1
|
Szczepanska-Sadowska E, Cudnoch-Jędrzejewska A, Żera T. Molecular Interaction Between Vasopressin and Insulin in Regulation of Metabolism: Impact on Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:13307. [PMID: 39769071 PMCID: PMC11678547 DOI: 10.3390/ijms252413307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin. Acting on V1a receptors in the liver, AVP stimulates glycogenolysis, reduces synthesis of glycogen, and promotes fatty acid synthesis and acetyl CoA carboxylase activity. Stimulating V1b receptors in the pancreatic islands, AVP promotes release of insulin and glucagon-like peptide-1 (GLP-1) and potentiates stimulatory effects of glucose and ACTH on secretion of insulin. Simultaneously, insulin increases AVP secretion by neurons of the paraventricular nucleus and the supraoptic nucleus. There is strong evidence that secretion of AVP and its metabolic effectiveness are significantly altered in metabolic and cardiovascular diseases. Both experimental and clinical data indicate that inappropriate interactions of AVP and insulin play an important role in the development of insulin resistance in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Higashi Y, Shimizu T, Yamamoto M, Tanaka K, Yawata T, Shimizu S, Zou S, Ueba T, Yuri K, Saito M. Stimulation of brain nicotinic acetylcholine receptors activates adrenomedullary outflow via brain inducible NO synthase-mediated S-nitrosylation. Br J Pharmacol 2018; 175:3758-3772. [PMID: 30007012 DOI: 10.1111/bph.14445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/26/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE We have demonstrated that i.c.v.-administered (±)-epibatidine, a nicotinic ACh receptor (nAChR) agonist, induced secretion of noradrenaline and adrenaline (catecholamines) from the rat adrenal medulla with dihydro-β-erythroidin (an α4β2 nAChR antagonist)-sensitive brain mechanisms. Here, we examined central mechanisms for the (±)-epibatidine-induced responses, focusing on brain NOS and NO-mediated mechanisms, soluble GC (sGC) and protein S-nitrosylation (a posttranslational modification of protein cysteine thiol groups), in urethane-anaesthetized (1.0 g·kg-1 , i.p.) male Wistar rats. EXPERIMENTAL APPROACH (±)-Epibatidine was i.c.v. treated after i.c.v. pretreatment with each inhibitor described below. Then, plasma catecholamines were measured electrochemically after HPLC. Immunoreactivity of S-nitrosylated cysteine (SNO-Cys) in α4 nAChR subunit (α4)-positive spinally projecting neurones in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of adrenomedullary outflow) after i.c.v. (±)-epibatidine administration was also investigated. KEY RESULTS (±)-Epibatidine-induced elevation of plasma catecholamines was significantly attenuated by L-NAME (non-selective NOS inhibitor), carboxy-PTIO (NO scavenger), BYK191023 [selective inducible NOS (iNOS) inhibitor] and dithiothreitol (thiol-reducing reagent), but not by 3-bromo-7-nitroindazole (selective neuronal NOS inhibitor) or ODQ (sGC inhibitor). (±)-Epibatidine increased the number of spinally projecting PVN neurones with α4- and SNO-Cys-immunoreactivities, and this increment was reduced by BYK191023. CONCLUSIONS AND IMPLICATIONS Stimulation of brain nAChRs can induce elevation of plasma catecholamines through brain iNOS-derived NO-mediated protein S-nitrosylation in rats. Therefore, brain nAChRs (at least α4β2 subtype) and NO might be useful targets for alleviation of catecholamines overflow induced by smoking.
Collapse
Affiliation(s)
- Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Masaki Yamamoto
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kenjiro Tanaka
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Toshio Yawata
- Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Tetsuya Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
3
|
da Silva LS, Catalão CHR, Felippotti TT, de Oliveira- Pelegrin GR, Petenusci S, de Freitas LAP, Rocha MJA. Curcumin suppresses inflammatory cytokines and heat shock protein 70 release and improves metabolic parameters during experimental sepsis. PHARMACEUTICAL BIOLOGY 2017; 55:269-276. [PMID: 27927067 PMCID: PMC6130593 DOI: 10.1080/13880209.2016.1260598] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 11/09/2016] [Indexed: 05/31/2023]
Abstract
CONTEXT Curcumin has been reported to have anti-inflammatory, antioxidant and hypoglycaemic properties, besides reducing mortality in sepsis. OBJECTIVE This study evaluates the biological activities of a curcumin dispersion formulated by spray-drying in experimental sepsis. MATERIALS AND METHODS Male Wistar rats were subjected to sepsis by caecal ligation and puncture (CLP), controls were sham operated. The animals were treated with curcumin dispersion (100 mg/kg, p.o.) or water for 7 days prior to CLP and at 2 h after surgery. One group was used to analyze curcumin absorption through HPLC; another had the survival rate assessed during 48 h; and from a third group, blood was collected by decapitation to analyze metabolic and inflammatory parameters. RESULTS The plasma curcumin levels reached 2.5 ng/mL at 4 h, dropped significantly (p < 0.001) at 6 h (1.2 ng/mL), and were undetectable at 24 h in both groups. Curcumin temporarily increased the survival rate of the septic rats by 20%. Moreover, it attenuated glycaemia (p < 0.05) and volemia (p < 0.05) alterations typically observed during sepsis, and decreased the levels of the proinflammatory cytokines IL-1β and IL-6 in plasma (p < 0.001) and peritoneal lavage fluid (p < 0.05) of septic rats. Serum HSP70 levels were decreased (p < 0.01) at 24 h after CLP. DISCUSSION AND CONCLUSION Our results show that the curcumin dispersion dose employed was not detrimental to the septic rats. In fact, it temporarily increased their survival rate, improved important metabolic parameters, reduced proinflammatory cytokines and HSP70 production.
Collapse
Affiliation(s)
- Letycia Silvano da Silva
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neuroscience and Behavior Sciences, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tatiana Tocchini Felippotti
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Sérgio Petenusci
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria José Alves Rocha
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Santos-Junior NN, Costa LHA, Catalão CHR, Kanashiro A, Sharshar T, Rocha MJA. Impairment of osmotic challenge-induced neurohypophyseal hormones secretion in sepsis survivor rats. Pituitary 2017; 20:515-521. [PMID: 28589293 DOI: 10.1007/s11102-017-0812-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/PURPOSE Recent studies have reported that sepsis survivors show impaired central nervous system functions. The osmoregulation in this post-sepsis condition has not been well investigated. In the present study, we evaluated the secretion of neurohypophyseal hormones, arginine vasopressin (AVP) and oxytocin (OT), and water intake induced by osmotic challenge in survivor rats. METHODS Wistar rats were submitted to sepsis by cecal ligation and puncture (CLP). Five days after CLP surgery, the survivor and naive animals were stimulated with an osmotic challenge consisting of hypertonic saline administration. Thirty minutes later, blood and brain were collected for determination of osmolality, nitrite, interleukin (IL)-1β, IL-6, AVP and OT levels and c-fos expression analysis of hypothalamic supraoptic nuclei (SON), respectively. In another set of sepsis survivor animals, water intake was measured for 240 min after the osmotic stimulus. RESULTS High levels of nitrite and IL-1β, but not IL-6, were found in the plasma of sepsis survivors and this long-term systemic inflammation was not altered by the osmotic challenge. Moreover, the AVP and OT secretion (but not the osmolality) and c-fos expression in SON were significantly attenuated in CLP survivor animals. Additionally, there was no alteration in the water intake response induced by osmotic challenge in the sepsis survivor group. CONCLUSION The results suggest that the inflammatory components mediated a persistent impairment in the component of the osmoregulatory reflex affecting the secretion of neurohypophyseal hormones in sepsis survivor animals.
Collapse
Affiliation(s)
- Nilton Nascimento Santos-Junior
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luís Henrique Angenendt Costa
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandre Kanashiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Tarek Sharshar
- Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | - Maria José Alves Rocha
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, CEP 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Coelho CH, Martins TF, Oliveira-Pelegrin GR, da Rocha MJA. Inhibition of neuronal nitric oxide synthase activity does not alter vasopressin secretion in septic rats. Pituitary 2017; 20:333-339. [PMID: 28091880 DOI: 10.1007/s11102-017-0786-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/PURPOSE During the early phase of sepsis, hypotension is accompanied by increase of plasma vasopressin hormone (AVP) levels, which decline during the late phase. This hypotension is due in part to increase of nitric oxide (NO) synthesis by nitric oxide synthase (NOS) enzyme. Neuronal isoform of this enzyme (nNOS) is present in vasopressinergics neurons of hypothalamus, but its role in vasopressin secretion during sepsis is unknown. METHODS We evaluated the role of nNOS in NO production and vasopressin secretion during sepsis. Wistar rats received 7-nitroindazole (50 mg/kg, i.p.), an inhibitor of nNOS activity, or vehicle and were submitted to septic stimulus by cecal ligation and puncture (CLP). At the time points 0, 4, 6, 18 and 24 h after sepsis induction the animals were decapitated and neurohypophysis and hypothalamus were removed for analysis of vasopressin content and NOS activity, respectively. Hematocrit, serum sodium, osmolality, proteins and plasmatic AVP were quantified. RESULTS Mortality was not affected by 7-nitroindazole (7-NI). Sodium and plasma proteins levels decreased after CLP and the treatment anticipated the protein loss, and delayed serum sodium decrease. Septic animals treated with 7-NI showed decrease of osmolality 4 h after CLP. Nitric oxide synthase activity in hypothalamus increased at 4 and 24 h after CLP and was reduced with 7-NI. Neurohypophysis content of AVP diminished after CLP and 7-NI did not alter this parameter. Plasma AVP levels increased at 6 h and decreased 18 and 24 h after CLP. Treatment with 7-NI did not alter plasma vasopressin levels. CONCLUSION We concluded that nNOS does not have a substantial role in vasopressin secretion during experimental sepsis.
Collapse
Affiliation(s)
- Camila Henriques Coelho
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n CEP, Ribeirão Preto, São Paulo, 14040-904, Brazil.
| | - Thalita Freitas Martins
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n CEP, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | | | - Maria José Alves da Rocha
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Stabile AM, Moreto V, Batalhão ME, Rocha MJ, Antunes-Rodrigues J, Cárnio EC. Differential Role of Neurohypophysial Hormones in Hypotension and Nitric Oxide Production During Endotoxaemia. J Neuroendocrinol 2016; 28. [PMID: 27037598 DOI: 10.1111/jne.12391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
Abstract
Besides their well-established endocrine roles, vasopressin and oxytocin are also important regulators of immune function, participating in a complex neuroendocrine-immune network. In the present study, we investigated whether and how vasopressin and oxytocin could modulate lipopolysaccharide (LPS)-induced nitric oxide (NO) production in a well-established model of experimental endotoxaemia. Male Wistar rats were previously treated i.v. with vasopressin V1 or oxytocin receptor antagonists and then received either an i.v. LPS injection to induce endotoxaemia or a saline imjection as a control. The animals were divided into two groups: in the first group, blood was collected at 2, 4 and 6 h after LPS injection; in the second group, mean arterial blood pressure (MABP) and heart rate (HR) were recorded over 6 h. Plasma vasopressin and oxytocin values were higher in LPS- compared to saline-injected animals at 2 and 4 h but returned to basal levels at 6 h. NO levels exhibited an opposite pattern, showing a progressive increase over the entire period. The previous administration of a vasopressin V1 receptor antagonist significantly reduced NO plasma concentrations at 2 and 4 h but not at 6 h. By contrast, oxytocin receptor agonist pre-treatment had no effect on the NO plasma concentration. In relation to MABP, previous treatment with vasopressin V1 receptor antagonist reversed the LPS-induced hypotension at 4 h, although this was not the case for oxytocin antagonist-treated animals. None of the antagonists affected HR. Our findings indicate that vasopressin (but not oxytocin) has effects on NO production during endotoxaemia in rats, although they do not lend support to the proposed anti-inflammatory actions of vasopressin during endotoxaemia.
Collapse
Affiliation(s)
- A M Stabile
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - V Moreto
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M E Batalhão
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M J Rocha
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - J Antunes-Rodrigues
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - E C Cárnio
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Hamasaki MY, Barbeiro HV, Barbeiro DF, Cunha DMG, Koike MK, Machado MCC, Pinheiro da Silva F. "Neuropeptides in the brain defense against distant organ damage". J Neuroimmunol 2015; 290:33-5. [PMID: 26711566 DOI: 10.1016/j.jneuroim.2015.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Delirium, or acute confusional state, is a common manifestation in diseases that originate outside the central nervous system, affecting 30-40% of elderly hospitalized patients and up to 80% of the critically ill, even though it remains unclear if severe systemic inflammation is able or not to induce cellular disturbances and immune activation in the brain. Neuropeptides are pleotropic molecules heterogeneously distributed throughout the brain and possess a wide spectrum of functions, including regulation of the inflammatory response, so we hypothesized that they would be the major alarm system in the brain before overt microglia activation. In order to investigate this hypothesis, we induced acute pancreatitis in 8-10week old rats and collected brain tissue, 12 and 24h following pancreatic injury, to measure neuropeptide and cytokine tissue levels. We found significantly higher levels of β-endorphin, orexin and oxytocin in the brain of rats submitted to pancreatic injury, when compared to healthy controls. Interestingly, these differences were not associated with increased local cytokine levels, putting in evidence that neuropeptide release occurred independently of microglia activation and may be a pivotal alarm system to initiate neurologic reactions to distant inflammatory non-infectious aggression.
Collapse
|
8
|
Wahab F, Santos-Junior NN, de Almeida Rodrigues RP, Costa LHA, Catalão CHR, Rocha MJA. Interleukin-1 Receptor Antagonist Decreases Hypothalamic Oxidative Stress During Experimental Sepsis. Mol Neurobiol 2015; 53:3992-3998. [DOI: 10.1007/s12035-015-9338-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/01/2015] [Indexed: 01/08/2023]
|
9
|
Wahab F, Tazinafo LF, Cárnio EC, Aguila FA, Batalhão ME, Rocha MJA. Interleukin-1 receptor antagonist decreases cerebrospinal fluid nitric oxide levels and increases vasopressin secretion in the late phase of sepsis in rats. Endocrine 2015; 49:215-21. [PMID: 25338201 DOI: 10.1007/s12020-014-0452-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/09/2014] [Indexed: 12/24/2022]
Abstract
The aim of this study was to analyze the effect of IL-1ra (an Interleukin-1 receptor antagonist) on sepsis-induced alterations in vasopressin (AVP) and nitric oxide (NO) levels. In addition, IL-1ra effect on the hypothalamic nitric oxide synthase (NOS) activities and survival rate was also analyzed. After Wistar rats were intracerebroventricular injected with IL-1ra (9 pmol) or vehicle (PBS 0.01 M), sepsis was induced by cecal-ligation and puncture (CLP). Blood, CSF, and hypothalamic samples were collected from different groups of rats (n = 8/group) after 4, 6, and 24 h. AVP and NO levels were greatly increased in CLP. Both total NOS and inducible NOS (iNOS) activities were also greatly increased in CLP rats. These changes in AVP, NO, and NOS were not observed in sham-operated control rats. IL-1ra administration did not alter plasma AVP levels after 4 and 6 h as compared to vehicle in CLP animals but after 24 h were significantly (P < 0.01) higher in IL-1ra-treated animals. IL-1ra administration significantly (P < 0.01) decreased NO concentration in CSF but not in plasma. Both total NOS and iNOS activities were also significantly decreased by IL-1ra at 24 h in CLP animals. Moreover, the 24 h survival rate of IL-1ra-treated rats increased by 38 % in comparison to vehicle administered animals. The central administration of IL-1ra increased AVP secretion in the late phase of sepsis which was beneficial for survival. We believe that one of the mechanisms for this effect of IL-1ra is through reduction of NO concentration in CSF and hence lower hypothalamic iNOS activities in the septic rats.
Collapse
Affiliation(s)
- Fazal Wahab
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, Avenida do Café s/n CEP, Ribeirão Preto, SP, 14040-904, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
da Silva FP, Machado MCC, Sallet PC, Zampieri FG, Goulart AC, Torggler Filho F, Barbeiro HV, Velasco IT, da Cruz Neto LM, de Souza HP. Neuropeptide downregulation in sepsis. Inflammation 2014; 37:142-5. [PMID: 24005899 DOI: 10.1007/s10753-013-9722-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropeptides are an extremely conserved arm of neurobiology. Despite their effects as neurohormones and neurotransmitters, a multitude of other effects have been described, putting in evidence their importance as regulators of immune responses, such as chemotaxis, oxidative burst, pro-inflammatory signaling, and many others. The effects of neuropeptides in the pathophysiology of sepsis, however, remain poorly investigated. A prospective cohort study to investigate the effects of neuropeptides in sepsis was carried out. Here, we describe that neuropeptides are downregulated during septic shock. We propose that it may be a protective mechanism of the host to avoid further inflammatory injury.
Collapse
|
11
|
Oliveira-Pelegrin GR, Basso PJ, Rocha MJA. Cellular bioenergetics changes in magnocellular neurons may affect copeptin expression in the late phase of sepsis. J Neuroimmunol 2013; 267:28-34. [PMID: 24360909 DOI: 10.1016/j.jneuroim.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 01/26/2023]
Abstract
We investigated whether inflammatory mediators during cecal ligation and puncture (CLP)-induced sepsis may diminish copeptin expression in magnocellular neurons, thus affecting arginine-vasopressin (AVP) synthesis. The transcript abundance of IL-1β, IL-1R1, iNOS and HIF-1α was continuously elevated. IL-1β, iNOS and cytochrome c protein levels progressively increased until 24h. Immunostaining for these proteins was higher at 6 and 24h, as also seen in the annexin-V assay, while copeptin was continuously decreased. This suggests that increased IL-1β and NO levels may cause significant bioenergetics changes in magnocellular neurons, affecting copeptin expression and compromising AVP synthesis and secretion in the late phase of sepsis.
Collapse
Affiliation(s)
- Gabriela R Oliveira-Pelegrin
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Paulo J Basso
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria José A Rocha
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Pinheiro da Silva F, Machado MCC, Velasco IT. Neuropeptides in sepsis: from brain pathology to systemic inflammation. Peptides 2013; 44:135-8. [PMID: 23583479 DOI: 10.1016/j.peptides.2013.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/20/2022]
Abstract
Septic encephalopathy is frequently diagnosed in critically ill patients and in up to 70% of patients with severe systemic infection [19]. The syndrome is defined by diffuse cerebral dysfunction or structural abnormalities attributed to the effects of systemic infection, rather than a direct central nervous system cause. The clinical characteristics can range from mild delirium to deep coma, but patients are often medically sedated making the diagnosis difficult. Any manifestation, however, is specific and markers of disease are lacking [43]. Sepsis survivors present long term cognitive impairment, including alterations of memory, attention and concentration [10,54]. Here, we propose that neuropeptides may play a key role in septic encephalopathy, leading to a vicious circle characterized by brain disease and systemic inflammation.
Collapse
|
13
|
Deing V, Roggenkamp D, Kühnl J, Gruschka A, Stäb F, Wenck H, Bürkle A, Neufang G. Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis. Exp Dermatol 2013; 22:399-405. [DOI: 10.1111/exd.12155] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Verena Deing
- Beiersdorf AG; Research Skin Care; Hamburg; Germany
| | | | - Jochen Kühnl
- Beiersdorf AG; Research Skin Care; Hamburg; Germany
| | | | - Franz Stäb
- Beiersdorf AG; Research Skin Care; Hamburg; Germany
| | - Horst Wenck
- Beiersdorf AG; Research Skin Care; Hamburg; Germany
| | | | | |
Collapse
|
14
|
Altered oxytocinergic hypothalamus systems in sepsis. J Chem Neuroanat 2013; 52:44-8. [PMID: 23680380 DOI: 10.1016/j.jchemneu.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/02/2013] [Accepted: 05/05/2013] [Indexed: 01/13/2023]
Abstract
Sepsis is known to affect neuroendocrine circuits: injections of lipopolysaccaride are potent stimulators of oxytocin secretion from the posterior lobe, acute sepsis leads to uterus contractions and spontaneous abort. Here, we report changes in expression and distribution of hypothalamic oxytocin in rats that had been subjected to caecal ligation and puncture which led to acute sepsis. Septic animals showed loss of oxytocin immunostaining in perikarya of the supraoptic and paraventricular nuclei and an increase of oxytocin positive fibres, suggesting a shift of oxytocin pools into the axonal compartment. Immunostaining of the posterior lobe revealed reduction of oxytocin in septic rats. Magnocellular neurons in supraoptic- and to a lesser extent in paraventricular nuclei showed nuclear immunoreactivity for the protooncogene c-Fos, indicating stimulation of transcriptional activity upon sepsis. Contrary to magnocellular oxytocin immunoreactivity, we observed increased oxytocin immunoreactivity in cell bodies and processes of periventricular nucleus and in perivascular neurons. Oxytocin neurons in other regions of the hypothalamus and the preoptic region did not appear to be affected by acute sepsis. Our findings suggest a differential activation of neurohypophyseal and cerebrospinal fluid contacting oxytocin systems while centrally projecting oxytocin neurons may not be affected. Systemic oxytocin levels may serve as additional diagnostic marker for sepsis.
Collapse
|
15
|
Oliveira-Pelegrin GR, Basso PJ, Soares AS, Martinez MR, Riester KD, Rocha MJA. Cleaved caspase-3 expression in hypothalamic magnocellular neurons may affect vasopressin secretion during experimental polymicrobial sepsis. J Neuroimmunol 2013; 258:10-6. [DOI: 10.1016/j.jneuroim.2013.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/14/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
16
|
Oliveira-Pelegrin GR, Saia RS, Cárnio EC, Rocha MJA. Oxytocin affects nitric oxide and cytokine production by sepsis-sensitized macrophages. Neuroimmunomodulation 2013. [PMID: 23183119 DOI: 10.1159/000345044] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Oxytocin (OXT) secretion during cecal ligation puncture (CLP)-induced sepsis has not yet been examined. Although immune properties have been attributed to OXT, its effect on CLP-sensitized macrophages has never been investigated. We analyzed OXT secretion during CLP and its effect in CLP-sensitized macrophage cultures. METHODS Male Wistar rats were decapitated 4, 6 or 24 h after CLP surgery or sham operation and blood, brain and neurohypophyses were collected for OXT measurements. In another set of animals we studied the effect of OXT on nitrite, tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-10 production of peritoneal macrophages harvested at 6 and 24 h after CLP. RESULTS In the early phase of sepsis (4-6 h), OXT levels increased in plasma and decreased in hypothalamus and neurohypophysis. In the late phase (24 h), plasma and neurohypophyseal levels remained basal. In the paraventricular, the OXT content remained low, but in the supraoptic increased. Macrophages of the early phase of sepsis pretreated with OXT and stimulated with lipopolysaccharide showed decreased nitrite, TNF-α and IL-1β levels, but no alteration in IL-10 production. In the late phase, they showed reduction only on IL-1β. CONCLUSIONS OXT secretion during sepsis may represent a neuroendocrine response contributing to the overall host response to infection by decreasing the proinflammatory response and oxidative stress.
Collapse
|
17
|
Tanaka K, Shimizu T, Lu L, Yokotani K. Possible involvement of S-nitrosylation of brain cyclooxygenase-1 in bombesin-induced central activation of adrenomedullary outflow in rats. Eur J Pharmacol 2012; 679:40-50. [PMID: 22293370 DOI: 10.1016/j.ejphar.2012.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/17/2011] [Accepted: 01/13/2012] [Indexed: 01/01/2023]
Abstract
We previously reported that both nitric oxide (NO) generated from NO synthase by bombesin and NO generated from SIN-1 (NO donor) activate the brain cyclooxygenase (COX) (COX-1 for bombesin), thereby eliciting the secretion of both catecholamines (CA) from the adrenal medulla by brain thromboxane A(2)-mediated mechanisms in rats. NO exerts its effects via not only soluble guanylate cyclase, but also protein S-nitrosylation, covalent modification of a protein cysteine thiol. In this study, we clarified the central mechanisms involved in the bombesin-induced elevation of plasma CA with regard to the relationship between NO and COX-1 using anesthetized rats. Bombesin (1 nmol/animal, i.c.v.)-induced elevation of plasma CA was attenuated by carboxy-PTIO (NO scavenger) (0.5 and 2.5 μmol/animal, i.c.v.), but was not influenced by ODQ (soluble guanylate cyclase inhibitor) (100 and 300 nmol/animal, i.c.v.). The bombesin-induced response was effectively reduced by dithiothreitol (thiol-reducing reagent) (0.4 and 1.9 μmol/kg/animal, i.c.v.) and by N-ethylmaleimide (thiol-alkylating reagent) (0.5 and 2.4 μmol/kg/animal, i.c.v.). The doses of dithiothreitol also reduced the SIN-1 (1.2 μmol/animal, i.c.v.)-induced elevation of plasma CA, but had no effect on the U-46619 (thromboxane A(2) analog) (100 nmol/animal, i.c.v.)-induced elevation of plasma CA even at higher doses (1.9 and 9.7 μmol/kg/animal, i.c.v.). Immunohistochemical studies demonstrated that the bombesin increased S-nitroso-cysteine-positive cells co-localized with COX-1 in the spinally projecting neurons of the hypothalamic paraventricular nucleus (PVN). Taken together, endogenous NO seems to mediate centrally administered bombesin-induced activation of adrenomedullary outflow at least in part by S-nitrosylation of COX-1 in the spinally projecting PVN neurons in rats.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan
| | | | | | | |
Collapse
|
18
|
Aguila FA, Oliveira-Pelegrin GR, Yao ST, Murphy D, Rocha MJA. Anteroventral third ventricle (AV3V) lesion affects hypothalamic neuronal nitric oxide synthase (nNOS) expression following water deprivation. Brain Res Bull 2011; 86:239-45. [PMID: 21840380 DOI: 10.1016/j.brainresbull.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) has been reported to be up-regulated in the hypothalamic supraoptic nucleus (SON) during dehydration which in turn could increase nitric oxide (NO) production and consequently affect arginine vasopressin (AVP) secretion. The anteroventral third ventricle (AV3V) region has strong afferent connections with the SON. Herein we describe our analysis of the effects of an AV3V lesion on AVP secretion, and c-fos and nNOS expression in the SON following dehydration. Male Wistar rats had their AV3V region electrolytically lesioned or were sham operated. After 21 days they were submitted to dehydration or left as controls (euhydrated). Two days later, one group was anaesthetized, perfused and the brains were processed for Fos protein and nNOS immunohistochemistry (IHC). Another group was decapitated, the blood collected for hematocrit, osmolality, serum sodium and AVP plasma level analysis. The brains were removed for measurement of neurohypophyseal AVP content, and the SON was punched out and processed for nNOS detection by western blotting. The AV3V lesion reduced AVP plasma levels and c-fos expression in the SON following dehydration (P<0.05). Western blotting revealed an up-regulation of nNOS in the SON of control animals following dehydration, whereas such up-regulation was not observed in AV3V-lesioned rats (P<0.05). We conclude that the AV3V region plays a role in regulating the expression of nNOS in the SON of rats submitted to dehydration, and thus may affect the local nitric oxide production and the secretion of vasopressin.
Collapse
Affiliation(s)
- Fábio Alves Aguila
- Departamento de Morfologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|