1
|
Mhalhal TR, Washington MC, Heath JC, Sayegh AI. Effect of Vagotomy and Sympathectomy on the Feeding Responses Evoked by Intra-Aortic Cholecystokinin-8 in Adult Male Sprague Dawley Rats. Endocr Res 2021; 46:57-65. [PMID: 33426974 DOI: 10.1080/07435800.2020.1861621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The vagus nerve and the celiaco-mesenteric ganglia (CMG) are required for reduction of meal size (MS) and prolongation of the intermeal interval (IMI) by intraperitoneal (ip) sulfated cholecystokinin-8 (CCK-8). However, recently we have shown that the gut regulates these responses. Therefore, reevaluating the role of the vagus and the CMG in the feeding responses evoked by CCK is necessary because the gut contains the highest concentration of enteric, vagal and splanchnic afferents and CCK-A receptors, which are required for reduction of food intake by this peptide, compared to other abdominal organs. To address this necessity, we injected sulfated CCK-8 (0, 0.1, 0.5, 1 and 3 nmol/kg) in the aorta, near the gastrointestinal sites of action of the peptide, in three groups of free-feeding rats (n = 10 rats per group), subdiaphragmatic vagotomy (VGX), celiaco-mesenteric ganglionectomy (CMGX) and sham-operated, and recorded seven feeding responses. In the sham group, CCK-8 reduced MS (normal chow), prolonged the intermeal interval (IMI, time between first and second meals), increased satiety ratio (SR, IMI/MS), shortened duration of first meal, reduced total (24 hrs) food intake and reduced number of meals relative to saline vehicle. Vagotomy attenuated all of the previous responses except IMI length and SR, and CMGX attenuated all of those responses. In conclusion, the feeding responses evoked by sulfated CCK-8 require, independently, the vagus nerve and the CMG.
Collapse
Affiliation(s)
- Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - John C Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| |
Collapse
|
2
|
Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. The Vagus Nerve and the Celiaco-mesenteric Ganglia Participate in the Feeding Responses Evoked by Non-sulfated Cholecystokinin-8 in Male Sprague Dawley Rats. Endocr Res 2020; 45:73-83. [PMID: 31573821 DOI: 10.1080/07435800.2019.1670673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have shown that non-sulfated cholecystokinin-8 (NS CCK-8) reduces food intake in adult male Sprague Dawley rats by activating cholecystokinin-B receptor (CCK-BR). Here, we tested the hypothesis that the vagus nerve and the celiaco-mesenteric ganglia may play a role in this reduction. The hypothesis stems from the following facts. The vagus and the celiaco-mesenteric ganglia contain NS CCK-8, they express and have binding sites for CCK-BR, NS CCK-8 activates CCK-BR on afferent vagal and sympathetic fibers and the two structures link the gastrointestinal tract to central feeding nuclei in the brain, which also contain the peptide and CCK-BR. To test this hypothesis, three groups of free-feeding rats, vagotomy (VGX), celiaco-mesenteric ganglionectomy (CMGX) and sham-operated, received NS CCK-8 (0, 0.5 and 1 nmol/kg) intraperitoneally prior to the onset of the dark cycle and various feeding behaviors were recorded. We found that in sham-operated rats both doses of NS CCK-8 reduced meal size (MS), prolonged the intermeal interval (IMI, time between first and second meal), increased satiety ratio (SR = IMI/MS), reduced 24-h food intake and reduced the number of meals relative to saline control. In the VGX and the CMGX groups, all of the previous responses were attenuated. Consistent with our hypothesis, the findings of the current work suggest a role for the vagus nerve and the celiaco-mesenteric ganglia in the feeding responses evoked by NS CCK-8.
Collapse
Affiliation(s)
- Amged I Dafalla
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
- Department of Anatomy and Histology, College of Veterinary Medicine, Basra University, Basra, Iraq
| | - Kenneth Hiscocks
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - John Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
3
|
Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity. Cell Rep 2018; 21:2724-2736. [PMID: 29212021 DOI: 10.1016/j.celrep.2017.11.036] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/21/2022] Open
Abstract
The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP)-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems-in a single trial-to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity.
Collapse
|
4
|
Mhalhal TR, Washington MC, Newman KD, Heath JC, Sayegh AI. Combined gastrin releasing peptide-29 and glucagon like peptide-1 reduce body weight more than each individual peptide in diet-induced obese male rats. Neuropeptides 2018; 67:71-78. [PMID: 29180139 DOI: 10.1016/j.npep.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
To test the hypothesis that gastrin releasing peptide-29 (GRP-29) combined with glucagon like peptide-1 (7-36) (GLP-1 (7-36)) reduce body weight (BW) more than each of the peptides given individually, we infused the two peptides (0.5nmol/kg each) in the aorta of free feeding, diet-induced obese (DIO) male Sprague Dawley rats once daily for 25days and measured BW. We found that GRP-29 and GLP-1 reduce BW, GRP-29 reduced it more than GLP-1 and GRP-29+GLP-1 reduce BW more than each peptide given alone. This reduction was accompanied by decrease 24-hour food intake (normal rat chow), meal size (MS), duration of first meal and number of meals, and increase latency to the first meal, intermeal interval (IMI) and satiety ratio (IMI/MS, amount of food consumed per a unit of time). Furthermore, the peptides and their combination decreased 24-hour glucose levels. In conclusion, GRP-29+GLP-1 reduce BW more than each of the peptides given individually.
Collapse
Affiliation(s)
- Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; Department of Anatomy and Histology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Kayla D Newman
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - John C Heath
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
5
|
Davis EA, Washington MC, Yaniz ER, Phillips H, Sayegh AI, Dailey MJ. Long-term effect of parasympathetic or sympathetic denervation on intestinal epithelial cell proliferation and apoptosis. Exp Biol Med (Maywood) 2017; 242:1499-1507. [PMID: 28766984 DOI: 10.1177/1535370217724790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intestinal epithelial tissue is constantly regenerated as a means to maintain proper tissue function. Previous studies have demonstrated that denervation of the parasympathetic or sympathetic nervous system to the intestine alters this process. However, results are inconsistent between studies, showing both increases and decreases in proliferation after denervation of the parasympathetic or sympathetic. The effect appears to correlate with (1) the timing post-denervation, (2) denervation-induced changes in food intake, (3) the denervation technique used, and (4) which intestinal segment is investigated. Thus, we proposed that parasympathetic or sympathetic denervation does not have an effect on intestinal epithelial regeneration when you (1) evaluate denervation after long-term denervation, (2) control for post-surgical changes in food intake, (3) use minimally invasive surgical techniques and (4) include a segmental analysis. To test this, adult male Sprague Dawley rats underwent parasympathetic denervation via subdiaphragmatic vagotomy, sympathetic denervation via celiacomesenteric ganglionectomy, a parasympathetic denervation sham surgery, or a sympathetic denervation sham surgery. Sham surgery ad libitum-fed groups and sham surgery pair-fed groups were used to control for surgically induced changes in food intake. Three weeks post-surgery, animals were sacrificed and tissue from the duodenum, jejunum, and ileum was excised and immunohistochemically processed to visualize indicators of proliferation (bromodeoxyuridine-positive cells) and apoptosis (caspase-3-positive cells). Results showed no differences between groups in proliferation, apoptosis, or total cell number in any intestinal segment. These results suggest that parasympathetic or sympathetic denervation does not have a significant long-term effect on intestinal epithelial turnover. Thus, intestinal epithelial regeneration is able to recover after autonomic nervous system injury. Impact statement This study investigates the long-term effect of autonomic denervation on intestinal epithelial cell turnover, as measured by proliferation, apoptosis, and total cell number. Although previous research has established that autonomic denervation can alter intestinal epithelial turnover under short-term conditions, here we establish for the first time that these changes do not persist long-term when you control for surgical-induced changes in food intake and use targeted denervation procedures. These findings add to the base of knowledge on autonomic control of tissue turnover, highlight the ability of the intestinal epithelium to recover after autonomic injury and reveal possible implications of the use of ANS denervation for disease treatment in humans.
Collapse
Affiliation(s)
- Elizabeth A Davis
- 1 Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Martha C Washington
- 2 Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Emily R Yaniz
- 1 Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Heidi Phillips
- 3 Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, 61802, USA
| | - Ayman I Sayegh
- 2 Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Megan J Dailey
- 1 Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.,4 Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
6
|
Mai TH, Garland EM, Diedrich A, Robertson D. Hepatic and renal mechanisms underlying the osmopressor response. Auton Neurosci 2017; 203:58-66. [PMID: 28143710 DOI: 10.1016/j.autneu.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/09/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
Increased blood pressure (BP) is observed in patients with impaired baroreflexes after water drinking. The stimulus for this effect is low blood osmolality, and it has been termed the osmopressor response (OPR). The BP increase is associated with activation of the sympathetic nervous system and a requirement for transient receptor potential vanilloid 4 (TRPV4) channels. However, the mechanisms underlying the OPR are poorly understood. We tested the hypothesis that hypotonicity is sensed in the portal area to initiate the OPR. Sino-aortic denervated mice were used and BP was monitored for 30min after fluid infusion while mice were under anesthesia. Infusion of hypotonic fluid (0.45% saline), but not of isotonic 0.9% saline, directly into the portal vein, produced an immediate OPR (increase in BP with saline 0.45%: 15±13 vs. 0.9%: -7±2mmHg, p=0.003; AUC: 0.45%: 150±99, n=7 vs. 0.9%: -74±60mmHg·min, n=5, p=0.003). However, 0.45% saline was not able to trigger a similar response in TRPV4-/- mice (ΔBPTRPV4: -2±5mmHg, n=8, p=0.009). Hypotonic saline did not raise BP when infused at the same speed and volume into the jugular vein (jugular: -5±6mmHg, p=0.002, compared to portal). Denervation of the splanchnic nerve by celiac ganglionectomy (CGX) did not abolish the OPR (CGX: 15±11 vs. Sham: 16±6mmHg, p=0.34). Renal denervation diminished the OPR elicited by duodenal water infusion (denervation: 9±4 vs. sham: 31±15mmHg, p=0.016). Therefore, hypotonicity in the portal circulation, probably sensed by TRPV4 channels, triggers the OPR and intact renal nerves are needed for the full response.
Collapse
Affiliation(s)
- Tu H Mai
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Emily M Garland
- Department of Medicine, Vanderbilt University Medical Center, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - André Diedrich
- Department of Medicine, Vanderbilt University Medical Center, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David Robertson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Medicine, Vanderbilt University Medical Center, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
7
|
Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats. Appetite 2017; 109:172-181. [DOI: 10.1016/j.appet.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022]
|
8
|
Washington MC, Mhalhal TR, Sayegh AI. The BB2 receptor antagonist BW2258U89 attenuates the feeding responses evoked by exogenous gastrin releasing peptide-29. Horm Behav 2016; 85:1-4. [PMID: 27381650 PMCID: PMC5026928 DOI: 10.1016/j.yhbeh.2016.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
This confirmatory work is aimed to test that the hypothesis that the gastrin releasing peptide (GRP) receptor - the BB2 receptor - is necessary for reduction of meal size (MS) and prolongation of the intermeal interval (IMI) by the small and the large forms of GRP in the rat, GRP-10 and GRP-29, and to confirm the sites of action regulating such responses - the vascular bed of the celiac artery (CA, supplying stomach and upper duodenum). To pursue these aims we measured first MS and IMI length in response to GRP-10 and GRP-29 (0, 0.5nmol/kg) infused in the CA (n=8 rats) and the cranial mesenteric artery (CMA, supplying the small and part of the large intestine, n=8 rats) in near spontaneously free feeding rats pretreated with the BB2 receptor antagonist BW2258U89 (0.1mg/kg) in the same arteries prior to the onset of the dark cycle. We found that GRP-29, but not GRP-10, infused by the CA reduced MS and prolonged the IMI by decreasing meal latency and meal duration and the BB2 receptor antagonist BW2258U89 infused in the same artery attenuated these responses. These results suggest that the BB2 receptor is necessary for reduction of MS and prolongation of the IMI by exogenous GRP-29, and the vascular bed of the CA, stomach and upper duodenum, contains sites of action regulating these feeding responses.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Thaer R Mhalhal
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| |
Collapse
|
9
|
Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. J Surg Res 2016; 206:517-524. [PMID: 27884350 DOI: 10.1016/j.jss.2016.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) is the most effective method for the treatment of obesity, and metabolic disease RYGB may reduce body weight by altering the feeding responses evoked by the short-term satiety peptides. MATERIALS AND METHODS Here, we measured meal size (MS, chow), intermeal interval (IMI) length, and satiety ratio (SR, IMI/MS; food consumed per a unit of time) by the small and the large forms of gastrin-releasing peptide (GRP) in rats, GRP-10 and GRP-29 (0, 0.1, 0.5 nmol/kg) infused in the celiac artery (CA, supplies stomach and upper duodenum) and the cranial mesenteric artery (CMA, supplies small and large intestine) in an RYGB rat model. RESULTS GRP-10 reduced MS, prolonged the IMI, and increased the SR only in the RYGB group, whereas GRP-29 evoked these responses by both routes and in both groups. CONCLUSIONS The RYGB procedure augments the feeding responses evoked by exogenous GRP, possibly by decreasing total food intake, increasing latency to the first meal, decreasing number of meals or altering the sites of action regulating MS and IMI length by the two peptides.
Collapse
|
10
|
Zafra MA, Molina F, Puerto A. Chemical afferent vagal axotomy blocks re-intake after partial withdrawal of gastric food contents. Nutr Neurosci 2016; 20:587-597. [DOI: 10.1080/1028415x.2016.1208970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- María A. Zafra
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain
| | - Filomena Molina
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, University of Granada, Campus de Cartuja, Granada 18071, Spain
| |
Collapse
|
11
|
Reeve JR, Washington MC, Park KH, Johnson T, Hunt J, Shively JE, Ronk M, Lee TD, Goto Y, Chew P, Ho FJ, Sayegh AI. Sequence analysis and feeding responses evoked by the large molecular form of gastrin releasing peptide (GRP) in the rat GRP-29. Peptides 2014; 59:1-8. [PMID: 24993846 DOI: 10.1016/j.peptides.2014.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Microisolation techniques utilizing several reverse phase high performance liquid chromatography (HPLC) steps have resulted in the purification of two rat gastrin releasing peptide (GRP) forms suitable for microsequence and mass spectral analysis. The sequence of the larger form is APVSTGAGGGTVLAKMYPRGSHWAVGHLM-amide and the smaller form is GSHWAVGHLM-amide which is the carboxyl terminal decapeptide of the larger peptide. The peptides were synthesized and their feeding patterns e.g. first meal size (MS), intermeal interval (IMI) and satiety ratio (SR, IMI/MS) were determined in overnight food-, but not water deprived, male Sprague Dawley rats. The peptides were administered in the femoral vein (0, 0.21, 0.41 and 1.03 nmol/kg) immediately before presenting the rats with a 10% sucrose solution. We found that (1) GRP-10 (all doses) and GRP-29 (0.41 nmol/kg) reduced first MS, (2) both peptides prolonged IMI length and (3) both peptides increased the SR to similar extents. In conclusion, GRP-10 and GRP-29 are the two endogenous forms of GRP in the rat intestine and they reduce short term feeding to similar extents when administered intravenously.
Collapse
Affiliation(s)
- Joseph R Reeve
- CURE: Digestive Diseases Research Center VA GLAHS, Los Angeles, CA, USA; Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Karen H Park
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Tanisha Johnson
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Jizette Hunt
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - John E Shively
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Mike Ronk
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Terry D Lee
- Division of Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yoshi Goto
- Department of Physiology, Tokushima Bunri University, Tokushima, Japan
| | - Peter Chew
- CURE: Digestive Diseases Research Center VA GLAHS, Los Angeles, CA, USA; Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fang-Jen Ho
- CURE: Digestive Diseases Research Center VA GLAHS, Los Angeles, CA, USA; Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA.
| |
Collapse
|
12
|
Washington MC, Park KH, Sayegh AI. Obese and lean Zucker rats respond similarly to intraperitoneal administration of gastrin-releasing peptides. Peptides 2014; 58:36-41. [PMID: 24874706 DOI: 10.1016/j.peptides.2014.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/23/2022]
Abstract
The Zucker rat is an animal model used to study obesity and the control of food intake by various satiety peptides. The amphibian peptide bombesin (Bn) reduces cumulative food intake similarly in both obese and lean weanling Zucker rats. Here, we hypothesized that intraperitoneal (i.p) administration of gastrin-releasing peptides-10, -27 and -29 (GRP-10, GRP-27, GRP-29), which are the mammalian forms of Bn, would reduce first meal size (MS, 10% sucrose) and prolong the intermeal interval (IMI, time between first and second meals) similarly in obese and lean adult Zucker rats. To test this hypothesis, we administered GRP-10, GRP-27 and GRP-29 (0, 2.1, 4.1 and 10.3 nmol/kg) i.p. to obese and lean male Zucker rats (who were deprived of overnight food but not water) and then measured the first and second MS, IMI and satiety ratio (SR, IMI/MS). We found that in both obese and lean rats, all forms of GRP reduced the first MS, and in lean rats, they also decreased the second MS. Additionally, GRP-10 and GRP-29 prolonged the IMI in both obese and lean rats, but GRP-27 only prolonged it in lean rats. Finally, we found that all forms of GRP increased the SR in both obese and lean rats. In agreement with our hypothesis, we conclude that all forms of GRP reduce food intake in obese and lean adult Zucker rats similar to Bn in weanling rats.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Karen H Park
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
13
|
Washington MC, Aglan AH, Sayegh AI. The stomach and/or upper duodenum contain sites of action that control meal size and intermeal interval length by exogenous rat gastrin releasing peptide. Peptides 2014; 55:41-6. [PMID: 24556509 DOI: 10.1016/j.peptides.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/16/2022]
Abstract
The site(s) of action that control the reduction of food intake in response to the amphibian skin peptide bombesin (Bn) has been determined to be the area supplied by the celiac artery (CA), i.e., the stomach and the upper duodenum. Here, we investigated the gastrointestinal site(s) of action which controls meal size (MS) (normal rat chow) and intermeal interval length (IMI) by the mammalian homologues of Bn gastrin releasing peptides (GRP-10, GRP-27 and GRP-29, 0.01, 0.05, 0.1, 0.2 and 0.5 nmol/kg) infused in the CA, the cranial mesenteric artery (CMA, supplying the small and large intestine), the femoral artery (FA, control) and the portal vein (PV, draining the gastrointestinal tract, control) in freely fed rats immediately prior to the onset of the dark cycle. We found that (1) GRP-29 (0.05, 0.1, 0.2 and 0.5 nmol/kg) and GRP-27 (0.2 and 0.5 nmol/kg) in the CA and GRP-29 (0.5 nmol/kg) in the CMA reduced the MS relative to saline, (2) GRP-29 (0.1, 0.2 and 0.5 nmol/kg) and GRP-27 (0.2 and 0.5 nmol/kg) in the CA prolonged the IMI, (3) GRP-29 (0.1, 0.2 and 0.5 nmol/kg) in the CA and GRP-29 (0.5 nmol/kg) in the CMA increased the satiety ratio (SR, IMI/MS - the amount of food consumed per a given unit of time) and (4) neither peptide nor route showed any effect on the second MS. These results support an upper gastrointestinal site of action for MS and IMI length by GRP-27 and GRP-29, which is most likely the stomach and/or the duodenum.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Amnah H Aglan
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States; School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
14
|
Washington MC, Salyer S, Aglan AH, Sayegh AI. Intravenous infusion of gastrin-releasing peptide-27 and bombesin in rats reveals differential effects on meal size and intermeal interval length. Peptides 2014; 51:145-9. [PMID: 24291388 PMCID: PMC4993526 DOI: 10.1016/j.peptides.2013.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022]
Abstract
We have previously shown that the intraperitoneal (i.p.) administration of gastrin-releasing peptide-27 (GRP-27) or bombesin (BN) (at 0.21, 0.41 and 1.03nmol/kg) reduces meal size (MS) and prolongs the intermeal interval (IMI). Here, we hypothesized that the intravenous (i.v.) administration of the same doses of GRP-27 and BN will be as effective as the i.p. administration in evoking these feeding responses. To test this hypothesis, we administered GRP-27 and BN i.v. and measured first MS (10% sucrose), IMI, satiety ratio (SR, IMI/MS) and second MS in overnight food-deprived but not water-deprived male Sprague Dawley rats. We found that (1) only GRP-27 reduced the first MS, (2) BN prolonged the IMI, (3) GRP-27 and BN increased the SR and (4) only BN reduced the size of the second meal. Contrary to our hypothesis, the i.v. administration of GRP-27 and BN affected the MS and IMI differently than did the i.p. administration. In conclusion, this pharmacological study suggests that the MS and IMI are regulated at different sites.
Collapse
Affiliation(s)
- Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Sarah Salyer
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States
| | - Amnah H Aglan
- School of Medicine, Wayne State University, Detroit, MI 48202, United States
| | - Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, United States.
| |
Collapse
|
15
|
The Role of Cholecystokinin Receptors in the Short-Term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:277-316. [DOI: 10.1016/b978-0-12-386933-3.00008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Sayegh AI. The Role of Bombesin and Bombesin-Related Peptides in the Short-term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:343-70. [DOI: 10.1016/b978-0-12-386933-3.00010-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|