zhen Li
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xin-Yu Dai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xue Bai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Hai-Xue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Xie Q, Wang J, Gu C, Wu J, Liu W. Structure and function of the parvoviral NS1 protein: a review. Virus Genes 2023; 59:195-203. [PMID: 36253516 DOI: 10.1007/s11262-022-01944-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 10/24/2022]
Abstract
Parvoviruses possess a single-stranded DNA genome of about 5 kb, which contains two open reading frames (ORFs), one encoding nonstructural (NS) proteins, the other capsid proteins. The NS1 protein contains an N-terminal origin-binding domain, a helicase domain, and a C-terminal transactive domain, and is essential for effective viral replication and production of infectious virus. We first summarize the developments in the structure of NS1 protein, including the original binding domain and the helicase domain. We discuss the role of different DNA substrates in the oligomerization of these two domains of NS1. During the parvovirus life cycle, the NS1 protein is closely related to the viral gene expression, viral replication, and infection. We provide the current understanding of the impact of parvovirus NS1 protein mutations on its biological properties. Overall, in this review, we focus on the structure and function of the parvoviral NS1 protein.
Collapse
Affiliation(s)
- Qianqian Xie
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenchen Gu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Wu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Li S, Chen X, Hao Y, Zhang G, Lyu Y, Wang J, Liu W, Qin T. Characterization of the VP2 and NS1 genes from canine parvovirus type 2 (CPV-2) and feline panleukopenia virus (FPV) in Northern China. Front Vet Sci 2022; 9:934849. [PMID: 36518900 PMCID: PMC9742280 DOI: 10.3389/fvets.2022.934849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/01/2022] [Indexed: 07/29/2023] Open
Abstract
Canine parvovirus type 2 (CPV-2) and feline panleukopenia virus (FPV) cause severe disease in young animals, pups, and kittens. CPV-2 evolved from FPV by altering the species-specific binding of the viral capsid to the host receptor, i.e., the transferrin receptor (TfR), and CPV-2 genetic variants have been identified by specific VP2 amino acid residues (297, 426). Early studies focused on the main capsid protein VP2; however, there have been limited studies on the non-structural protein NS1. In this study, we identified the genetic variants of clinical samples in dogs and cats in northern China during 2019-2020. The genetic characterization and phylogenetic analyses of VP2 and NS1 gene were also conducted. The results revealed that the CPV-2c was identified as the major genetic variant. One new CPV-2b and two CPV-2c strains were collected from cats. Four mutation sites (60, 630, 443, and 545 amino acid residues) were located in the functional domains of the NS1 protein. The phylogenetic analysis of VP2 and NS1 genes showed that they were clustered by geographical regions and genotypes. The gene mutation rate of CPV-2 was increasing in recent years, resulting in a complex pattern of gene evolution in terms of host preference, geographical selection, and new genetic variants. This study emphasizes that continuous molecular epidemiological surveillance is required to understand the genetic diversity of FPV and CPV-2 strains.
Collapse
Affiliation(s)
- Shaohan Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfeng Hao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanli Lyu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianke Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Abayli H, Aslan O, Tumer KC, Can-Sahna K, Tonbak S. Predominance and first complete genomic characterization of canine parvovirus 2b in Turkey. Arch Virol 2022; 167:1831-1840. [PMID: 35716267 PMCID: PMC9206223 DOI: 10.1007/s00705-022-05509-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
Viral enteritis is a significant threat to domestic dogs. The two primary pathogens that cause viral enteritis in dogs are canine coronavirus (CCoV) and canine parvovirus (CPV). In this study, we investigated the occurrence of CPV-2, CCoV, and canine circovirus coinfection by characterizing circulating subtypes of CPV-2 in faecal samples from symptomatic dogs admitted to veterinary clinics located in Ankara, Elazığ, Kayseri, and Kocaeli provinces of Turkey, between 2019 and 2022. Virus detection by PCR and RT-PCR revealed that CPV-2 was present in 48 (77.4%) samples, and no other agents were detected. Based on the occurrence of the codon GAT at positions 1276 to 1278 (coding for aspartate at residue 426) of VP2, all CPV-2 isolates were confirmed to be of the CPV-2b subtype. The complete genome sequences of two CPV-2b isolates showed a high degree of similarity to and phylogenetic clustering with Australian and East Asian strains/isolates. The predominant CPV strain circulating in the three different regions of Turkey was found to be a CPV-2b strain containing the amino acid substitutions at Y324I and T440A, which commonly contribute to immune escape. This is the first report of complete genomic analysis of CPV-2 isolates circulating in symptomatic domestic dogs in Turkey. The evolution of CPV-2 has raised questions about the efficacy of current vaccination regimes and highlights the importance of monitoring the emergence and spread of new CPV-2 variants.
Collapse
Affiliation(s)
- Hasan Abayli
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey.
| | - Oznur Aslan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Kenan Cağrı Tumer
- Department of Internal Medicine, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Kezban Can-Sahna
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| | - Sukru Tonbak
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| |
Collapse
|
5
|
Ji Y, Hu L, Xiong W, Wang Y, Yang F, Shi M, Zhang H, Shao J, Lu C, Fang D, Deng H, Bian Z, Tang G, Liu S, Fan Z, Liu S. Highly sensitive time-resolved fluoroimmunoassay for the quantitative onsite detection of Alternaria longipes in tobacco. J Appl Microbiol 2022; 132:1250-1259. [PMID: 34312955 DOI: 10.1111/jam.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
AIMS Alternaria longipes is a causal agent of brown spot of tobacco, which remains a serious threat to tobacco production. Herein, we established a detection method for A. longipes in tobacco samples based on the principle of time-resolved fluoroimmunoassay, in order to fulfil the requirement of rapid, sensitive and accurate detection in situ. METHODS AND RESULTS A monoclonal antibody against A. longipes was generated, and its purity and titration were assessed using western blot and ELISA. The size of europium (III) nanospheres was measured to confirm successful antibody conjugation. The method described here can detect A. longipes protein lysates as low as 0.78 ng ml-1 , with recovery rates ranging from 85.96% to 99.67% in spiked tobacco. The specificity was also confirmed using a panel of microorganisms. CONCLUSIONS The fluorescent strips allow rapid and sensitive onsite detection of A. longipes in tobacco samples, with high accuracy, specificity, and repeatability. SIGNIFICANCE AND IMPACT OF THE STUDY This novel detection method provides convenience of using crude samples without complex procedures, and therefore allows rapid onsite detection by end users and quick responses towards A. longipes, which is critical for disease control and elimination of phytopathogens.
Collapse
Affiliation(s)
- Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Wei Xiong
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Mowen Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Haiyan Zhang
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Canhua Lu
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Dunhuang Fang
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shili Liu
- Department of Medical Microbiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| |
Collapse
|
6
|
Tian Y, Zhang G, Liu H, Ding P, Jia R, Zhou J, Chen Y, Qi Y, Du J, Liang C, Zhu X, Wang A. Screening and identification of B cell epitope of the nucleocapsid protein in SARS-CoV-2 using the monoclonal antibodies. Appl Microbiol Biotechnol 2022; 106:1151-1164. [PMID: 35037999 PMCID: PMC8762450 DOI: 10.1007/s00253-022-11769-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/10/2021] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease (COVID-19). It is confirmed that nucleocapsid (N) protein is closely related to viral pathogenesis, modulation of host immune response, RNA transcription, and replication and virus packaging. Therefore, the N protein is a preponderant antigen target for virus detection. The codon-optimized N gene was designed according to the encoding characteristics of insect cells and inserted into pFastBacTM1 vector with 6 × His-tag-fused N protein for expression in insect sf21 cells. Six anti-N mAbs (4G3, 5B3, 12B6, 18C7-A2, 21H10-A3, 21H10-E9) were prepared by recombinant N protein. The mAbs showed high titers, antibody affinity, and reactivity with the SARS-CoV-2 N protein. Then, fourteen overlapped peptides that covered the intact N protein were synthesized (N1-N14). Peptide N14 was identified as the main linear B-cell epitope region via peptide-ELISA and dot-blot assay, and this region was truncated gradually until mapping the peptide 401-DFSKQLQQ-408. Simultaneously, compared with the sequence of variants of concern (VOCs) and variants of interest (VOIs) strains among the several countries, epitope 401-DFSKQLQQ-408 is very conservative among them. The findings provide new guidance for the design and detection of COVID-19 targets. KEY POINTS: • The N protein was optimized according to the insect cell codon preference and was highly expressed. • The monoclonal antibodies prepared in this study were shown high antibody titers and high affinity. • Monoclonal antibodies were used to map the epitope 401-408 amino acids of N protein for the first time in this study.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Rui Jia
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Jinran Du
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|