1
|
Gong Y, Xue Q, Li J, Zhang S. Antifungal peptides from living organisms. Front Microbiol 2024; 15:1511461. [PMID: 39741586 PMCID: PMC11685209 DOI: 10.3389/fmicb.2024.1511461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In the post-COVID-19 era, people are increasingly concerned about microbial infections, including fungal infections that have risen in recent years. However, the currently available antifungal agents are rather limited. Worse still, the widespread use of the antifungal agents has caused the emergence of antifungal resistance in Candida, Cryptococcus, and Aspergillus species. Therefore, the development of novel antifungals is urgently needed. Antimicrobial peptides (AMPs), as components of the first-line defense of the host, are found to exhibit broad antimicrobial activity against bacteria, fungi, parasites, viruses, and protozoa. AMPs with antifungal activity are specifically referred to as antifungal peptides (AFPs). AFPs are currently regarded as the most promising alternative to conventional antifungal agents due to the fact that they are highly selective and less prone to facilitate the selection of drug resistance. In this review, we present an overview of the origin and classification of natural AFPs as well as their modes of action. Additionally, the production of natural, semisynthetic, and synthetic AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of AFPs in clinics and in the food industry.
Collapse
Affiliation(s)
- Yi Gong
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Qunhang Xue
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jun Li
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shicui Zhang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Escudero-Leyva E, Quirós-Guerrero L, Vásquez-Chaves V, Pereira-Reyes R, Chaverri P, Tamayo-Castillo G. Differential Volatile Organic Compound Expression in the Interaction of Daldinia eschscholtzii and Mycena citricolor. ACS OMEGA 2023; 8:31373-31388. [PMID: 37663497 PMCID: PMC10468842 DOI: 10.1021/acsomega.3c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Fungi exhibit a wide range of ecological guilds, but those that live within the inner tissues of plants (also known as endophytes) are particularly relevant due to the benefits they sometimes provide to their hosts, such as herbivory deterrence, disease protection, and growth promotion. Recently, endophytes have gained interest as potential biocontrol agents against crop pathogens, for example, coffee plants (Coffea arabica). Published results from research performed in our laboratory showed that endophytic fungi isolated from wild Rubiaceae plants were effective in reducing the effects of the American leaf spot of coffee (Mycena citricolor). One of these isolates (GU11N) from the plant Randia grandifolia was identified as Daldinia eschscholtzii (Xylariales). Its antagonism mechanisms, effects, and chemistry against M. citricolor were investigated by analyzing its volatile profile alone and in the presence of the pathogen in contactless and dual culture assays. The experimental design involved direct sampling of agar plugs in vials for headspace (HS) and headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, we used ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) to identify nonvolatile compounds from organic extracts of the mycelia involved in the interaction. Results showed that more volatile compounds were identified using HS-SPME (39 components) than those by the HS technique (13 components), sharing only 12 compounds. Statistical tests suggest that D. eschscholtzii inhibited the growth of M. citricolor through the release of VOCs containing a combination of 1,8-dimethoxynapththalene and terpene compounds affecting M. citricolor pseudopilei. The damaging effects of 1,8-dimethoxynaphthalene were corroborated in an in vitro test against M. citricolor pseudopilei; scanning electron microscopy (SEM) photographs confirmed structural damage. After analyzing the UHPLC-HRMS/MS data, a predominance of fatty acid derivatives was found among the putatively identified compounds. However, a considerable proportion of features (37.3%) remained unannotated. In conclusion, our study suggests that D. eschscholtzii has potential as a biocontrol agent against M. citricolor and that 1,8-dimethoxynaphthalene contributes to the observed damage to the pathogen's reproductive structures.
Collapse
Affiliation(s)
- Efraín Escudero-Leyva
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| | - Luis Quirós-Guerrero
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
| | - Víctor Vásquez-Chaves
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
| | - Reinaldo Pereira-Reyes
- Laboratorio
Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología, 10109 San Jose, Costa Rica
| | - Priscila Chaverri
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
- Department
of Natural Sciences, Bowie State University, Bowie, Maryland 20715, United States
| | - Giselle Tamayo-Castillo
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Química, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| |
Collapse
|
3
|
Banakar SN, Prasannakumar MK, Parivallal PB, Pramesh D, Mahesh HB, Sarangi AN, Puneeth ME, Patil SS. Rice- Magnaporthe transcriptomics reveals host defense activation induced by red seaweed-biostimulant in rice plants. Front Genet 2023; 14:1132561. [PMID: 37424731 PMCID: PMC10327602 DOI: 10.3389/fgene.2023.1132561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Red seaweed extracts have been shown to trigger the biotic stress tolerance in several crops. However, reports on transcriptional modifications in plants treated with seaweed biostimulant are limited. To understand the specific response of rice to blast disease in seaweed-biostimulant-primed and non-primed plants, transcriptomics of a susceptible rice cultivar IR-64 was carried out at zero and 48 h post inoculation with Magnaporthe oryzae (strain MG-01). A total of 3498 differentially expressed genes (DEGs) were identified; 1116 DEGs were explicitly regulated in pathogen-inoculated treatments. Functional analysis showed that most DEGs were involved in metabolism, transport, signaling, and defense. In a glass house, artificial inoculation of MG-01 on seaweed-primed plants resulted in the restricted spread of the pathogen leading to the confined blast disease lesions, primarily attributed to reactive oxygen species (ROS) accumulation. The DEGs in the primed plants were defense-related transcription factors, kinases, pathogenesis-related genes, peroxidases, and growth-related genes. The beta-D-xylosidase, a putative gene that helps in secondary cell wall reinforcement, was downregulated in non-primed plants, whereas it upregulated in the primed plants indicating its role in the host defense. Additionally, Phenylalanine ammonia-lyase, pathogenesis-related Bet-v-I family protein, chalcone synthase, chitinases, WRKY, AP2/ERF, and MYB families were upregulated in seaweed and challenge inoculated rice plants. Thus, our study shows that priming rice plants with seaweed bio-stimulants resulted in the induction of the defense in rice against blast disease. This phenomenon is contributed to early protection through ROS, protein kinase, accumulation of secondary metabolites, and cell wall strengthening.
Collapse
Affiliation(s)
- Sahana N. Banakar
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - M. K. Prasannakumar
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - P. Buela Parivallal
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - D. Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, India
| | - H. B. Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, India
| | | | - M. E. Puneeth
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - Swathi S. Patil
- Plant PathoGenOmics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
4
|
Helmy NM, Parang K. Cyclic Peptides with Antifungal Properties Derived from Bacteria, Fungi, Plants, and Synthetic Sources. Pharmaceuticals (Basel) 2023; 16:892. [PMID: 37375840 DOI: 10.3390/ph16060892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal infections remain a significant concern for human health. The emergence of microbial resistance, the improper use of antimicrobial drugs, and the need for fewer toxic antifungal treatments in immunocompromised patients have sparked substantial interest in antifungal research. Cyclic peptides, classified as antifungal peptides, have been in development as potential antifungal agents since 1948. In recent years, there has been growing attention from the scientific community to explore cyclic peptides as a promising strategy for combating antifungal infections caused by pathogenic fungi. The identification of antifungal cyclic peptides from various sources has been possible due to the widespread interest in peptide research in recent decades. It is increasingly important to evaluate narrow- to broad-spectrum antifungal activity and the mode of action of synthetic and natural cyclic peptides for both synthesized and extracted peptides. This short review aims to highlight some of the antifungal cyclic peptides isolated from bacteria, fungi, and plants. This brief review is not intended to present an exhaustive catalog of all known antifungal cyclic peptides but rather seeks to showcase selected cyclic peptides with antifungal properties that have been isolated from bacteria, fungi, plants, and synthetic sources. The addition of commercially available cyclic antifungal peptides serves to corroborate the notion that cyclic peptides can serve as a valuable source for the development of antifungal drugs. Additionally, this review discusses the potential future of utilizing combinations of antifungal peptides from different sources. The review underscores the need for the further exploration of the novel antifungal therapeutic applications of these abundant and diverse cyclic peptides.
Collapse
Affiliation(s)
- Naiera M Helmy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 3751134, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
5
|
Morales AE, Soto N, Delgado C, Hernández Y, Carrillo L, Ferrero C, Enríquez GA. Expression of Mn-sod, PAL1, aos1 and HPL genes in soybean plants overexpressing the NmDef02 defensin. Transgenic Res 2023; 32:223-233. [PMID: 37131050 DOI: 10.1007/s11248-023-00350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.
Collapse
Affiliation(s)
- Alejandro E Morales
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Natacha Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Celia Delgado
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Yuniet Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Leonardo Carrillo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Camilo Ferrero
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Gil A Enríquez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| |
Collapse
|
6
|
Shahmiri M, Bleackley MR, Dawson CS, van der Weerden NL, Anderson MA, Mechler A. Membrane binding properties of plant defensins. PHYTOCHEMISTRY 2023; 209:113618. [PMID: 36828099 DOI: 10.1016/j.phytochem.2023.113618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The membrane interaction characteristics of five antifungal plant defensin peptides: NaD1, and the related HXP4 and L5, as well as NaD2 and the related ZmD32 were studied. These peptides were chosen to cover a broad range of cationic charges with little structural variations, allowing for assessment of the role of charge in their membrane interactions. Membrane permeabilizing activity against C. albicans was confirmed and quantified for benchmarking purposes. Viscoelastic characteristics of the membrane interactions were studied in typical neutral and charged model membranes using quartz crystal microbalance with dissipation (QCM-D. Frequency-dissipation fingerprinting analysis of the QCM-D results revealed that all of the peptides were able to bind to all studied model membranes albeit with slightly different viscoelastic character for each membrane type. However, characteristic disruption patterns were not observed suggesting that the membrane disrupting activity of these defensins is mostly specific to fungal membranes, and that increasing the peptide charge does not enhance their action. The results also show that the presence of specific sterols has a profound effect on the ability of the peptides to disrupt the membrane.
Collapse
Affiliation(s)
- Mahdi Shahmiri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Charlotte S Dawson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia.
| |
Collapse
|
7
|
Rodríguez-Moraga N, Ramos-Martín F, Buchoux S, Rippa S, D'Amelio N, Sarazin C. The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: An in silico study. Front Chem 2023; 11:1124129. [PMID: 36895318 PMCID: PMC9989204 DOI: 10.3389/fchem.2023.1124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Rhamnolipids (RLs) are secondary metabolites naturally produced by bacteria of the genera Pseudomonas and Burkholderia with biosurfactant properties. A specific interest raised from their potential as biocontrol agents for crop culture protection in regard to direct antifungal and elicitor activities. As for other amphiphilic compounds, a direct interaction with membrane lipids has been suggested as the key feature for the perception and subsequent activity of RLs. Methods: Molecular Dynamics (MD) simulations are used in this work to provide an atomistic description of their interactions with different membranous lipids and focusing on their antifungal properties. Results and discussion: Our results suggest the insertion of RLs into the modelled bilayers just below the plane drawn by lipid phosphate groups, a placement that is effective in promoting significant membrane fluidification of the hydrophobic core. This localization is promoted by the formation of ionic bonds between the carboxylate group of RLs and the amino group of the phosphatidylethanolamine (PE) or phosphatidylserine (PS) headgroups. Moreover, RL acyl chains adhere to the ergosterol structure, forming a significantly higher number of van der Waals contact with respect to what is observed for phospholipid acyl chains. All these interactions might be essential for the membranotropic-driven biological actions of RLs.
Collapse
Affiliation(s)
- Nely Rodríguez-Moraga
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
8
|
The potential of antifungal peptide Sesquin as natural food preservative. Biochimie 2022; 203:51-64. [PMID: 35395327 DOI: 10.1016/j.biochi.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Sesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments. While a specific recognition of phosphatidylethanolamine (PE) might explain its activity in a variety of different organisms (including bacteria), a further interaction with ergosterol accounts for its strong antifungal activity. NMR data reveal a charge gradient along its amide protons allowing the peptide to reach the membrane phosphate groups despite its negative charge. Subsequently, the peptide gets structured inside the bilayer, reducing its order. MD simulations predict that its activity is retained in conditions commonly used for food preservation: low temperatures, high pressure, or the presence of electric field pulses, making Sesquin a good candidate as food preservative.
Collapse
|
9
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
10
|
Salgado MG, Demina IV, Maity PJ, Nagchowdhury A, Caputo A, Krol E, Loderer C, Muth G, Becker A, Pawlowski K. Legume NCRs and nodule-specific defensins of actinorhizal plants—Do they share a common origin? PLoS One 2022; 17:e0268683. [PMID: 35980975 PMCID: PMC9387825 DOI: 10.1371/journal.pone.0268683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
The actinorhizal plant Datisca glomerata (Datiscaceae, Cucurbitales) establishes a root nodule symbiosis with actinobacteria from the earliest branching symbiotic Frankia clade. A subfamily of a gene family encoding nodule-specific defensin-like cysteine-rich peptides is highly expressed in D. glomerata nodules. Phylogenetic analysis of the defensin domain showed that these defensin-like peptides share a common evolutionary origin with nodule-specific defensins from actinorhizal Fagales and with nodule-specific cysteine-rich peptides (NCRs) from legumes. In this study, the family member with the highest expression levels, DgDef1, was characterized. Promoter-GUS studies on transgenic hairy roots showed expression in the early stage of differentiation of infected cells, and transient expression in the nodule apex. DgDef1 contains an N-terminal signal peptide and a C-terminal acidic domain which are likely involved in subcellular targeting and do not affect peptide activity. In vitro studies with E. coli and Sinorhizobium meliloti 1021 showed that the defensin domain of DgDef1 has a cytotoxic effect, leading to membrane disruption with 50% lethality for S. meliloti 1021 at 20.8 μM. Analysis of the S. meliloti 1021 transcriptome showed that, at sublethal concentrations, DgDef1 induced the expression of terminal quinol oxidases, which are associated with the oxidative stress response and are also expressed during symbiosis. Overall, the changes induced by DgDef1 are reminiscent of those of some legume NCRs, suggesting that nodule-specific defensin-like peptides were part of the original root nodule toolkit and were subsequently lost in most symbiotic legumes, while being maintained in the actinorhizal lineages.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Irina V Demina
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anurupa Nagchowdhury
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Andrea Caputo
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Elizaveta Krol
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Loderer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Günther Muth
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
12
|
Wang L, Wang Y, Huang X, Ma R, Li J, Wang F, Jiao N, Zhang R. Potential metabolic and genetic interaction among viruses, methanogen and methanotrophic archaea, and their syntrophic partners. ISME COMMUNICATIONS 2022; 2:50. [PMID: 37938729 PMCID: PMC9723712 DOI: 10.1038/s43705-022-00135-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 04/27/2023]
Abstract
The metabolism of methane in anoxic ecosystems is mainly mediated by methanogens and methane-oxidizing archaea (MMA), key players in global carbon cycling. Viruses are vital in regulating their host fate and ecological function. However, our knowledge about the distribution and diversity of MMA viruses and their interactions with hosts is rather limited. Here, by searching metagenomes containing mcrA (the gene coding for the α-subunit of methyl-coenzyme M reductase) from a wide variety of environments, 140 viral operational taxonomic units (vOTUs) that potentially infect methanogens or methane-oxidizing archaea were retrieved. Four MMA vOTUs (three infecting the order Methanobacteriales and one infecting the order Methanococcales) were predicted to cross-domain infect sulfate-reducing bacteria. By facilitating assimilatory sulfur reduction, MMA viruses may increase the fitness of their hosts in sulfate-depleted anoxic ecosystems and benefit from synthesis of the sulfur-containing amino acid cysteine. Moreover, cell-cell aggregation promoted by MMA viruses may be beneficial for both the viruses and their hosts by improving infectivity and environmental stress resistance, respectively. Our results suggest a potential role of viruses in the ecological and environmental adaptation of methanogens and methane-oxidizing archaea.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingyu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
13
|
Mbuayama KR, Taute H, Strӧmstedt AA, Bester MJ, Gaspar ARM. Antifungal activity and mode of action of synthetic peptides derived from the tick OsDef2 defensin. J Pept Sci 2021; 28:e3383. [PMID: 34866278 DOI: 10.1002/psc.3383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Candida albicans is the principal opportunistic fungal pathogen in nosocomial settings and resistance to antifungal drugs is on the rise. Antimicrobial peptides from natural sources are promising novel therapeutics against C. albicans. OsDef2 defensin was previously found to be active against only Gram-positive bacteria, whereas derived fragments Os and its cysteine-free analogue, Os-C, are active against Gram-positive and Gram-negative bacteria at low micromolar concentrations. In this study, OsDef2-derived analogues and fragments were screened for anticandidal activity with the aim to identify peptides with antifungal activity and in so doing obtain a better understanding of the structural requirements for activity and modes of action. Os, Os-C and Os(11-22)NH2 , a Os-truncated carboxy-terminal-amidated fragment, had the most significant antifungal activities, with minimum fungicidal concentrations (MFCs) in the micromolar range (6-28 μM). C. albicans killing was rapid and occurred within 30-60 min. Further investigations showed all three peptides interacted with cell wall derived polysaccharides while both Os and Os(11-22)NH2 permeabilized fungal liposomes. Confocal laser scanning microscopy confirmed that Os-C and Os(11-22)NH2 could enter the cytosol of live cells and subsequent findings suggest that the uptake of Os and Os-C, in contrast to Os(11-22)NH2 , is energy dependent. Although Os, Os-C and Os(11-22)NH2 induced the production of reactive oxygen species (ROS), co-incubation with ascorbic acid revealed that only ROS generated by Os-C and to a lesser extent Os(11-22)NH2 resulted in cell death. Overall, Os, Os-C and Os(11-22)NH2 are promising candidacidal agents.
Collapse
Affiliation(s)
- Kabuzi R Mbuayama
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adam A Strӧmstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Ma L, Li R, Ma L, Song N, Xu Z, Wu J. Involvement of NAC transcription factor NaNAC29 in Alternaria alternata resistance and leaf senescence in Nicotiana attenuata. PLANT DIVERSITY 2021; 43:502-509. [PMID: 35024519 PMCID: PMC8720690 DOI: 10.1016/j.pld.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
NAC-LIKE, ACTIVATED BY AP3/PI (NAP) is a NAC transcription factor regulating leaf senescence in Arabidopsis thaliana. In wild tobacco Nicotiana attenuata, a nuclear localized NAC transcription factor NaNAC29 was identified to be highly elicited after inoculation of Alternaria alternata, a notorious necrotic fungus on tobacco species. The NaNAC29 possesses similar tertiary structure to NAP with 60% amino acid identity. However, it remains unknown the role of NaNAC29 in plant defense responses to A. alternata and leaf senescence in N. attenuata. In this paper, Defensin-like protein 1 (NaDLP1) was highly induced in N. attenuata after A. alternata inoculation and bigger lesions were developed in NaDLP1-silenced plants. Interestingly, A. alternata-induced NaDLP1 was reduced by 76% in VIGS NaNAC29 plants and by 61% in JA deficient irAOC plants at 3 days post inoculation. The regulation of NaDLP1 expression by NaNAC29 was clearly independent on JA pathway, since exogenous methyl jasmonate treatment could not complement the induction levels of NaDLP1 in NaNAC29-silenced plants to the levels in WT plants. Otherwise, the expression of NaNAC29 was low expressed in young leaves but highly in senescent leaves and dark-treated leaves. NaNAC29-silenced plants, which were generated by virus-induced gene silencing (VIGS NaNAC29), showed delayed senescence phenotype. In addition, constitutive over-expression of NaNAC29 in A. thaliana could rescue the delayed-senescence phenotype of nap and caused precocious leaf senescence of wild-type Col-0 plants. All the data above demonstrate that NaNAC29 is a NAP homolog in N. attenuata participating in the defense responses to A. alternata by regulation of a defensin protein NaDLP1 and promoting leaf senescence.
Collapse
Affiliation(s)
- Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Rongping Li
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Luoyan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zhen Xu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| |
Collapse
|
15
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
16
|
Cavaco AR, Matos AR, Figueiredo A. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease. Cell Mol Life Sci 2021; 78:4399-4415. [PMID: 33638652 PMCID: PMC11073031 DOI: 10.1007/s00018-021-03791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.
Collapse
Affiliation(s)
- Ana Rita Cavaco
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Matos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
17
|
Annaval T, Ramos-Martín F, Herrera-León C, Adélaïde M, Antonietti V, Buchoux S, Sonnet P, Sarazin C, D'Amelio N. Antimicrobial Bombinin-like Peptide 3 Selectively Recognizes and Inserts into Bacterial Biomimetic Bilayers in Multiple Steps. J Med Chem 2021; 64:5185-5197. [PMID: 33851832 DOI: 10.1021/acs.jmedchem.1c00310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bombinins are a wide family of antimicrobial peptides from Xenopus skin. By sequence clustering, we highlighted at least three families named A, B, and H, which might exert antibacterial activity by different modes of action. In this work, we study bombinin-like peptide 3 (BLP-3) as a nonhemolytic representative of the quite unexplored class A due to its appealing activity toward WHO-priority-list bacteria such as Neisseria, Pseudomonas aeruginosa, and Staphylococcus aureus. A marked preference for cardiolipin and phosphatidylglycerol head groups, typically found in bacteria, is proven with biomimetic membranes studied by liquid and solid NMR and MD simulations. BLP-3 gets structured upon interaction and penetrates deeply into the bilayer in two steps involving a superficial insertion of key side chains and subsequent internalization. All along the pathway, a fundamental role is played by lysine residues in the conserved region 11-19, which act in synergy with other key residues.
Collapse
Affiliation(s)
- Thibault Annaval
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.,Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, CNRS, CEA, Grenoble 38000, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Viviane Antonietti
- Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, Amiens 80037, France
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Pascal Sonnet
- Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, Amiens 80037, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| |
Collapse
|
18
|
Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency. Sci Rep 2021; 11:7962. [PMID: 33846413 PMCID: PMC8042122 DOI: 10.1038/s41598-021-86904-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/19/2021] [Indexed: 11/27/2022] Open
Abstract
Fusarium graminearum is a major fungal pathogen affecting crops of worldwide importance. F. graminearum produces type B trichothecene mycotoxins (TCTB), which are not fully eliminated during food and feed processing. Therefore, the best way to minimize TCTB contamination is to develop prevention strategies. Herein we show that treatment with the reduced form of the γ-core of the tick defensin DefMT3, referred to as TickCore3 (TC3), decreases F. graminearum growth and abrogates TCTB production. The oxidized form of TC3 loses antifungal activity, but retains anti-mycotoxin activity. Molecular dynamics show that TC3 is recruited by specific membrane phospholipids in F. graminearum and that membrane binding of the oxidized form of TC3 is unstable. Capping each of the three cysteine residues of TC3 with methyl groups reduces its inhibitory efficacy. Substitutions of the positively-charged residues lysine (Lys) 6 or arginine 7 by threonine had the highest and the lesser impact, respectively, on the anti-mycotoxin activity of TC3. We conclude that the binding of linear TC3 to F. graminearum membrane phospholipids is required for the antifungal activity of the reduced peptide. Besides, Lys6 appears essential for the anti-mycotoxin activity of the reduced peptide. Our results provide foundation for developing novel and environment-friendly strategies for controlling F. graminearum.
Collapse
|
19
|
Rezaei-Moshaei M, Dehestani A, Bandehagh A, Pakdin-Parizi A, Golkar M, Heidari-Japelaghi R. Recombinant pebulin protein, a type 2 ribosome-inactivating protein isolated from dwarf elder (Sambucus ebulus L.) shows anticancer and antifungal activities in vitro. Int J Biol Macromol 2021; 174:352-361. [PMID: 33497693 DOI: 10.1016/j.ijbiomac.2021.01.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
In this study, encoding sequence of a new type 2 RIP (pebulin) was isolated and cloned from dwarf elder (Sambucus ebulus L.) native to the northern regions of Iran. The nucleotide sequence of pebulin was ligated to the pET-28a(+) expression plasmid and cloned into the E. coli strain BL21 (DE3) in order to express heterologously of recombinant protein. The recombinant pebulin protein was mainly produced in the form of insoluble inclusion bodies probably because to absence of N-glycosylation process in E. coli. Therefore, in order to increase the expression of recombinant protein in soluble form, co-expression of the target protein with the pG-Tf2 chaperone plasmid and incubation of bacterial culture under low temperature were used to enhance solubility and accumulation of recombinant protein. After purification of the recombinant protein using affinity chromatography method, the bioactivity of pebulin was analyzed by hemagglutination, anticancer, and antifungal assays. The results of the hemagglutination assay showed that purified pebulin agglutinated erythrocytes in all human blood groups. In addition, pebulin considerably inhibited the proliferation of cancer cell lines MCF-7 and HT-29 in a time- and dose-dependent manner and indicated remarkably growth-inhibiting effect against the plant pathogenic fungi such as Alternaria solani and Fusarium oxysporum.
Collapse
Affiliation(s)
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, the University of Tabriz, Tabriz, Iran
| | - Ali Pakdin-Parizi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | | | |
Collapse
|
20
|
Ramos-Martín F, D’Amelio N. Molecular Basis of the Anticancer and Antibacterial Properties of CecropinXJ Peptide: An In Silico Study. Int J Mol Sci 2021; 22:E691. [PMID: 33445613 PMCID: PMC7826669 DOI: 10.3390/ijms22020691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/04/2023] Open
Abstract
Esophageal cancer is an aggressive lethal malignancy causing thousands of deaths every year. While current treatments have poor outcomes, cecropinXJ (CXJ) is one of the very few peptides with demonstrated in vivo activity. The great interest in CXJ stems from its low toxicity and additional activity against most ESKAPE bacteria and fungi. Here, we present the first study of its mechanism of action based on molecular dynamics (MD) simulations and sequence-property alignment. Although unstructured in solution, predictions highlight the presence of two helices separated by a flexible hinge containing P24 and stabilized by the interaction of W2 with target biomembranes: an amphipathic helix-I and a poorly structured helix-II. Both MD and sequence-property alignment point to the important role of helix I in both the activity and the interaction with biomembranes. MD reveals that CXJ interacts mainly with phosphatidylserine (PS) but also with phosphatidylethanolamine (PE) headgroups, both found in the outer leaflet of cancer cells, while salt bridges with phosphate moieties are prevalent in bacterial biomimetic membranes composed of PE, phosphatidylglycerol (PG) and cardiolipin (CL). The antibacterial activity of CXJ might also explain its interaction with mitochondria, whose phospholipid composition recalls that of bacteria and its capability to induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
21
|
Mahesh HB, Shirke MD, Wang GL, Gowda M. In planta transcriptome analysis reveals tissue-specific expression of pathogenicity genes and microRNAs during rice-Magnaporthe interactions. Genomics 2020; 113:265-275. [PMID: 33326830 DOI: 10.1016/j.ygeno.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Transcriptional re-programming in host and pathogen upon leaf and neck infection is an evolving area of research for the rice blast community. Analysis of in planta rice transcriptome in leaf and neck tissues revealed tissue-specific and infection-specific expression of rice and Magnaporthe oryzae genes in host and pathogen. The glycosyl hydrolase, isocitrate lyase, cupin domain containing protein, TF2, CMPG1, CHIT17 and OsCML14 genes were uniquely expressed in leaf infection. Genes like cytochrome P450, inhibitor I family protein, GSTU6, abscisic stress ripening, and cupin domain containing protein were up-regulated during neck infection. In our microRNA sequencing study, Osa-miR166n-3p was highly expressed in upon Magnaporthe leaf infection, whereas osa-miR1661-3p, osa-miR166n-3p and osa-miR159b were overexpressed in neck infection. Here we report several transcripts being targeted by up and down regulated microRNAs during infection. The putative genes expressed upon infection in leaf and neck could be used in understanding the dual-epidemics of blast disease.
Collapse
Affiliation(s)
- H B Mahesh
- Genomics Laboratory, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences (NCBS), Bengaluru 560065, India; Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru 560065, India; Centre for Functional Genomics and Bioinformatics, The University of Trans-disciplinary Health Science and Technology, Bengaluru 560064, India.
| | - Meghana Deepak Shirke
- Centre for Functional Genomics and Bioinformatics, The University of Trans-disciplinary Health Science and Technology, Bengaluru 560064, India
| | - Guo-Liang Wang
- Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru 560065, India
| | - Malali Gowda
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus 43210, USA; Centre for Functional Genomics and Bioinformatics, The University of Trans-disciplinary Health Science and Technology, Bengaluru 560064, India.
| |
Collapse
|
22
|
Santos FC, Marquês JT, Bento‐Oliveira A, Almeida RF. Sphingolipid‐enriched domains in fungi. FEBS Lett 2020; 594:3698-3718. [DOI: 10.1002/1873-3468.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa C. Santos
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Joaquim T. Marquês
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Andreia Bento‐Oliveira
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Rodrigo F.M. Almeida
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| |
Collapse
|
23
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
24
|
Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183246. [PMID: 32142818 PMCID: PMC7138148 DOI: 10.1016/j.bbamem.2020.183246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Penicillium chrysogenum Q176 secretes the antimicrobial proteins (AMPs) PAF and PAFB, which share a compact disulfide-bond mediated, β-fold structure rendering them highly stable. These two AMPs effectively inhibit the growth of human pathogenic fungi in micromolar concentrations and exhibit antiviral potential without causing cytotoxic effects on mammalian cells in vitro and in vivo. The antifungal mechanism of action of both AMPs is closely linked to - but not solely dependent on - the lipid composition of the fungal cell membrane and requires a strictly regulated protein uptake into the cell, indicating that PAF and PAFB are not canonical membrane active proteins. Variations in their antifungal spectrum and their killing dynamics point towards a divergent mode of action related to their physicochemical properties and surface charge distribution. In this review, we relate characteristic features of PAF and PAFB to the current knowledge about other AMPs of different sources. In addition, we present original data that have never been published before to substantiate our assumptions and provide evidences that help to explain and understand better the mechanistic function of PAF and PAFB. Finally, we underline the promising potential of PAF and PAFB as future antifungal therapeutics. Penicillium chrysogenum secretes the small, cysteine-rich proteins PAF and PAFB. Both exhibit antifungal activity, but with differences in their mode of action. Structure, membrane interaction and cellular uptake determine their function. PAF and PAFB are well tolerated by mammalian cells. They promise applicability in medicine, plant protection and food industry.
Collapse
|
25
|
Ma Y, Kim SS, Maeng CH, Kim DNJ, Lee CJ, Nam BH, Kim YO, An CM, Park JS. Key Role of Disulfide Bridges in the Antimicrobial Activity of Beta-Defensin from Olive Flounder. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Soto N, Hernández Y, Delgado C, Rosabal Y, Ortiz R, Valencia L, Borrás-Hidalgo O, Pujol M, Enríquez GA. Field Resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of Transgenic Soybean Expressing the NmDef02 Plant Defensin Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:562. [PMID: 32528487 PMCID: PMC7264373 DOI: 10.3389/fpls.2020.00562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/15/2020] [Indexed: 05/20/2023]
Abstract
Fungal diseases lead to significant losses in soybean yields and a decline in seed quality; such is the case of the Asian soybean rust and anthracnose caused by Phakopsora pachyrhizi and Colletotrichum truncatum, respectively. Currently, the development of transgenic plants carrying antifungal defensins offers an alternative for plant protection against pathogens. This paper shows the production of transgenic soybean plants expressing the NmDef02 defensin gene using the biolistic delivery system, in an attempt to improve resistance against diseases and reduce the need for chemicals. Transgenic lines were assessed in field conditions under the natural infections of P. pachyrhizi and C. truncatum. The constitutive expression of the NmDef02 gene in transgenic soybean plants was shown to enhance resistance against these important plant pathogens. The quantification of the P. pachyrhizi biomass in infected soybean leaves revealed significant differences between transgenic lines and the non-transgenic control. In certain transgenic lines there was a strong reduction of fungal biomass, revealing a less severe disease. Integration and expression of the transgenes were confirmed by PCR, Southern blot, and qRT-PCR, where the Def1 line showed a higher relative expression of defensin. It was also found that the expression of the NmDef02 defensin gene in plants of the Def1 line did not have a negative effect on the nodulation induced by Bradyrhizobium japonicum. These results indicate that transgenic soybean plants expressing the NmDef02 defensin gene have a substantially enhanced resistance to economically important diseases, providing a sound environmental approach for decreasing yield losses and lowering the burden of chemicals in agriculture.
Collapse
Affiliation(s)
- Natacha Soto
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- *Correspondence: Natacha Soto,
| | - Yuniet Hernández
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Celia Delgado
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yamilka Rosabal
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rodobaldo Ortiz
- National Institute of Agricultural Sciences, San José de las Lajas, Cuba
| | - Laura Valencia
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Orlando Borrás-Hidalgo
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qilu University of Technology, Jinan, China
| | - Merardo Pujol
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gil A. Enríquez
- Soybean Biotechnology Laboratory, Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
27
|
Almeida TC, Seibert JB, Almeida SHDS, Amparo TR, Teixeira LFDM, Barichello JM, Postacchini BB, Santos ODHD, Silva GND. Polymeric micelles containing resveratrol: development, characterization, cytotoxicity on tumor cells and antimicrobial activity. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Seibert JB, Viegas JSR, Almeida TC, Amparo TR, Rodrigues IV, Lanza JS, Frézard FJG, Soares RDOA, Teixeira LFM, de Souza GHB, Vieira PMA, Barichello JM, Dos Santos ODH. Nanostructured Systems Improve the Antimicrobial Potential of the Essential Oil from Cymbopogon densiflorus Leaves. JOURNAL OF NATURAL PRODUCTS 2019; 82:3208-3220. [PMID: 31815454 DOI: 10.1021/acs.jnatprod.8b00870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physicochemical characteristics of nanostructured suspensions are important prerequisites for the success of new drug development. This work aimed to develop nanometric systems containing Cymbopogon densiflorus leaf essential oil and to evaluate their antimicrobial activity. The essential oil was isolated by hydrodistillation from leaves and analyzed by GC-MS. The main constituents were found to be trans-p-mentha-2,8-dien-1-ol, cis-p-mentha-2,8-dien-1-ol, trans-p-mentha-1(7),8-dien-2-ol, cis-piperitol, and cis-p-mentha-1(7),8-dien-2-ol. In silico prediction analysis suggested that this oil possesses antimicrobial potential and the main mechanism of action might be the peptidoglycan glycosyltransferase inhibition. Nanoemulsions were prepared by the phase inversion method, and liposomes were made by the film hydration method. Qualitative evaluation of the antimicrobial activity was performed by the diffusion disk assay with 24 microorganisms; all of them were found to be sensitive to the essential oil. Subsequently, this property was quantified by the serial microdilution technique, where the nanoformulations demonstrated improved activity in comparison with the free oil. Bactericidal action was tested by the propidium iodide method, which revealed that free essential oil and nanoemulsion increased cytoplasmic membrane permeability, while no difference was observed between negative control and liposome. These results were confirmed by images obtained using transmission electron microscopy. This study has shown an optimization in the antimicrobial activity of C. densiflorus essential oil by a nanoemulsion and a liposomal formulation of the active substances.
Collapse
Affiliation(s)
- Janaína B Seibert
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Juliana S R Viegas
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Tamires C Almeida
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Tatiane R Amparo
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Ivanildes V Rodrigues
- Departamento de Farmácia , Universidade Federal de Juiz de Fora , Governador Valadares , 36010-041 , Brazil
| | - Juliane S Lanza
- Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , 30150-260 , Brazil
| | - Frédéric J G Frézard
- Departamento de Fisiologia e Biofísica , Universidade Federal de Minas Gerais , Belo Horizonte , 30150-260 , Brazil
| | - Rodrigo D O A Soares
- Núcleo de Pesquisas em Ciências Biológicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Luiz Fernando M Teixeira
- Departamento de Análises Clínicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Gustavo H B de Souza
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - Paula M A Vieira
- Departamento de Ciências Biológicas , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| | - José M Barichello
- Departamento de Farmácia , Universidade Federal de Pelotas , Pelotas , 96020-000 , Brazil
| | - Orlando D H Dos Santos
- Departamento de Farmácia , Universidade Federal de Ouro Preto , Ouro Preto , 35400-000 , Brazil
| |
Collapse
|
29
|
Screening the Saccharomyces cerevisiae Nonessential Gene Deletion Library Reveals Diverse Mechanisms of Action for Antifungal Plant Defensins. Antimicrob Agents Chemother 2019; 63:AAC.01097-19. [PMID: 31451498 DOI: 10.1128/aac.01097-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.
Collapse
|
30
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
31
|
Húmpola MV, Rey MC, Spontón PG, Simonetta AC, Tonarelli GG. A Comparative Study of the Antimicrobial and Structural Properties of Short Peptides and Lipopeptides Containing a Repetitive Motif KLFK. Protein Pept Lett 2019; 26:192-203. [PMID: 30526450 DOI: 10.2174/0929866526666181208144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last years, Antimicrobial Peptides (AMPs) and lipopeptides have received attention as promising candidates to treat infections caused by resistant microorganisms. OBJECTIVE The main objective of this study was to investigate the effect of repetitive KLFK motifs and the attachment of aliphatic acids to the N-terminus of (KLFK)n peptides on therapeutic properties. METHODS Minimal inhibitory concentration against Gram (+) and (-) bacteria and yeast of synthetic compounds were determined by broth microtiter dilution method, and the toxicity was evaluated by hemolysis assay. Membrane-peptide interaction studies were performed with model phospholipid membranes mimicking those of bacterial and mammalian cells by Fluorescence Spectroscopy. The secondary structure in solution and membranes was determined by Circular Dichroism. RESULTS Our results showed that the resulting compounds have inhibitory activity against bacteria and fungi. The (KLFK)3 peptide showed the highest therapeutic index against bacterial and yeast strains, and the (KLFK)2 peptide conjugated with octanoic acid was the most active against yeasts. All the lipopeptides containing long-chain fatty acids (C14 or longer) were highly hemolytic at low concentrations. The antimicrobial activity of (KLFK)2 and (KLFK)3 lipopeptides was mainly associated with improved stability of the amphipathic secondary structure, which showed high contributions of α-helix in dipalmitoylphosphatidylglycerol (DPPG) vesicles. CONCLUSION The repetition of the KLFK sequence and the conjugation with lipid tails allowed obtained compounds with high antimicrobial activity and low toxicity, becoming good candidates for treating infectious diseases.
Collapse
Affiliation(s)
- María Verónica Húmpola
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - María Carolina Rey
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - Pablo Gabriel Spontón
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina.,Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Arturo Carlos Simonetta
- Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georgina Guadalupe Tonarelli
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| |
Collapse
|
32
|
de Oliveira Mello É, Taveira GB, de Oliveira Carvalho A, Gomes VM. Improved smallest peptides based on positive charge increase of the γ-core motif from PνD 1 and their mechanism of action against Candida species. Int J Nanomedicine 2019; 14:407-420. [PMID: 30666103 PMCID: PMC6331069 DOI: 10.2147/ijn.s187957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Plant defensins have a hallmark γ-core motif (GXCX3-9C) that is related to their antimicrobial properties. The aim of this work was to design synthetic peptides based on the region corresponding to the PvD1 defensin γ-core that are the smallest amino acid sequences that bear the strongest biological activity. METHODS We made rational substitutions of negatively charged amino acid residues with positively charged ones, and the reduction in length in the selected PvD1 γ-core sequence to verify whether the increased net positive charges and shortened length are related to the increase in antifungal activity. Herein, we opted to evaluate the action mechanism of γ33-41 PvD1 ++ peptide due to its significant inhibitory effect on tested yeasts. In addition, it is the smallest construct comprising only nine amino acid residues, giving it a better possibility to be a prototype for designing a new antifungal drug, with lower costs to the pharmaceutical industry while still maintaining the strongest antimicrobial properties. RESULTS The γ33-41 PvD1 ++ peptide caused the most toxic effects in the yeast Candida buinensis, leading to membrane permeabilization, viability loss, endogenous reactive oxygen species increase, the activation of metacaspase, and the loss of mitochondrial functionality, suggesting that this peptide triggers cell death via apoptosis. CONCLUSION We observed that the antifungal activity of PvD1 is not strictly localized in the structural domain, which comprises the γ-core region and that the increase in the net positive charge is directly related to the increase in antifungal activity.
Collapse
Affiliation(s)
- Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| |
Collapse
|
33
|
Andrade JC, Morais Braga MFB, Guedes GMM, Tintino SR, Freitas MA, Quintans LJ, Jr., Menezes IRA, Coutinho HDM. Cholecalciferol, Ergosterol, and Cholesterol Enhance the Antibiotic Activity of Drugs. INT J VITAM NUTR RES 2018; 88:244-250. [DOI: 10.1024/0300-9831/a000268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. Background: This is the first report demonstrating the antibiotic-modifying activity of cholecalciferol. Aim: In this study, cholecalciferol was evaluated against multiresistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Methods: The antibacterial and modulatory effects of cholecalciferol, ergosterol, and cholesterol (8–512 μg/mL) were evaluated by microdilution assay against multiresistant bacterial strains. Results: Cholecalciferol, when combined with aminoglycosides, was more effective against P. aeruginosa, reducing the concentration of amikacin and gentamicin necessary to inhibit bacterial growth from 156.25 to 39.06 μg/mL and from 39.06 to 9.76 μg/mL, respectively. It is possible that cholecalciferol, due to its lipid-soluble nature, had a lipophilic interaction with the cell membrane, enhancing antibiotic uptake. Cholesterol and ergosterol were used to see if the mechanism of action of cholecalciferol was similar to that of these lipid compounds. Ergosterol and cholesterol increased aminoglycoside activity, where the effect was greater with higher subinhibitory concentration of sterol. Conclusions: There is no reported study on the use of cholesterol and ergosterol as modulators of antibiotics or any other drug, making this the first study in this area highlighting the interaction between cholesterol, ergosterol, and cholecalciferol with regard to modifying aminoglycoside activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jr.
- Universidade Federal de Sergipe, Aracaju, Brasil
| | | | | |
Collapse
|
34
|
Moore J, Rajasekaran K, Cary JW, Chlan C. Mode of Action of the Antimicrobial Peptide D4E1 on Aspergillus flavus. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9762-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Rogozhin E, Ryazantsev D, Smirnov A, Zavriev S. Primary Structure Analysis of Antifungal Peptides from Cultivated and Wild Cereals. PLANTS 2018; 7:plants7030074. [PMID: 30213105 PMCID: PMC6160967 DOI: 10.3390/plants7030074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Cereal-derived bioactive peptides with antimicrobial activity have been poorly explored compared to those from dicotyledonous plants. Furthermore, there are a few reports addressing the structural differences between antimicrobial peptides (AMPs) from cultivated and wild cereals, which may shed light on significant varieties in the range and level of their antimicrobial activity. We performed a primary structure analysis of some antimicrobial peptides from wild and cultivated cereals to find out the features that are associated with the much higher antimicrobial resistance characteristic of wild plants. In this review, we identified and analyzed the main parameters determining significant antifungal activity. They relate to a high variability level in the sequences of C-terminal fragments and a high content of hydrophobic amino acid residues in the biologically active defensins in wild cereals, in contrast to AMPs from cultivated forms that usually exhibit weak, if any, activity. We analyzed the similarity of various physicochemical parameters between thionins and defensins. The presence of a high divergence on a fixed part of any polypeptide that is close to defensins could be a determining factor. For all of the currently known hevein-like peptides of cereals, we can say that the determining factor in this regard is the structure of the chitin-binding domain, and in particular, amino acid residues that are not directly involved in intermolecular interaction with chitin. The analysis of amino acid sequences of alpha-hairpinins (hairpin-like peptides) demonstrated much higher antifungal activity and more specificity of the peptides from wild cereals compared with those from wheat and corn, which may be associated with the presence of a mini cluster of positively charged amino acid residues. In addition, at least one hydrophobic residue may be responsible for binding to the components of fungal cell membranes.
Collapse
Affiliation(s)
- Eugene Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.
| | - Dmitry Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Alexey Smirnov
- Department of Plant Protection Timiryazev Russian Agricultural University, ul. Timiryazevskaya 49, 127550 Moscow, Russia.
| | - Sergey Zavriev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
36
|
Citores L, Iglesias R, Ragucci S, Di Maro A, Ferreras JM. Antifungal Activity of α-Sarcin against Penicillium digitatum: Proposal of a New Role for Fungal Ribotoxins. ACS Chem Biol 2018; 13:1978-1982. [PMID: 29952541 DOI: 10.1021/acschembio.8b00410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the putative defense proteins that occur in fungi, one of the best studied is α-sarcin, produced by the mold Aspergillus giganteus. This protein is the most significant member of the ribotoxin family, which consists of extracellular rRNA ribonucleases that display cytotoxic activity toward animal cells. Ribotoxins are rRNA endonucleases that catalyze the hydrolysis of the phosphodiester bond between G4325 and A4326 from the rat 28S rRNA. The results of several experimental approaches have led to propose ribotoxins as insecticidal agents. In this work, we report that α-sarcin displays a strong antifungal activity against Penicillium digitatum, being able to enter into the cytosol where it inactivates the ribosomes, thus killing the cells and arresting the growth of the fungus. This is the first time that a ribotoxin has been found to display antifungal activity. Therefore, this protein could play, besides the already proposed insecticidal function, a role in nature as an antifungal agent.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, I-81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, I-81100 Caserta, Italy
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| |
Collapse
|
37
|
Kadakal Ç, Tepe TK. Is ergosterol a new microbiological quality parameter in foods or not? FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1482495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Çetin Kadakal
- Department of Food Engineering, Faculty of Engineering, University of Pamukkale, Kinikli, Denizli, Turkey
| | - Tolga Kağan Tepe
- Department of Food Engineering, Faculty of Engineering, University of Pamukkale, Kinikli, Denizli, Turkey
| |
Collapse
|
38
|
Souza GS, de Carvalho LP, de Melo EJT, Gomes VM, Carvalho ADO. The toxic effect of Vu-Defr, a defensin from Vigna unguiculata seeds, on Leishmania amazonensis is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Can J Microbiol 2018; 64:455-464. [PMID: 29586486 DOI: 10.1139/cjm-2018-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plant defensins are plant antimicrobial peptides that present diverse biological activities in vitro, including the elimination of Leishmania amazonensis. Plant defensins are considered promising candidates for the development of new drugs. This protozoan genus has great epidemiological importance and the mechanism behind the protozoan death by defensins is unknown, thus, we chose L. amazonensis for this study. The aim of the work was to analyze the possible toxic mechanisms of Vu-Defr against L. amazonensis. For analyses, the antimicrobial assay was repeated as previously described, and after 24 h, an aliquot of the culture was tested for viability, membrane perturbation, mitochondrial membrane potential, reactive oxygen species (ROS) and nitric oxide (NO) inductions. The results of these analyses indicated that after interaction with L. amazonensis, the Vu-Defr causes elimination of promastigotes from culture, membrane perturbation, mitochondrial membrane collapse, and ROS induction. Our analysis demonstrated that NO is not produced after Vu-Defr and L. amazonensis interaction. In conclusion, our work strives to help to fill the gap relating to effects caused by plant defensins on protozoan and thus better understand the mechanism of action of this peptide against L. amazonensis.
Collapse
Affiliation(s)
- Géssika Silva Souza
- a Laboratório de Fisiologia e Bioquímica de Micro-organismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Lais Pessanha de Carvalho
- b Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Edésio José Tenório de Melo
- b Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Valdirene Moreira Gomes
- a Laboratório de Fisiologia e Bioquímica de Micro-organismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - André de Oliveira Carvalho
- a Laboratório de Fisiologia e Bioquímica de Micro-organismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
40
|
Cools TL, Vriens K, Struyfs C, Verbandt S, Ramada MHS, Brand GD, Bloch C, Koch B, Traven A, Drijfhout JW, Demuyser L, Kucharíková S, Van Dijck P, Spasic D, Lammertyn J, Cammue BPA, Thevissen K. The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization. Front Microbiol 2017; 8:2295. [PMID: 29209301 PMCID: PMC5702387 DOI: 10.3389/fmicb.2017.02295] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
HsAFP1, a plant defensin isolated from coral bells (Heuchera sanguinea), is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the membrane phospholipid phosphatidic acid (PA), which is a precursor for the biosynthesis of other phospholipids, and to a lesser extent with various phosphatidyl inositol phosphates (PtdInsP's). Moreover, via reverse ELISA assays we identified two basic amino acids in HsAFP1, namely histidine at position 32 and arginine at position 52, as well as the phosphate group in PA as important features enabling this interaction. Using a HsAFP1 variant, lacking both amino acids (HsAFP1[H32A][R52A]), we showed that, as compared to the native peptide, the ability of this variant to bind to PA and PtdInsP's is reduced (≥74%) and the antifungal activity of the variant is reduced (≥2-fold), highlighting the link between PA/PtdInsP binding and antifungal activity. Using fluorescently labelled HsAFP1 in confocal microscopy and flow cytometry assays, we showed that HsAFP1 accumulates at the cell surface of yeast cells with intact membranes, most notably at the buds and septa. The resulting HsAFP1-induced membrane permeabilization is likely to occur after HsAFP1's internalization. These data provide novel mechanistic insights in the mode of action of the HsAFP1 plant defensin.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Kim Vriens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Sara Verbandt
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Marcelo H S Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Brazil.,Mass Spectrometry Laboratory, Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Guilherme D Brand
- Chemistry Institute, Campus Darcy Ribeiro, University of Brasilia, Brasilia, Brazil
| | - Carlos Bloch
- Mass Spectrometry Laboratory, Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Barbara Koch
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Soňa Kucharíková
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | | | | | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Gonçalves S, Silva PM, Felício MR, de Medeiros LN, Kurtenbach E, Santos NC. Psd1 Effects on Candida albicans Planktonic Cells and Biofilms. Front Cell Infect Microbiol 2017. [PMID: 28649561 PMCID: PMC5465278 DOI: 10.3389/fcimb.2017.00249] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP) Psd1 is a defensin isolated from Pisum sativum seeds. We tested the effects of this AMP on C. albicans biofilms and planktonic cells, comparing its activity with amphotericin B and fluconazole. Three C. albicans variants were studied, one of them a mutant deficient in glucosylceramide synthase, conferring resistance to Psd1 antifungal action. Atomic force microscopy (AFM) was used to assess morphological and biomechanical changes on fungal cells. Surface alterations, with membrane disruption and leakage of cellular contents, were observed. Cytometry assays and confocal microscopy imaging showed that Psd1 causes cell death, in a time and concentration-dependent manner. These results demonstrate Psd1 pleiotropic action against a relevant fungal human pathogen, suggesting its use as natural antimycotic agent.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| | - Patrícia M Silva
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| | - Mário R Felício
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| | - Luciano N de Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Nuno C Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
42
|
Wang T, Xiu J, Zhang Y, Wu J, Ma X, Wang Y, Guo G, Shang X. Transcriptional Responses of Candida albicans to Antimicrobial Peptide MAF-1A. Front Microbiol 2017; 8:894. [PMID: 28567034 PMCID: PMC5434131 DOI: 10.3389/fmicb.2017.00894] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Candida albicans is a major fungal pathogen in humans. Novel antifungal agents are urgent demanded due to the challenges of the resistance. Antimicrobial peptides (AMPs) are critical components of the innate immune system against pathogenic microorganism infection. MAF-1A is a novel cationic AMP that comes from Musca domestica and is effective against C. albicans, but the antifungal mechanism remains unclear. In this study, we performed a transcriptomics analysis in C. albicans using RNA-seq technique under the treatment of MAF-1A. A total of 5654 genes were identified. Among these, 1032 were differentially expressed genes (DEGs), including 575 up-regulated genes and 457 down-regulated genes. In these DEGs, genes encoding ergosterol metabolism and fatty acid biosynthesis were identified to be significantly down-regulated, while genes associated with oxidative stress response and cell wall were identified to be significantly up-regulated. Using pathway enrichment analysis, 12 significant metabolic pathways were identified, and ribosome, oxidative phosphorylation, citrate cycle were mainly involved. The results revealed that MAF-1A induces complex responses in C. albicans. This study provides evidence that MAF-1A may inhibit the growth through affect multi-targets in C. albicans cells.
Collapse
Affiliation(s)
- Tao Wang
- School of Basic Medical Sciences, Guizhou Medical UniversityGuiyang, China
| | - Jiangfan Xiu
- School of Basic Medical Sciences, Guizhou Medical UniversityGuiyang, China
| | - Yingchun Zhang
- School of Basic Medical Sciences, Guizhou Medical UniversityGuiyang, China
| | - Jianwei Wu
- School of Basic Medical Sciences, Guizhou Medical UniversityGuiyang, China
| | - Xiaolin Ma
- School of Basic Medical Sciences, Guizhou Medical UniversityGuiyang, China
| | - Yu Wang
- Guizhou Provincial Center for Disease Control and PreventionGuiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical UniversityGuiyang, China
| | - Xiaoli Shang
- School of Biology and Engineering, Guizhou Medical UniversityGuiyang, China
| |
Collapse
|
43
|
Kwon Y, Chiang J, Tran G, Giaever G, Nislow C, Hahn BS, Kwak YS, Koo JC. Signaling pathways coordinating the alkaline pH response confer resistance to the hevein-type plant antimicrobial peptide Pn-AMP1 in Saccharomyces cerevisiae. PLANTA 2016; 244:1229-1240. [PMID: 27510723 DOI: 10.1007/s00425-016-2579-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1. This assay identified 44 deletion strains with fitness defects in the presence of Pn-AMP1. Strong fitness defects were observed in strains with deletions of genes encoding components of several pathways and complex known to participate in the adaptive response to alkaline pH stress, including the cell wall integrity (CWI), calcineurin/Crz1, Rim101, SNF1 pathways and endosomal sorting complex required for transport (ESCRT complex). Gene ontology (GO) enrichment analysis of these genes revealed that the most highly overrepresented GO term was "cellular response to alkaline pH". We found that 32 of the 44 deletion strains tested (72 %) showed significant growth defects compared with their wild type at alkaline pH. Furthermore, 9 deletion strains (20 %) exhibited enhanced sensitivity to Pn-AMP1 at ambient pH compared to acidic pH. Although several hundred plant AMPs have been reported, their modes of action remain largely uncharacterized. This study demonstrates that the signaling pathways that coordinate the adaptive response to alkaline pH also confer resistance to a hevein-type plant AMP in S. cerevisiae. Our findings have broad implications for the design of novel and potent antifungal agents.
Collapse
Affiliation(s)
- Youngho Kwon
- Division of Applied Life Science and IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jennifer Chiang
- University of British Columbia, Pharmaceutical Sciences, Vancouver, BC, Canada
| | - Grant Tran
- University of British Columbia, Pharmaceutical Sciences, Vancouver, BC, Canada
| | - Guri Giaever
- University of British Columbia, Pharmaceutical Sciences, Vancouver, BC, Canada
| | - Corey Nislow
- University of British Columbia, Pharmaceutical Sciences, Vancouver, BC, Canada
| | - Bum-Soo Hahn
- National Academy of Agricultural Sciences, Rural Development Administration, Jeonju, 560-500, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science and IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Ja-Choon Koo
- Division of Science Education and Institute of Science Education, Chonbuk National University, Jeonju, 761-756, Republic of Korea.
| |
Collapse
|
44
|
Rautenbach M, Troskie AM, Vosloo JA, Dathe ME. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi. Biochimie 2016; 130:122-131. [DOI: 10.1016/j.biochi.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
|
45
|
Nóbrega RDO, Teixeira APDC, Oliveira WAD, Lima EDO, Lima IO. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans. PHARMACEUTICAL BIOLOGY 2016; 54:2591-2596. [PMID: 27225838 DOI: 10.3109/13880209.2016.1172319] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cryptococcus neoformans is the etiologic agent of opportunistic systemic fungal infection cryptococcosis, which affects individuals with compromised immune systems. Thus, natural products research has become important, since monoterpenes such as carvacrol, a promising molecule in the search antifungal agents, have shown significant biological activity. OBJECTIVE The study aimed to investigate the antifungal activity and mode of action of carvacrol against strains of C. neoformans. METHODS The minimum inhibitory concentration (MIC) was determined by microdilution method. Minimum fungicidal concentration (MFC) was performed by seeding technique on solid media. Studying the mode of action was performed using broth microdilution. RESULTS The MIC ranged from 25 to 81 μg/mL and the MFC ranged from 25 to 102 μg/mL. Carvacrol bonded to exogenous ergosterol and cholesterol. DISCUSSION The results suggest that carvacrol has antifungal activity against C. neoformans and its mode of action is related to fungal membrane instability. CONCLUSIONS The phytoconstituent carvacrol may eventually become a drug; however, further studies are needed to elucidate its mechanism.
Collapse
Affiliation(s)
- Rafaela de Oliveira Nóbrega
- a Pós-graduanda em Ciências Naturais e Biotecnologia , Centro de Educação e Saúde , Cuité , Paraíba , Brasil
| | | | - Wylly Araújo de Oliveira
- b Centro de Educação e Saúde , Universidade Federal de Campina Grande , Cuité , Paraíba , Brasil
| | - Edeltrudes de Oliveira Lima
- c Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal da Paraíba , João Pessoa , Brasil
| | - Igara Oliveira Lima
- b Centro de Educação e Saúde , Universidade Federal de Campina Grande , Cuité , Paraíba , Brasil
| |
Collapse
|
46
|
de Medeiros LN, Domitrovic T, de Andrade PC, Faria J, Bergter EB, Weissmüller G, Kurtenbach E. Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry. Biopolymers 2016; 102:456-64. [PMID: 25283273 DOI: 10.1002/bip.22570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/17/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
Psd1 is a plant defensin that has antifungal activity against several pathogenic and nonpathogenic fungi. Previous analysis of Psd1 chemical shift perturbations by nuclear magnetic resonance (NMR) spectroscopy demonstrated that this defensin interacts with phospholipids and the sphingolipid glucosylceramide isolated from Fusarium solani (GlcCer(Fusarium solani)). In this study, these interactions were evaluated by real-time surface plasmon resonance (SPR) analysis. The data obtained demonstrated that Psd1 could bind more strongly to small unilamellar vesicles (SUV)-containing GlcCer(Fusarium solani) than to SUV that was composed of phosphatidylcholine (PC) alone or was enriched with GlcCer that had been isolated from soybeans. An increase in the SPR response after cholesterol or ergosterol incorporation in PC-SUV was detected; however, SUV composed of PC:Erg (7:3; molar:molar) became unstable in the presence of Psd1, suggesting membrane destabilization. We also observed a lack of Psd1 internalization in Candida albicans strains that were deficient in the glucosyl ceramide synthase gene. Together, these data indicate that GlcCer is essential for Psd1 anchoring in the fungal plasma membrane as well as internalization.
Collapse
Affiliation(s)
- Luciano Neves de Medeiros
- Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brasil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, 21941-902, Brasil
| | | | | | | | | | | | | |
Collapse
|
47
|
Rautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie 2016; 130:132-145. [PMID: 27234616 DOI: 10.1016/j.biochi.2016.05.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Most antifungal peptides (AFPs), if not all, have membrane activity, while some also have alternative targets. Fungal membranes share many characteristics with mammalian membranes with only a few differences, such as differences in sphingolipids, phosphatidylinositol (PI) content and the main sterol is ergosterol. Fungal membranes are also more negative and a better target for cationic AFPs. Targeting just the fungal membrane lipids such as phosphatidylinositol and/or ergosterol by AFPs often translates into mammalian cell toxicity. Conversely, a specific AFP target in the fungal pathogen, such as glucosylceramide, mannosyldiinositol phosphorylceramide or a fungal protein target translates into high pathogen selectivity. However, a lower target concentration, absence or change in the specific fungal target can naturally lead to resistance, although such resistance in turn could result in reduced pathogen virulence. The question is then to be or not to be membrane active - what is the best choice for a successful AFP? In this review we deliberate on this question by focusing on the recent advances in our knowledge on how natural AFPs target fungi.
Collapse
Affiliation(s)
- Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa.
| | - Anscha M Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa
| | - J Arnold Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, South Africa
| |
Collapse
|
48
|
El-Mounadi K, Islam KT, Hernández-Ortiz P, Read ND, Shah DM. Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum. Mol Microbiol 2016; 100:542-59. [PMID: 26801962 DOI: 10.1111/mmi.13333] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
Defensins play an important role in plant defense against fungal pathogens. The plant defensin, MtDef4, inhibits growth of the ascomycete fungi, Neurospora crassa and Fusarium graminearum, at micromolar concentrations. We have reported that MtDef4 is transported into the cytoplasm of these fungi and exerts its antifungal activity on intracellular targets. Here, we have investigated whether the antifungal mechanisms of MtDef4 are conserved in these fungi. We show that N. crassa and F. graminearum respond differently to MtDef4 challenge. Membrane permeabilization is required for the antifungal activity of MtDef4 against F. graminearum but not against N. crassa. We find that MtDef4 is targeted to different subcellular compartments in each fungus. Internalization of MtDef4 in N. crassa is energy-dependent and involves endocytosis. By contrast, MtDef4 appears to translocate into F. graminearum autonomously using a partially energy-dependent pathway. MtDef4 has been shown to bind to the phospholipid phosphatidic acid (PA). We provide evidence that the plasma membrane localized phospholipase D, involved in the biosynthesis of PA, is needed for entry of this defensin in N. crassa, but not in F. graminearum. To our knowledge, this is the first example of a defensin which inhibits the growth of two ascomycete fungi via different mechanisms.
Collapse
Affiliation(s)
| | - Kazi T Islam
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Patricia Hernández-Ortiz
- Manchester Fungal Infection Group, Institution of Inflammation and Repair, University of Manchester, Manchester, M13 9NT, UK
| | - Nick D Read
- Manchester Fungal Infection Group, Institution of Inflammation and Repair, University of Manchester, Manchester, M13 9NT, UK
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
49
|
Lopez-Moya F, Lopez-Llorca LV. Omics for Investigating Chitosan as an Antifungal and Gene Modulator. J Fungi (Basel) 2016; 2:jof2010011. [PMID: 29376928 PMCID: PMC5753092 DOI: 10.3390/jof2010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/02/2023] Open
Abstract
Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
50
|
Citores L, Iglesias R, Gay C, Ferreras JM. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum. MOLECULAR PLANT PATHOLOGY 2016; 17:261-271. [PMID: 25976013 PMCID: PMC6638414 DOI: 10.1111/mpp.12278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | - Carolina Gay
- Laboratory of Research on Proteins, Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (UNNE), 3400, Corrientes, Argentina
| | - José Miguel Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| |
Collapse
|