1
|
Identification of antibacterial peptides generated from enzymatic hydrolysis of cottonseed proteins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
2
|
Krishnakumari V, Binny TM, Adicherla H, Nagaraj R. Escherichia coli Lipopolysaccharide Modulates Biological Activities of Human-β-Defensin Analogues but Not Non-Ribosomally Synthesized Peptides. ACS OMEGA 2020; 5:6366-6375. [PMID: 32258871 PMCID: PMC7114172 DOI: 10.1021/acsomega.9b03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Human-β-defensins (HBD1-3) are antibacterial peptides containing three disulphide bonds. In the present study, the effect of Escherichia coli lipopolysaccharide (LPS) on the antibacterial activities of HBD2-3, C-terminal analogues having a single disulphide bond, Phd1-3, and their corresponding myristoylated analogues MPhd1-3 were investigated. The effect of LPS on the activities of linear amphipathic peptides melittin, LL37 and non-ribosomally synthesized peptides, polymyxin B, alamethicin, gramicidin A, and gramicidin S was also examined. The antibacterial activity of HBD 2-3, Phd1-3, and MPhd1-3 in the presence of LPS against E. coli and Staphylococcus aureus was inhibited. While LPS inhibited the antibacterial activity of LL37, the inhibition of melittin activity was partial. The hemolytic activity exhibited by MPhd1, MPhd3, melittin, and LL37 was inhibited in the presence of LPS. HBD2-3, Phd1-3, and MPhd1-3 also showed endotoxin neutralizing activity. The antibacterial and hemolytic activities of polymyxin B, alamethicin, gramicidin A, and gramicidin S were not inhibited in the presence of LPS. Fluorescence assays employing dansyl cadaverine showed that HBD2-3 and defensin analogues bind to LPS more strongly as compared to alamethicin, gramicidin A, and gramicidin S. Electron microscopy images indicated that peptides disintegrate the structure of LPS. The inhibition of the antibacterial activity of native defensins and analogues in the presence of LPS indicates that the initial interaction with the bacterial surface is similar. The native defensin sequence or structure is also not essential, although cationic charges are necessary for binding to LPS. Hydrophobic interaction is the main driving force for association of non-ribosomally synthesized polymyxin B, alamethicin, gramicidin A, and gramicidin S with LPS. It is likely that these peptides rapidly insert into membranes and do not interact with the bacterial cell surface, whereas cationic peptides such as β-defensin and their analogues, melittin and LL37, first interact with the bacterial cell surface and then the membrane. Our results suggest that evaluating interaction of antibacterial and hemolytic peptides with LPS is a compelling way of elucidating the mechanism of bacterial killing or hemolysis.
Collapse
|
3
|
Nehls C, Böhling A, Podschun R, Schubert S, Grötzinger J, Schromm A, Fedders H, Leippe M, Harder J, Kaconis Y, Gronow S, Gutsmann T. Influence of disulfide bonds in human beta defensin-3 on its strain specific activity against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183273. [PMID: 32171739 DOI: 10.1016/j.bbamem.2020.183273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role in the host defense against various microbes. One of the most efficient human AMPs is the human beta defensin-3 (hBD-3) which is produced by, e.g. keratinocytes and lung epithelial cells. However, the structure-function relationship for AMPs and in particular for defensins with their typical three disulfide bonds is still poorly understood. In this study the importance of the three disulfide bonds for the activity of the AMPs is investigated with biological assays and with biophysical experiments utilizing different membrane reconstitution systems. The activities of natural hBD-3, hBD-3-c (cyclic variant with one disulfide bond), and hBD-3-l (linear variant without disulfide bonds) and fragments thereof were tested against specific Gram-negative bacteria. Furthermore, hemolytic and cytotoxic activities were analyzed as well as the potency to neutralize immune cell stimulation of lipopolysaccharide (LPS). Experiments using reconstituted lipid matrices composed of phospholipids or LPS purified from the respective Gram-negative bacteria, showed that the membrane activity of all three hBD-3 peptides is decisive for their capability to kill bacteria and to neutralize LPS. In most of the test systems the linear hBD-3-l showed the highest activity. It was also the only peptide significantly active against polymyxin B-resistant Proteus mirabilis R45. However, the stability of hBD-3 against protease activity decreases with decreasing number of disulfide bonds. This study demonstrates that the refining of AMP structures can generate more active compounds against certain strains.
Collapse
Affiliation(s)
- Christian Nehls
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Arne Böhling
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Rainer Podschun
- Institute for Infection Medicine, Christian-Albrechts University, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Sabine Schubert
- Institute for Infection Medicine, Christian-Albrechts University, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts University, Ohlshausenstr. 40, 24098 Kiel, Germany
| | - Andra Schromm
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Henning Fedders
- Department of Zoophysiology, Christian-Albrechts University, Olshausenstraße 40, 24098 Kiel, Germany
| | - Matthias Leippe
- Department of Zoophysiology, Christian-Albrechts University, Olshausenstraße 40, 24098 Kiel, Germany
| | - Jürgen Harder
- Clinical Research Unit at the Department of Dermatology, Schittenhelmstr. 7, 24105 Kiel, Germany
| | - Yani Kaconis
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Sabine Gronow
- DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Medizinische Mikrobiologie, Inhoffenstr. 7b, 38124 Braunschweig, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany.
| |
Collapse
|
4
|
Transgenic tobacco expressing Medicago sativa Defensin (Msdef1) confers resistance to various phyto-pathogens. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
5
|
Song J, Wang J, Zhan N, Sun T, Yu W, Zhang L, Shan A, Zhang A. Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43820-43834. [PMID: 31687796 DOI: 10.1021/acsami.9b12706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
End-tagging with a single hydrophobic residue contributes to improve the cell selectivity of antimicrobial peptides (AMPs), but systematic studies have been lacking. Thus, this study aimed to systematically investigate how end-tagging with hydrophobic residues at the C-terminus and Gly capped at the N-terminus of W4 (RWRWWWRWR) affects the bioactivity of W4 variants. Among all the hydrophobic residues, only Ala end-tagging improved the antibacterial activity of W4. Meanwhile, Gly capped at the N-terminus could promote the helical propensity of the end-tagged peptides in dodecylphosphocholine micelles, increasing their antimicrobial activities. Of these peptides, GW4A (GRWRWWWRWRA) showed the best antibacterial activity against the 19 species of bacteria tested (GMMIC = 1.86 μM) with low toxicity, thus possessing the highest cell selectivity (TIall = 137.63). It also had rapid sterilization, good salt and serum resistance, and LPS-neutralizing activity. Antibacterial mechanism studies showed that the short peptide GW4A killed bacteria by destroying cell membrane integrity and causing cytoplasmic leakage. Overall, these findings suggested that systematic studies on terminal modifications promoted the development of peptide design theory and provided a potential method for optimization of effective AMPs.
Collapse
Affiliation(s)
- Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Na Zhan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Taotao Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Weikang Yu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine , Bayi Agricultural University , Daqing 163000 , Heilongjiang , P. R. China
| |
Collapse
|
6
|
Wendler J, Schroeder BO, Ehmann D, Koeninger L, Mailänder-Sánchez D, Lemberg C, Wanner S, Schaller M, Stange EF, Malek NP, Weidenmaier C, LeibundGut-Landmann S, Wehkamp J. Proteolytic Degradation of reduced Human Beta Defensin 1 generates a Novel Antibiotic Octapeptide. Sci Rep 2019; 9:3640. [PMID: 30842543 PMCID: PMC6403363 DOI: 10.1038/s41598-019-40216-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 01/06/2023] Open
Abstract
Microbial resistance against clinical used antibiotics is on the rise. Accordingly, there is a high demand for new innovative antimicrobial strategies. The host-defense peptide human beta-defensin 1 (hBD-1) is produced continuously by epithelial cells and exhibits compelling antimicrobial activity after reduction of its disulphide bridges. Here we report that proteolysis of reduced hBD-1 by gastrointestinal proteases as well as human duodenal secretions produces an eight-amino acid carboxy-terminal fragment. The generated octapeptide retains antibiotic activity, yet with distinct characteristics differing from the full-length peptide. We modified the octapeptide by stabilizing its termini and by using non-natural D-amino acids. The native and modified peptide variants showed antibiotic activity against pathogenic as well as antibiotic-resistant microorganisms, including E. coli, P. aeruginosa and C. albicans. Moreover, in an in vitro C. albicans infection model the tested peptides demonstrated effective amelioration of C. albicans infection without showing cytotoxity on human cells. In summary, protease degradation of hBD-1 provides a yet unknown mechanism to broaden antimicrobial host defense, which could be used to develop defensin-derived therapeutic applications.
Collapse
Affiliation(s)
- Judith Wendler
- Department of Internal Medicine 1, University Hospital Tuebingen, Tuebingen, Germany
| | - Bjoern O Schroeder
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany.,Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Dirk Ehmann
- Department of Internal Medicine 1, University Hospital Tuebingen, Tuebingen, Germany
| | - Louis Koeninger
- Department of Internal Medicine 1, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Christina Lemberg
- Institute of Dermatology, University Hospital Tuebingen, Tuebingen, Germany.,Institute of Immunology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Stephanie Wanner
- Institute of Dermatology, University Hospital Tuebingen, Tuebingen, Germany.,Institute of Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Schaller
- Institute of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Eduard F Stange
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine 1, University Hospital Tuebingen, Tuebingen, Germany
| | - Christopher Weidenmaier
- Institute of Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Jan Wehkamp
- Department of Internal Medicine 1, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Zhang X, Geng H, Gong L, Zhang Q, Li H, Zhang X, Wang Y, Gao P. Modification of the surface of titanium with multifunctional chimeric peptides to prevent biofilm formation via inhibition of initial colonizers. Int J Nanomedicine 2018; 13:5361-5375. [PMID: 30254440 PMCID: PMC6143645 DOI: 10.2147/ijn.s170819] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Prevention of bacterial colonization remains a major challenge in the field of oral implant devices. Chimeric peptides with binding, antimicrobial, and osteogenesis motifs may provide a promising alternative for the inhibition of biofilm formation on titanium (Ti) surfaces. Methods In this study, chimeric peptides were designed by connecting an antimicrobial sequence from human β-defensin-3 with a Ti-binding sequence and arginine-glycine-aspartic acid using a glycine-glycine-glycine linker. Binding to the Ti substrate and antimicrobial properties against streptococci were evaluated. Significant improvement in reduction of bacterial colonization onto the Ti surface was observed, with or without the presence of saliva or serum. The MC3T3-E1 cells grew well on the modified Ti surfaces compared with the control group. Results The data showed that the three peptide functional motifs maintained their respective functions, and that the antibiofilm mechanism of the chimeric peptide was via suppression of sspA and sspB gene expression. Conclusion These results indicated that the endogenous peptide fragments engineered on the Ti surface could provide an environmentally friendly approach for improving the biocompatibility of oral implants.
Collapse
Affiliation(s)
- Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| | - Hongjuan Geng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China
| | - Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| | - Hongjie Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| | - Ping Gao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China, ,
| |
Collapse
|
8
|
Krishnakumari V, Guru A, Adicherla H, Nagaraj R. Effects of increasing hydrophobicity by N‐terminal myristoylation on the antibacterial and hemolytic activities of the C‐terminal cationic segments of human‐β‐defensins 1–3. Chem Biol Drug Des 2018; 92:1504-1513. [DOI: 10.1111/cbdd.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ankeeta Guru
- CSIR‐ Center for Cellular and Molecular Biology Hyderabad India
| | | | | |
Collapse
|
9
|
Moustafa G, Khalaf H, Naglah A, Al-Wasidi A, Al-Jafshar N, Awad H. The Synthesis of Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-nicotinamide. Molecules 2018; 23:molecules23040761. [PMID: 29584635 PMCID: PMC6017860 DOI: 10.3390/molecules23040761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
A series of linear dipeptide derivatives (4–10) were prepared and evaluated as antimicrobial agents via the synthesis of N-(2-(2-hydrazinyl-2-oxoethylamino)-2-oxoethyl) nicotinamide (4). Compound 4 was reacted with 4-chlorobenzaldehyde or 4-hydroxybenzaldehyde, to give the hydrazones 5 and 6, respectively. On the other hand, Compound 4 was coupled with phenylisocyanate or methylisothiocyanate to give Compounds 7 and 8, respectively. The latter compounds (7 and 8) were coupled with chloroacetic acid to give oxazolidine (9) and thiazolidine (10), respectively. The newly synthesized dipeptide compounds were confirmed by means of their spectral data. The antimicrobial activity of the newly synthesized compounds 4–10 was evaluated by agar well diffusion, and they showed good activity. Compounds 4, 5, and 9 gave the most promising activity in this study. Most of the tested compounds possessed MIC values ranging from 50 to 500 µg/mL. Furthermore, docking studies were carried out on enoyl reductase from E. coli and cytochrome P450 14 α-sterol demethylase (Cyp51) from Candida albicans active sites. The MolDock scores of the seven tested compounds ranged between −117 and −171 and between −107 and −179, respectively.
Collapse
Affiliation(s)
- Gaber Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Hemat Khalaf
- Chemistry Department, College of Science and Arts-Qurayat, Jouf University, Sakaka 72388, Saudi Arabia.
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Ahmed Naglah
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Asma Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Nawal Al-Jafshar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Hassan Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Div., National Research Centre, Dokki 12622, Cairo, Egypt.
| |
Collapse
|
10
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
11
|
Yang N, Wang X, Teng D, Mao R, Hao Y, Feng X, Wang J. Deleting the first disulphide bond in an arenicin derivative enhances its expression in Pichia pastoris. Lett Appl Microbiol 2017; 65:241-248. [PMID: 28656630 DOI: 10.1111/lam.12770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
The marine antimicrobial peptide NZ17074, a variant of arenicin-3 from Arenicola marina that has broad antimicrobial activity and high bioavailability, can be designed to treat bacterial and fungal diseases. To reduce the toxicity of NZ17074, N6 was designed by replacing a cysteine in positions 3 and 20 with alanine, fused to the C-terminus of the small ubiquitin-like modifier tag (SUMO), and expressed in yeast. SUMO-N6 yielded as much as 921 mg l-1 at 72 h after induction in a fermentor and increased 1·8-fold over SUMO-NZ17074. After cleavage with 30% formic acid and purification by a Sephadex G-25 column, 9·7 mg of the recombinant peptide N6 (rN6) was obtained from one-litre fermentation broth, increasing 1·4-fold over NZ17074. Compared to NZ17074, rN6 displayed almost identical antimicrobial activity with a minimal inhibitory concentration of 0·5, 0·25-0·5, 4, 0·25-16 and 16 μg ml-1 against Escherichia, Salmonella, Pseudomonas, Staphylococcus and Streptococcus strains. Our results indicate that the first disulphide bond, Cys3-Cys20, in NZ17074 is not necessary for antimicrobial activity and that its deletion might reduce toxicity to host cells. These findings may help design new antimicrobial peptides harbouring fewer disulphide bridges and may have more potent activity. SIGNIFICANCE AND IMPACT OF THE STUDY Disulphide bond formation is an important step in the protein expression and can also influence protein secretion. A deletion of the first disulphide bond in NZ17074 increased the secreted level of target protein, and its antimicrobial activity was almost unaffected by the deletion of the first disulphide bond. The first disulphide bond in NZ17074 is favourable for correctly forming another disulphide bond during expression but not necessary for its activity. This may help design and produce a novel class of antimicrobial peptides harbouring fewer disulphide bridges to save the cost.
Collapse
Affiliation(s)
- N Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - D Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - R Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - J Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Taskova M, Mantsiou A, Astakhova K. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates. Chembiochem 2017; 18:1671-1682. [PMID: 28614621 DOI: 10.1002/cbic.201700229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 12/29/2022]
Abstract
The main objective of this work is to provide an update on synthetic nucleic acid analogues and nanoassemblies as tools in gene therapy. In particular, the synthesis and properties of peptide-oligonucleotide conjugates (POCs), which have high potential in research and as therapeutics, are described in detail. The exploration of POCs has already led to fruitful results in the treatment of neurological diseases, lung disorders, cancer, leukemia, viral, and bacterial infections. However, delivery and in vivo stability are the major barriers to the clinical application of POCs and other analogues that still have to be overcome. This review summarizes recent achievements in the delivery and in vivo administration of synthetic nucleic acid analogues, focusing on POCs, and compares their efficiency.
Collapse
Affiliation(s)
- Maria Taskova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Anna Mantsiou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Kira Astakhova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, Wang X, Hao Y, Wang J. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci Rep 2017; 7:3392. [PMID: 28611436 PMCID: PMC5469750 DOI: 10.1038/s41598-017-03664-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
NZ17074 (N1), an arenicin-3 derivative isolated from the lugworm, has potent antibacterial activity and is cytotoxic. To reduce its cytotoxicity, seven N1 analogues with different structures were designed by changing their disulfide bonds, hydrophobicity, or charge. The “rocket” analogue-N2 and the “kite” analogue-N6 have potent activity and showed lower cytotoxicity in RAW264.7 cells than N1. The NMR spectra revealed that N1, N2, and N6 adopt β-sheet structures stabilized by one or two disulfide bonds. N2 and N6 permeabilized the outer/inner membranes of E. coli, but did not permeabilize the inner membranes of S. enteritidis. N2 and N6 induced E. coli and S. enteritidis cell cycle arrest in the I-phase and R-phase, respectively. In E. coli and in S. enteritidis, 18.7–43.8% of DNA/RNA/cell wall synthesis and 5.7–61.8% of DNA/RNA/protein synthesis were inhibited by the two peptides, respectively. Collapsed and filamentous E. coli cells and intact morphologies of S. enteritidis cells were observed after treatment with the two peptides. Body weight doses from 2.5–7.5 mg/kg of N2 and N6 enhanced the survival rate of peritonitis- and endotoxemia-induced mice; reduced the serum IL-6, IL-1β and TNF-α levels; and protected mice from lipopolysaccharide-induced lung injury. These data indicate that N2 and N6, through multiple selective actions, may be promising dual-function candidates as novel antimicrobial and anti-endotoxin peptides.
Collapse
Affiliation(s)
- Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanzhan Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Guzmán-Rodríguez JJ, López-Gómez R, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7. Biomed Pharmacother 2016; 82:620-7. [PMID: 27470405 DOI: 10.1016/j.biopha.2016.05.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer.
Collapse
Affiliation(s)
- Jaquelina Julia Guzmán-Rodríguez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Rodolfo López-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B1, C.P. 58030, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B1, C.P. 58030, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico.
| |
Collapse
|
15
|
Díaz-Murillo V, Medina-Estrada I, López-Meza JE, Ochoa-Zarzosa A. Defensin γ-thionin from Capsicum chinense has immunomodulatory effects on bovine mammary epithelial cells during Staphylococcus aureus internalization. Peptides 2016; 78:109-18. [PMID: 26939717 DOI: 10.1016/j.peptides.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
β-Defensins are members of the antimicrobial peptide superfamily that are produced in various species from different kingdoms, including plants. Plant defensins exhibit primarily antifungal activities, unlike those from animals that exhibit a broad-spectrum antimicrobial action. Recently, immunomodulatory roles of mammal β-defensins have been observed to regulate inflammation and activate the immune system. Similar roles for plant β-defensins remain unknown. In addition, the regulation of the immune system by mammalian β-defensins has been studied in humans and mice models, particularly in immune cells, but few studies have investigated these peptides in epithelial cells, which are in intimate contact with pathogens. The aim of this work was to evaluate the effect of the chemically synthesized β-defensin γ-thionin from Capsicum chinense on the innate immune response of bovine mammary epithelial cells (bMECs) infected with Staphylococcus aureus, the primary pathogen responsible for bovine mastitis, which is capable of living within bMECs. Our results indicate that γ-thionin at 0.1 μg/ml was able to reduce the internalization of S. aureus into bMECs (∼50%), and it also modulates the innate immune response of these cells by inducing the mRNA expression (∼5-fold) and membrane abundance (∼3-fold) of Toll-like receptor 2 (TLR2), as well as by inducing genes coding for the pro-inflammatory cytokines TNF-α and IL-1β (∼14 and 8-fold, respectively) before and after the bacterial infection. γ-Thionin also induces the expression of the mRNA of anti-inflammatory cytokine IL-10 (∼12-fold). Interestingly, the reduction in bacterial internalization coincides with the production of other antimicrobial products by bMECs, such as NO before infection, and the secretion into the medium of the endogenous antimicrobial peptide DEFB1 after infection. The results from this work support the potential use of β-defensins from plants as immunomodulators of the mammalian innate immune response.
Collapse
Affiliation(s)
- Violeta Díaz-Murillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico
| | - Ivan Medina-Estrada
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico.
| |
Collapse
|
16
|
Nigro E, Colavita I, Sarnataro D, Scudiero O, Zambrano G, Granata V, Daniele A, Carotenuto A, Galdiero S, Folliero V, Galdiero M, Urbanowicz RA, Ball JK, Salvatore F, Pessi A. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule. Sci Rep 2015; 5:18450. [PMID: 26688341 PMCID: PMC4685272 DOI: 10.1038/srep18450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Host defence peptides (HDPs) are critical components of innate immunity. Despite their diversity, they share common features including a structural signature, designated "γ-core motif". We reasoned that for each HDPs evolved from an ancestral γ-core, the latter should be the evolutionary starting point of the molecule, i.e. it should represent a structural scaffold for the modular construction of the full-length molecule, and possess biological properties. We explored the γ-core of human β-defensin 3 (HBD3) and found that it: (a) is the folding nucleus of HBD3; (b) folds rapidly and is stable in human serum; (c) displays antibacterial activity; (d) binds to CD98, which mediates HBD3 internalization in eukaryotic cells; (e) exerts antiviral activity against human immunodeficiency virus and herpes simplex virus; and (f) is not toxic to human cells. These results demonstrate that the γ-core within HBD3 is the ancestral core of the full-length molecule and is a viable HDP per se, since it is endowed with the most important biological features of HBD3. Notably, the small, stable scaffold of the HBD3 γ-core can be exploited to design disease-specific antimicrobial agents.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Irene Colavita
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Daniela Sarnataro
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Gerardo Zambrano
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Vincenzo Granata
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.,Institute of Biostructures and Bioimages, CNR, Naples, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, Second University of Naples, Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Second University of Naples, Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Richard A Urbanowicz
- The School of Life Sciences and the Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jonathan K Ball
- The School of Life Sciences and the Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy.,IRCCS-SDN Foundation, Via Emanuele Gianturco 113, 80142 Napoli, Italy
| | - Antonello Pessi
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
17
|
Mathew B, Nagaraj R. Antimicrobial activity of human α-defensin 6 analogs: insights into the physico-chemical reasons behind weak bactericidal activity of HD6 in vitro. J Pept Sci 2015; 21:811-8. [PMID: 26400692 DOI: 10.1002/psc.2821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Human α-defensin 6 (HD6), unlike other mammalian defensins, does not exhibit bactericidal activity, particularly against aerobic bacteria. Monomeric HD6 has a tertiary structure similar to other α-defensins in the crystalline state. However, the physico-chemical reasons behind the lack of antibacterial activity of HD6 are yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD6 analogs. A linear analog of HD6, in which the distribution of arginine residues was similar to active α-defensins, shows broad-spectrum antimicrobial activity, indicating that atypical distribution of arginine residues contributes to the inactivity of HD6. Peptides spanning the N-terminal cationic segment were active against a wide range of organisms. Antimicrobial potency of these shorter analogs was further enhanced when myristic acid was conjugated at the N-terminus. Cytoplasmic localization of the analogs without fatty acylation was observed to be necessary for bacterial killing, while they exhibited fungicidal activity by permeabilizing Candida albicans membranes. Myristoylated analogs and the linear full-length arginine analog exhibited activity by permeabilizing bacterial and fungal membranes. Our study provides insights into the lack of bactericidal activity of HD6 against aerobic bacteria.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500 007, India
| | | |
Collapse
|
18
|
Lashine ESM, Haikal AF, Kul MEA, Nasrallah LA, Naglah AM. Synthesis and Biological Evaluation of the Anti-Inflammatory Activity for some Novel Oxpholipin-11D Analogues. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.705.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Tu J, Li D, Li Q, Zhang L, Zhu Q, Gaur U, Fan X, Xu H, Yao Y, Zhao X, Yang M. Molecular Evolutionary Analysis of β-Defensin Peptides in Vertebrates. Evol Bioinform Online 2015; 11:105-14. [PMID: 26056425 PMCID: PMC4451809 DOI: 10.4137/ebo.s25580] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
Vertebrate β-defensins comprise an important family of antimicrobial peptides that protect organisms from a diverse spectrum of bacteria, viruses, fungi, and protozoan parasites. Previous studies have shown a marked variation in the number of β-defensins among species, but the underlying reason is unclear. To address this question, we performed comprehensive computational searches to study the intact β-defensin genes from 29 vertebrates. Phylogenetic analysis of the β-defensin genes in vertebrates identified frequent changes in the number of β-defensin genes and multiple species-specific gene gains and losses that have been occurring throughout the evolution of vertebrates. The number of intact β-defensin genes varied from 1 in the western clawed frog to 20 in cattle, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The β-defensin gene number in a species is relevant to the ever-changing microbial challenges from the environment that they inhabit. Selection pressure analysis shows there exist three amino acid sites under significant positive selection. Protein structural characteristics analysis suggests that structural diversity determines the diverse functions of β-defensins. Our study provides a new perspective on the relationships among vertebrate β-defensin gene repertoires and different survival circumstances, which helps explain how β-defensins have evolved.
Collapse
Affiliation(s)
- Jianbo Tu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qingqing Li
- School of Life Sciences, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, P.R. China
- Kunming Xianghao Technology Co, Ltd, Kunming, Yunnan, P.R. China
| | - Long Zhang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qing Zhu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Uma Gaur
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Huailiang Xu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yongfang Yao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xiaoling Zhao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
20
|
Patro S, Maiti S, Panda SK, Dey N. Utilization of plant-derived recombinant human β-defensins (hBD-1 and hBD-2) for averting salmonellosis. Transgenic Res 2015; 24:353-64. [PMID: 25417183 DOI: 10.1007/s11248-014-9847-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
Abstract
We describe the use of plant-made β-defensins as effective antimicrobial substances for controlling salmonellosis, a deadly infection caused by Salmonella typhimurium (referred to further as S. typhi). Human β-defensin-1 (hBD-1) and -2 (hBD-2) were expressed under the control of strong constitutive promoters in tobacco plants, and bio-active β-defensins were successfully extracted. In the in vitro studies, enriched recombinant plant-derived human β-defensin-1 (phBD-1) and -2 (phBD-2) obtained from both T1 and T2 transgenic plants showed significant antimicrobial activity against Escherichia coli and S. typhi when used individually and in various combinations. The 2:1 peptide combination of phBD-1:phBD-2 with peptides isolated from T1-and T2-generation plants reduced the growth of S. typhi by 96 and 85 %, respectively. In vivo studies employing the mouse model (Balb/c) of Salmonella infection clearly demonstrated that the administration of plant-derived defensins individually and in different combinations enhanced the mean survival time of Salmonella-infected animals. When treatment consisted of the 2:1 phBD-1:phBD-2 combination, approximately 50 % of the infected mice were still alive at 206 h post-inoculation; the lowest number of viable S. typhi was observed in the liver and spleen of infected animals. We conclude that plant-made recombinant β-defensins (phBD-1 and phBD-2) are promising antimicrobial substances and have the potential to become additional tools against salmonellosis, particularly when used in combination.
Collapse
Affiliation(s)
- Sunita Patro
- Division of Gene Function and Regulation, Department of Biotechnology, Institute of Life Sciences, Govt. of India, Nalco Square, Chandrasekherpur, Bhubaneswar, 751 023, Odisha, India
| | | | | | | |
Collapse
|
21
|
Sharma H, Nagaraj R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One 2015; 10:e0119525. [PMID: 25785690 PMCID: PMC4364940 DOI: 10.1371/journal.pone.0119525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
22
|
Krishnakumari V, Nagaraj R. N-Terminal fatty acylation of peptides spanning the cationic C-terminal segment of bovine β-defensin-2 results in salt-resistant antibacterial activity. Biophys Chem 2015; 199:25-33. [PMID: 25791057 DOI: 10.1016/j.bpc.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/29/2022]
Abstract
Peptides spanning the C-terminal segment of bovine-β-defensin-2 (BNBD-2) rich in cationic amino acids, show antimicrobial activity. However, they exhibit considerably reduced activity at physiological concentration of NaCl. In the present study, we have investigated whether N-terminal acylation (acetylation and palmitoylation) of these peptides would result in improved antimicrobial activity. N-terminal palmitoylation though increased hydrophobicity of the peptides, did not enhance antimicrobial potency. However, antibacterial activity of these peptides was not attenuated by NaCl. Biophysical studies on the palmitoylated peptides have indicated that antibacterial activity in the presence of NaCl arises due to the ability of the peptides to interact with membranes more effectively. These peptides showed hemolytic activity which was attenuated considerably in the presence of serum and lipid vesicles. In defensin related peptides, fatty acylation would be a convenient way to generate analogs that are active in the presence of salt.
Collapse
Affiliation(s)
| | - Ramakrishnan Nagaraj
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
23
|
Microwave-Assisted Synthesis and Antimicrobial Activity of Some Novel Isatin Schiff Bases Linked to Nicotinic Acid via Certain Amino Acid Bridge. J CHEM-NY 2015. [DOI: 10.1155/2015/364841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The coupling reaction of nicotinic acid with certain L-amino acid methyl esters including valine, leucine, and phenylalanine was done by the use of acid chloride method. The products were reacted with hydrazine hydrate 99% to give the corresponding hydrazides that were reacted with indoline-2,3-dione (isatin) to get Schiff bases under the application of microwave irradiation technique. These novel compounds were characterized by means of their FT-IR,1H NMR, and mass spectral data. Additionally, the specific optical rotation and elemental analysis were measured. Thein vitroantimicrobial activity of the synthesized compounds was evaluated by agar diffusion method. The compounds showed a strong antimicrobial inhibitory activity. Most of the test compounds possessed a broad spectrum of activities having MIC values ranging from 50 µg/mL to 500 µg/mL.
Collapse
|
24
|
A hybrid cationic peptide composed of human β-defensin-1 and humanized θ-defensin sequences exhibits salt-resistant antimicrobial activity. Antimicrob Agents Chemother 2014; 59:217-25. [PMID: 25348533 DOI: 10.1128/aac.03901-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics.
Collapse
|
25
|
Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human β-defensins hBD-1 and hBD-2. Antimicrob Agents Chemother 2014; 58:6896-903. [PMID: 25199778 DOI: 10.1128/aac.03628-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We successfully produced two human β-defensins (hBD-1 and hBD-2) in bacteria as functional peptides and tested their antibacterial activities against Salmonella enterica serovar Typhi, Escherichia coli, and Staphylococcus aureus employing both spectroscopic and viable CFU count methods. Purified peptides showed approximately 50% inhibition of the bacterial population when used individually and up to 90% when used in combination. The 50% lethal doses (LD50) of hBD-1 against S. Typhi, E. coli, and S. aureus were 0.36, 0.40, and 0.69 μg/μl, respectively, while those for hBD-2 against the same bacteria were 0.38, 0.36, and 0.66 μg/μl, respectively. Moreover, we observed that bacterium-derived antimicrobial peptides were also effective in increasing survival time and decreasing bacterial loads in the peritoneal fluid, liver, and spleen of a mouse intraperitoneally infected with S. Typhi. The 1:1 hBD-1/hBD-2 combination showed maximum effectiveness in challenging the Salmonella infection in vitro and in vivo. We also observed less tissue damage and sepsis formation in the livers of infected mice after treatment with hBD-1 and hBD-2 peptides individually or in combination. Based on these findings, we conclude that bacterium-derived recombinant β-defensins (hBD-1 and hBD-2) are promising antimicrobial peptide (AMP)-based substances for the development of new therapeutics against typhoid fever.
Collapse
|
26
|
Olli S, Rangaraj N, Nagaraj R. Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. PLoS One 2013; 8:e77031. [PMID: 24086767 PMCID: PMC3785448 DOI: 10.1371/journal.pone.0077031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca2+ and Mg2+. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs.
Collapse
Affiliation(s)
- Sudar Olli
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Nandini Rangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
27
|
Krishnakumari V, Packiyanathan KK, Nagaraj R. Human-β-defensins-1-3 and analogs do not require proton motive force for antibacterial activity against Escherichia coli. FEMS Microbiol Lett 2013; 348:52-7. [PMID: 23980689 DOI: 10.1111/1574-6968.12242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
Human-β-defensins 1-3 (HBD-1-3) and their C-terminal analogs Phd-1-3 do not show antibacterial activity against Escherichia coli in the presence of mono- and divalent cations. Activity of peptides was examined against E. coli pretreated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) and salt remedial Escherichia coli ftsEX, a deletion mutant of FtsEX complex [an ATP-binding cassette (ABC) transporter protein], in the presence of Na(+), Ca(2+), and Mg(2+). Activity was observed in the presence of Na(+) and Ca(2+), although not in the presence of Mg(2+) against E. coli, when proton motive force (PMF) was dissipated by CCCP. The peptides exhibited antibacterial activity against E. coli ftsEX even in the presence of Na(+) and Ca(2+). Our results indicate that HBD-1-3 and Phd-1-3 do not require PMF for their antibacterial activity. The absence of activity against E. coli in the presence of Na(+) and Ca(2+) ions is due to not only weakened electrostatic interactions with anionic membrane components, but also involvement of electrochemical gradients. However, Mg(2+) prevents electrostatic interaction of the peptides with the outer membrane resulting in loss of activity.
Collapse
|
28
|
Chimeric beta-defensin analogs, including the novel 3NI analog, display salt-resistant antimicrobial activity and lack toxicity in human epithelial cell lines. Antimicrob Agents Chemother 2013; 57:1701-8. [PMID: 23357761 DOI: 10.1128/aac.00934-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human beta-defensins (hBDs) are crucial peptides for the innate immune response and are thus prime candidates as therapeutic agents directed against infective diseases. Based on the properties of wild-type hBD1 and hBD3 and of previously synthesized analogs (1C, 3I, and 3N), we have designed a new analog, 3NI, and investigated its potential as an antimicrobial drug. Specifically, we evaluated the antimicrobial activities of 3NI versus those of hBD1, hBD3, 1C, 3I, and 3N. Our results show that 3NI exerted greater antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis than did hBD1 and hBD3, even with elevated salt concentrations. Moreover, its antiviral activity against herpes simplex virus 1 was greater than that of hBD1 and similar to that of hBD3. Subsequently, we investigated the cytotoxic effects of all peptides in three human epithelial carcinoma cell lines: A549 from lung, CaCo-2 from colon, and Capan-1 from pancreas. None of the analogs significantly reduced cell viability versus wild-type hBD1 and hBD3. They did not induce genotoxicity or cause an increase in the number of apoptotic cells. Using confocal microscopy, we also investigated the localization of the peptides during their incubation with epithelial cells and found that they were distributed on the cell surface, from which they were internalized. Finally, we show that hBD1 and hBD3 are characterized by high resistance to serum degradation. In conclusion, the new analog 3NI seems to be a promising anti-infective agent, particularly given its high salt resistance--a feature that is relevant in diseases such as cystic fibrosis.
Collapse
|
29
|
Sharma H, Nagaraj R. Antimicrobial activity of human β-defensin 4 analogs: insights into the role of disulfide linkages in modulating activity. Peptides 2012; 38:255-65. [PMID: 23000475 DOI: 10.1016/j.peptides.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023]
Abstract
Human β-defensins (HBDs) are cationic antimicrobial peptides that are components of the innate immune system. They are characterized by three disulfide bridges. However, the number of cationic residues as well as the presence of lysine and arginine residues vary. In HBD4, the cationic residues occur predominantly in the N-terminal segment, unlike in HBD1-3. We have examined the antimicrobial activity of peptides spanning the N- and C-terminal segments of HBD4. We have introduced one, two and three disulfide bridges in the peptides corresponding to the N-terminal segments. Peptides corresponding to the N-terminal segment had identical sequences and variation was only in the number and spacing of cysteines and disulfide bridges. Antimicrobial activity to varying extents was observed for all the peptides. When two disulfide bridges were present, decrease in antimicrobial potency as well as sensitivity of activity to salt was observed. Enhanced antimicrobial activity was observed when three disulfide bridges were present. The antimicrobial potency was similar to HBD4 except against Escherichia coli and was attenuated in the presence of salt. While the presence of three disulfide bridges did not constrain the peptide to a rigid β-sheet, the activity was considerably more as compared to the peptides with one or two disulfide bridges. The peptides enter bacterial and fungal cells rapidly without membrane permeabilization and appear to exert their activity inside the cells rather than at the membrane.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
30
|
Binding of peptides corresponding to the carboxy-terminal region of human-β-defensins-1–3 with model membranes investigated by isothermal titration calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1386-94. [DOI: 10.1016/j.bbamem.2012.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/27/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
|
31
|
Three novel Anas platyrhynchos avian β-defensins, upregulated by duck hepatitis virus, with antibacterial and antiviral activities. Mol Immunol 2011; 49:84-96. [DOI: 10.1016/j.molimm.2011.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/03/2011] [Accepted: 07/27/2011] [Indexed: 01/06/2023]
|
32
|
Activity and Mechanism of Antimicrobial Peptide-Mimetic Amphiphilic Polymethacrylate Derivatives. Polymers (Basel) 2011. [DOI: 10.3390/polym3031512] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
33
|
C-terminal amino acids of alpha-melanocyte-stimulating hormone are requisite for its antibacterial activity against Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55:1920-9. [PMID: 21282427 DOI: 10.1128/aac.00957-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) is an endogenous neuropeptide that is known for its anti-inflammatory and antipyretic activities. We recently demonstrated that α-MSH possesses staphylocidal activity and causes bacterial membrane damage. To understand the role of its amino acid sequences in the staphylocidal mechanism, in the present study we investigated the antimicrobial activities of different fragments of α-MSH, i.e., α-MSH(6-13), α-MSH(11-13), and α-MSH(1-5), and compared them with that of the entire peptide. Our results showed that peptides containing the C-terminal region of α-MSH, namely, α-MSH(6-13) and α-MSH(11-13), efficiently killed >90% of both methicillin-sensitive and -resistant Staphylococcus aureus cells in the micromolar range and ∼50% of these cells in the nanomolar range; their efficiency was comparable to that of the entire α-MSH, whereas the peptide containing the N-terminal region, α-MSH(1-5), was found to be ineffective against S. aureus. The antimicrobial activity of α-MSH and its C-terminal fragments was not affected by the presence of NaCl or even divalent cations such as Ca2+ and Mg2+. Similar to the case for the parent peptide, α-MSH(6-13) and α-MSH(11-13) also depolarized and permeabilized Staphylococcus cells (∼70 to 80% of the cells were depolarized and lysed after 2 h of peptide exposure at micromolar concentrations). Furthermore, scanning and transmission electron microscopy showed remarkable morphological and ultrastructural changes on S. aureus cell surface due to exposure to α-MSH-based peptides. Thus, our observations indicate that C-terminal fragments of α-MSH retain the antimicrobial activity of entire peptide and that their mechanism of action is similar to that of full-length peptide. These observations are important and are critical in the rational design of α-MSH-based therapeutics with optimal efficacy.
Collapse
|
34
|
Routsias JG, Karagounis P, Parvulesku G, Legakis NJ, Tsakris A. In vitro bactericidal activity of human beta-defensin 2 against nosocomial strains. Peptides 2010; 31:1654-60. [PMID: 20600430 DOI: 10.1016/j.peptides.2010.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/14/2010] [Accepted: 06/14/2010] [Indexed: 12/24/2022]
Abstract
Human beta-defensin 2 (hBD-2) is a 41-amino acid cationic peptide of the innate immune system that serves as antimicrobial molecule. We determined the bactericidal activity of synthetic hBD-2 against nosocomial strains belonging to eight different bacterial species and exhibiting various antimicrobial resistance phenotypes. The native disulfide connectivity was found essential for the bactericidal activity of hBD-2, while sodium chloride concentration was reversely associated with its potency. hBD-2 exhibited high bactericidal activity against Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus clinical strains. Characteristically, A. baumannii strains that exhibited multi-drug resistant (MDR) phenotypes were susceptible to lower concentrations of hBD-2 (vLD(90)=3.25-4.5 microg/ml) in comparison with non-MDR (wild-type) A. baumannii strains (vLD(90)=3.90-9.35 microg/ml). Bactericidal activity of hBD-2 was less pronounced against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis strains but was significantly enhanced against strains of these species that exhibited resistance to several beta-lactam antibiotics. These observations give indications that the natural hBD-2 has a potential therapeutic role against bacterial pathogens and particularly against those exhibiting MDR phenotypes.
Collapse
Affiliation(s)
- John G Routsias
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 M.Asias St., 11527 Athens, Greece.
| | | | | | | | | |
Collapse
|
35
|
Purification and characterization of avian beta-defensin 11, an antimicrobial peptide of the hen egg. Antimicrob Agents Chemother 2010; 54:4401-9. [PMID: 20625158 DOI: 10.1128/aac.00204-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural antimicrobial peptides are present in different compartments (eggshell, egg white, and vitelline membranes) of the hen egg and are expected to be involved in the protection of the embryo during its development and to contribute to the production of pathogen-free eggs. In the present study, we used vitelline membranes from hen (Gallus gallus) eggs as a source of avian β-defensin 11 (AvBD11). A purification scheme using affinity chromatography and reverse-phase chromatography was developed. Purified AvBD11 was analyzed by a combination of mass spectrometry approaches to characterize its primary sequence and structure. A monoisotopic molecular species at [M + H](+) of 9,271.56 Da was obtained, and its N- and C-terminal sequences were determined. We also examined posttranslational modifications and identified the presence of 6 internal disulfide bonds. AvBD11 was found to exhibit antimicrobial activity toward both Gram-positive and Gram-negative bacteria.
Collapse
|
36
|
Shen X, Ye G, Cheng X, Yu C, Yao H, Hu C. Novel antimicrobial peptides identified from an endoparasitic wasp cDNA library. J Pept Sci 2010; 16:58-64. [PMID: 19950104 DOI: 10.1002/psc.1195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We screened an endoparasitic wasp (Pteromalus puparum) cDNA library for DNA sequences having antimicrobial activity using a vital dye exclusion assay. Two dozens of clones were isolated that inhibited the growth of host Escherichia coli cells due to expression of the cloned genes. Three peptides (PP13, PP102 and PP113) were synthesized chemically based on the amino acid sequences deduced from these clones and assayed for their antimicrobial activity. These peptides have net positive charges and are active against both Gram-negative and -positive bacteria, but are not active against fungi tested. Their hemolytic activity on human red blood cells was measured, and no hemolytic activity was observed after 1-h incubation at a concentration of 62.5 microM or below. A Blast search indicated that the three peptides have not been previously characterized as antimicrobial peptides (AMPs). Salt-dependency studies revealed that the biocidal activity of these peptides against E. coli decreased with increasing concentration of NaCl. Transmission electron microscopic (TEM) examination of PP13-treated E. coli cells showed extensive damage of cell membranes. The CD spectroscopy studies noted that the enhanced alpha-helical characteristics of PP13 strongly contribute to its higher antimicrobial properties. These results demonstrate the feasibility to identify novel AMPs by screening the expressional cDNA library.
Collapse
Affiliation(s)
- Xiaojing Shen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
37
|
Sharadadevi A, Nagaraj R. A Molecular Dynamics Study of Human Defensins HBD-1 and HNP-3 in Water. J Biomol Struct Dyn 2010; 27:541-50. [DOI: 10.1080/07391102.2010.10507337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Erles K, Brownlie J. Expression of beta-defensins in the canine respiratory tract and antimicrobial activity against Bordetella bronchiseptica. Vet Immunol Immunopathol 2009; 135:12-19. [PMID: 19931188 PMCID: PMC7112554 DOI: 10.1016/j.vetimm.2009.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/21/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022]
Abstract
β-Defensins are cationic peptides which form part of the innate immune response of the respiratory epithelium. Due to their antimicrobial properties and immunostimulatory activity, β-defensins are potential tools for the treatment and prevention of respiratory disease. In dogs, infectious respiratory disease is a common problem, particularly in housed animals. This study aimed to assess the presence of four β-defensins in the canine respiratory tract and to use quantitative real-time PCR to determine mRNA levels following microbial challenge. Three β-defensins, CBD1, CBD103 and CBD108, were detected in respiratory cells. All three defensins were also readily expressed in skin samples, while their expression in lymphoid tissues and the kidney was low and inconsistent. Treatment of primary tracheal epithelial cells with lipopolysaccharide (LPS) or infection with canine respiratory coronavirus led to decreased expression of CBD103 and CBD108, while cells infected with canine parainfluenza virus had lower levels of CBD1 and CBD108. Furthermore CBD103 was demonstrated to have antimicrobial activity against the respiratory pathogen Bordetella bronchiseptica.
Collapse
Affiliation(s)
- Kerstin Erles
- The Royal Veterinary College, Department of Pathology and Infectious Diseases, Hawkshead Lane, Hatfield AL9 7TA, United Kingdom.
| | - Joe Brownlie
- The Royal Veterinary College, Department of Pathology and Infectious Diseases, Hawkshead Lane, Hatfield AL9 7TA, United Kingdom
| |
Collapse
|
39
|
Abstract
We have designed and chemically synthesized an artificial β-defensin based on a minimal template derived from the comparative analysis of over 80 naturally occurring sequences. This molecule has the disulfide-bridged β-sheet core structure of natural β-defensins and shows a robust salt-sensitive antimicrobial activity against bacteria and yeast, as well as a chemotactic activity against immature dendritic cells. An SAR (structure–activity relationship) study using two truncated fragments or a Cys→Ser point-mutated analogue, from which one or two of the three disulfide bridges were absent, indicated that altering the structure resulted in a different type of membrane interaction and a switch to different modes of action towards both microbial and host cells, and that covalent dimerization could favour antimicrobial activity. Comparison of the structural, aggregational and biological activities of the artificial defensin with those of three human β-defensins and their primate orthologues provided useful information on how their mode of action may relate to specific structural features.
Collapse
|
40
|
Wilson CL, Schmidt AP, Pirilä E, Valore EV, Ferri N, Sorsa T, Ganz T, Parks WC. Differential Processing of {alpha}- and {beta}-Defensin Precursors by Matrix Metalloproteinase-7 (MMP-7). J Biol Chem 2009; 284:8301-11. [PMID: 19181662 PMCID: PMC2659188 DOI: 10.1074/jbc.m809744200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Indexed: 12/28/2022] Open
Abstract
Proteolytic processing of defensins is a critical mode of posttranslational regulation of peptide activity. Because mouse alpha-defensin precursors are cleaved and activated by matrix metalloproteinase-7 (MMP-7), we determined if additional defensin molecules, namely human neutrophil defensin pro-HNP-1 and beta-defensins, are targets for MMP-7. We found that MMP-7 cleaves within the pro-domain of the HNP-1 precursor, a reaction that does not generate the mature peptide but produces a 59-amino acid intermediate. This intermediate, which retains the carboxyl-terminal end of the pro-domain, had antimicrobial activity, indicating that the residues important for masking defensin activity reside in the amino terminus of this domain. Mature HNP-1 was resistant to processing by MMP-7 unless the peptide was reduced and alkylated, demonstrating that only the pro-domain of alpha-defensins is normally accessible for cleavage by this enzyme. From the 47-residue HBD-1 precursor, MMP-7 catalyzed removal of 6 amino acids from the amino terminus. Neither a 39-residue intermediate form of HBD-1 nor the mature 36-residue form of HBD-1 was cleaved by MMP-7. In addition, both pro-HBD-2, with its shorter amino-terminal extension, and pro-HBD-3 were resistant to MMP-7. However, human and mouse beta-defensin precursors that lack disulfide bonding contain a cryptic MMP-7-sensitive site within the mature peptide moiety. These findings support and extend accumulating evidence that the native three-dimensional structure of both alpha- and beta-defensins protects the mature peptides against proteolytic processing by MMP-7. We also conclude that sites for MMP-7 cleavage are more common at the amino termini of alpha-defensin rather than beta-defensin precursors, and that catalysis at these sites in alpha-defensin pro-domains results in acquisition of defensin activity.
Collapse
Affiliation(s)
- Carole L Wilson
- Department of Pathology and Center for Lung Biology, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Taneja B, Yadav J, Chakraborty TK, Brahmachari SK. An Indian effort towards affordable drugs: “Generic to designer drugs”. Biotechnol J 2009; 4:348-60. [DOI: 10.1002/biot.200900031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Chakraborty TK, Koley D, Ravi R, Krishnakumari V, Nagaraj R, Chand Kunwar A. Synthesis, Conformational Analysis and Biological Studies of Cyclic Cationic Antimicrobial Peptides Containing Sugar Amino Acids. J Org Chem 2008; 73:8731-44. [DOI: 10.1021/jo801123q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tushar Kanti Chakraborty
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Dipankar Koley
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Rapolu Ravi
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Viswanatha Krishnakumari
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Ramakrishnan Nagaraj
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| | - Ajit Chand Kunwar
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad 500607, India
| |
Collapse
|
43
|
Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob Agents Chemother 2008; 53:256-60. [PMID: 18809937 DOI: 10.1128/aac.00470-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The activities of defensins HBD-1, HBD-2, and HBD-3 and their C-terminal analogs Phd1, Phd2, and Phd3 against Candida albicans were investigated. Phd1 to Phd3 showed lower-level activities than HBD-1 to HBD-3, although metabolic inhibitors did not render Phd1 to Phd3 inactive. Their activities were also less salt sensitive than those of HBD-1 to HBD-3. Confocal microscope images indicated that the initial site of action was the fungal membrane.
Collapse
|
44
|
Hao G, Shi YH, Han JH, Li QH, Tang YL, Le GW. Design and analysis of structure-activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin. J Pept Sci 2008; 14:290-8. [PMID: 17929330 DOI: 10.1002/psc.926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have de novo designed four antimicrobial peptides AMP-A/B/C/D, the 51-residues peptides, which are based on the conserved sequence of cecropin. In the present study, the four peptides were chemically synthesized and their activities assayed. Their secondary structure, amphipathic property, electric field distribution and transmembrane domain were subsequently predicted by bioinformatics tools. Finally, the structure-activity relationship was analyzed from the results of activity experiments and prediction. The results of activity experiments indicated that AMP-B/C/D clearly possessed excellent broad-spectrum activity against bacteria, whereas AMP-A was almost inactive against most of the bacterial strains tested. AMP-B/C/D showed more potent activity against Gram-positive bacteria than against Gram-negative bacteria. By utilizing bioinformatics analysis tools, we found that the secondary structure of the four cation peptides was mainly alpha-helix, and the result of CD spectrum also displayed that all the peptides had considerable alpha-helix in the presence of either 50% TFE or SDS micelles. AMP-C showed much better activity than other peptides against most of the bacteria tested, owing to its remarkable cation property and the amphipathic character of its N-terminal. The study of structure-activity relationship of the designed peptides confirmed that amphipathic structure and high net positive charge were prerequisites for maintaining their activities.
Collapse
Affiliation(s)
- Gang Hao
- The State Key Laboratory of Food Science and Technology, JiangNan University, Wuxi, 214122, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
45
|
Taylor K, Barran PE, Dorin JR. Structure-activity relationships in beta-defensin peptides. Biopolymers 2008; 90:1-7. [PMID: 18041067 DOI: 10.1002/bip.20900] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The beta-defensins comprise a large family of small cationic antimicrobial peptides widely distributed in plants, mammals and insects. These cysteine rich peptides display multifunctional properties with implications as potential therapeutic agents. Recent research has highlighted their role in both the innate and adaptive immune systems as well as being novel melanocortin ligands. Studies investigating structure and function provide an insight into the molecular basis of their immunological properties.
Collapse
Affiliation(s)
- Karen Taylor
- MRC Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | | | | |
Collapse
|
46
|
Krishnakumari V, Nagaraj R. Interaction of antibacterial peptides spanning the carboxy-terminal region of human beta-defensins 1-3 with phospholipids at the air-water interface and inner membrane of E. coli. Peptides 2008; 29:7-14. [PMID: 18063441 DOI: 10.1016/j.peptides.2007.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 01/22/2023]
Abstract
Synthetic peptides Phd1-3 spanning the cationic carboxy-terminal region of human beta-defensins HBD-1-3 have been shown to have antibacterial activity. Gross morphological changes were seen in E. coli cells treated with these peptides. In this paper, we have studied the surface-active properties of peptides Phd1-3 and their interactions with different phospholipids using Langmuir-Blodgett monolayers. Compression isotherms and increase in pressure on insertion of peptides into lipid monolayers at different initial pressures indicate the affinity of these peptides for negatively charged lipids. Phd3 inserted less effectively into monolayers as compared to Phd1 and Phd2. The peptides differed in their ability to permeabilize the inner membrane of E. coli, with Phd3 being least effective. It is likely that the peptides kill Gram-negative bacteria by more than one mechanism. When hydrophobicity and net charge favor insertion into lipid membranes, then membrane permeabilization could be the primary event in the killing of bacteria. In cases where membrane insertion does not occur, interaction with phospholipid interface induces highly selective stress that leads to stasis and cell death, as proposed for polymyxin B and bactenecin.
Collapse
|
47
|
Fung HK, Floudas CA, Taylor MS, Zhang L, Morikis D. Toward full-sequence de novo protein design with flexible templates for human beta-defensin-2. Biophys J 2007; 94:584-99. [PMID: 17827237 PMCID: PMC2157230 DOI: 10.1529/biophysj.107.110627] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this article, we introduce and apply our de novo protein design framework, which observes true backbone flexibility, to the redesign of human beta-defensin-2, a 41-residue cationic antimicrobial peptide of the innate immune system. The flexible design templates are generated using molecular dynamics simulations with both Generalized Born implicit solvation and explicit water molecules. These backbone templates were employed in addition to the x-ray crystal structure for designing human beta-defensin-2. The computational efficiency of our framework was demonstrated with the full-sequence design of the peptide with flexible backbone templates, corresponding to the mutation of all positions except the native cysteines.
Collapse
Affiliation(s)
- Ho Ki Fung
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | |
Collapse
|