1
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Deņisova A, Pilmane M, Kažoka D. Antimicrobial Peptides and Interleukins in Cleft Soft Palate. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1162. [PMID: 37508659 PMCID: PMC10378461 DOI: 10.3390/children10071162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Cleft palate is one of the most common and well-studied congenital anomalies; however, the role of protective tissue factors in its pathophysiology is still debated. The aim of our study was to evaluate interleukin and antimicrobial peptide appearance and distribution in cleft palate. Eight soft palate samples were obtained during veloplasty procedures. Immunohistochemical staining was applied to detect HBD-2-, HBD-3-, HBD-4-, LL-37-, IL-10-, and CD-163-positive cells via light microscopy. For statistical evaluation, the Mann-Whitney U test and Spearman's rank correlation coefficient were used. A significant difference between study groups was observed for HBD-2 and IL-10 in epithelial and connective tissue as well as HBD-4 in connective tissue. The number of HBD-3-positive cells was moderate in the patients, and few were observed in the controls. The number of LL-37-positive cells varied from a moderate amount to a numerous amount in both study groups, whilst CD-163 marked a moderate number of positive cells in patients, and a few-to-moderate amount was observed in the controls. Numerous correlations between studied factors were revealed in cleft tissues. The increase in antimicrobial peptides HBD-2 and HBD-4 and anti-inflammatory cytokine IL-10 suggested a wide compensatory elevation of the local immune system against cleft-raised tissue changes. The correlations between the studied factors (HBD-2, HBD-3, HBD-4, LL-37, and IL-10) proved the synergistic involvement of common local defense factors in postnatal cleft palate morphopathogenesis.
Collapse
Affiliation(s)
- Arina Deņisova
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Dzintra Kažoka
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
4
|
Feng S, Yang Y, Wang F, Shi W, Xu J, Tang G, Xie J, Zhong N, Liang Z, Chen R. Low human beta-defensin-2 levels in the sputum of COPD patients are associated with the risk of exacerbations. BMC Pulm Med 2023; 23:106. [PMID: 37003996 PMCID: PMC10064533 DOI: 10.1186/s12890-023-02364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/21/2023] [Indexed: 04/03/2023] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is a complicated chronic inflammatory disease. It is important to investigate the characteristics of acute exacerbation of COPD to develop new therapeutic strategies. OBJECTIVE This study aimed to determine the relationship between the human beta-defensin-2 (hBD-2) levels and aggravation of COPD. METHODS We detected the sputum hBD-2 level of 254 patients from Guangzhou, China, for 2 years. The study participants were categorized into the COPD group (n = 203, GOLD 0-4) and the control group (n = 51, 40-79 years old). At baseline, 12th month, and 24th month, we detected the sputum hBD-2 level and levels of cytokines, such as CXCL10, CXCL11, and IFN. RESULTS At baseline, there were no significant differences in the sputum and serum hBD-2 levels between the patients and the controls. However, the sputum hBD-2 levels of patients who had at least one symptom aggravation over the next 2 years were significantly lower than those of patients without any exacerbations (1130.9 ± 858.4 pg/mL vs. 2103.7 ± 1294.2 pg/mL, respectively; p = 0.001). Nevertheless, there were no statistically significant differences in the sputum hBD-2 levels between patients (no aggravation history) and controls (2084.9 ± 1317.6 pg/mL vs. 2152.5 ± 1251.6 pg/mL, respectively; p = 0.626). We used a logistic regression model to assess the relationship between aggravation and sputum hBD-2 levels. Interestingly, we found that low hBD-2 level (< 1000 pg/mL) was significantly associated with exacerbations. Specifically, patients with low hBD-2 levels were more likely to experience exacerbations in the next 12 months (0.333 vs. 0.117; p = 0.001). Moreover, we compared the hBD-2 levels between controls and patients with GOLD 3-4 and found that participants with bacteria (+) and/or viruses (+) had an association between hBD-2 level and disease severity (p = 0.02). CONCLUSION Patients at risk of exacerbations are more likely to have lower sputum hBD-2 levels. These results have important implications for future therapies for COPD.
Collapse
Grants
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- 202201020451 Science and Technology Program of Guangzhou
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- C2019001, C2019031, C2021073 Medical Scientific Research Foundation of Guangdong Province
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- 2022YFF0710802 the National Key Research and Development Program of China
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
- NoKCXFZ202002011008256 the Sustainable Development Project of Shenzhen Science and Technology Innovation Commission (China)
Collapse
Affiliation(s)
- Shengchuan Feng
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Yuqiong Yang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Fengyan Wang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Weijuan Shi
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Jiaxuan Xu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Guoyan Tang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Jiaxing Xie
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Nanshan Zhong
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Zhenyu Liang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China.
| |
Collapse
|
5
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
6
|
Ishchenko O, Koshevaya I, Zhernosekova I, Garets V, Stepanskyi D. The Levels of the Human-β-Defensin-2 and LL-37 in the Sputum of Children with Cystic Fibrosis: A Case–control Study and Literature Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND: Cystic fibrosis (CF) is a genetic disorder with an autosomal-recessive type of inheritance. Based on their host-defending and pro-inflammatory functions, antimicrobial peptides (AMPs) likely have one of the central roles in the pathogenesis of lung disease in CF.
AIM: The purpose of the study was to measure the concentration of AMPs in the sputum of children with CF and evaluate any correlation with a bacterial profile of the lungs.
METHODS: Lung colonization was evaluated using a culture-dependent method, sputum was utilized. A sandwich-ELISA was used to measure hBD-2 and hCAP-18/LL-37 in the sputum.
RESULTS: There were 27 children enrolled in the study group, median age of inclusion was 11.4 (8.5; 14.8) years old. The control group consisted of 14 children, 11.6 (8.6; 12.6) years old. The concentration of AMPs was not correlating with participants` age (rs = −0.286, p = 0.148 – defensin hDB-2; rs = −0.084, p = 0.676 – cathelicidin hCAP-18/LL-37). The concentration of hBD-2 was from 64.01 to 813.61 pg/mL. The concentration of hCAP-18/LL-37 was from 3.24 to 35.98 ng/mL. There were significant differences in the content of AMPs on respiratory samples between study and control group (U = 976.5, p = 0.001 – for hBD-2; U = 1080.5, p < 0.001). The correlation between current infection Pseudomonas aeruginosa and concentration of hBD-2 (rs = 0.167; p = 0.406) was not found. However, the presence of P. aeruginosa correlated with density of neutrophilic infiltration (rs = 0.622; p = 0.001). The concentration of hBD-2 showed direct medium correlation with total cells count (rs = 0.881, p < 0.001). Correlation between current infection P. aeruginosa and concentration of hCAP-18/LL-37 (rs = 0.788; p < 0.001) was observed. With increases in total cell count and relative neutrophils count, the concentration of hCAP-18/LL-37 was increased and the power of the association was medium (rs = 0.453; p = 0,018; rs = 0,592; p = 0,001). The correlation between concentrations of hBD-2 and hCAP-18/LL-37 (rs = 0.316, p > 0.1) was not found.
CONCLUSIONS: Measured AMPs correlated with cellular inflammatory markers and, probably, their overexpression is dedicated to stimulating a cellular component of innate immune response; there was no correlation between bacterial colonization of lungs and levels of hBD-2, so our findings sustain that P. aeruginosa is a leading but non-single contributor to persistent local inflammation in polymicrobial lungs.
Collapse
|
7
|
Recombinant human β-defensin130 inhibited the growth of foodborne bacteria through membrane disruption and exerted anti-inflammatory activity. Food Sci Biotechnol 2022; 31:893-904. [PMID: 35720462 PMCID: PMC9203618 DOI: 10.1007/s10068-022-01087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022] Open
Abstract
Foodborne pathogens causing food poisoning and infections are detrimental to human health, and the abuse of antibiotics induced severe antibiotic resistance in past decades. Thus, it is urgent to develop new antimicrobial agents. In the current study, human β-defensin 130 (hBD130), which is an antimicrobial peptide identified in human macrophages in 2017, was initially produced in Pichia pastoris. The purified hBD130 demonstrated broad bactericidal spectrum against foodborne pathogens through a membrane disruption, with concentrations ranging from 10 to 45 μg/mL. Moreover, hBD130 showed a low hemolytic effect and nearly no cytotoxicity to mammalian cells with a dosage of 400 μg/mL. In addition, the secretion amounts and mRNA levels of NO, IL-6, IL-1β, and TNF-α in LPS-induced mouse macrophage were significantly decreased with 1 mg/mL of hBD130. Taken together, these results showed that hBD130 is a promising antimicrobial agent to treat foodborne bacterial infections and inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01087-y.
Collapse
|
8
|
Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:985. [PMID: 35055174 PMCID: PMC8778852 DOI: 10.3390/ijms23020985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, socially significant disease characterized by progressive airflow limitation due to chronic inflammation in the bronchi. Although the causes of COPD are considered to be known, the pathogenesis of the disease continues to be a relevant topic of study. Mechanisms of the innate immune system are involved in various links in the pathogenesis of COPD, leading to persistence of chronic inflammation in the bronchi, their bacterial colonization and disruption of lung structure and function. Bronchial epithelial cells, neutrophils, macrophages and other cells are involved in the development and progression of the disease, demonstrating multiple compromised immune mechanisms.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
9
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
10
|
Zuo Q, Wang Y, Yang D, Guo S, Li X, Dong J, Wan C, Shen Y, Wen F. Identification of hub genes and key pathways in the emphysema phenotype of COPD. Aging (Albany NY) 2021; 13:5120-5135. [PMID: 33535173 PMCID: PMC7950259 DOI: 10.18632/aging.202432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition associated with high morbidity and mortality. This study aimed to use weighted gene co-expression network analysis (WGCNA) to explore the molecular pathogenesis of the emphysema phenotype of COPD. After obtaining lung mRNA expression profiles from ten patients with the emphysema phenotype of COPD and eight controls, emphysema-associated gene modules were identified with WGCNA. Among 13 distinct modules, the green-yellow and brown modules showed the strongest correlations with emphysema severity and lung function and were thus selected as hub modules. On gene ontology analysis, these two modules were mainly enriched in immune response, B cell receptor (BCR) signaling pathway, extracellular matrix (ECM) organization, and collagen fibril organization. Pathway analysis primarily showed enrichment in BCR signaling pathways, ECM receptor interaction, and NF-κB and TGF-β signaling pathways for the two hub modules. Several genes, including FCRLA, MS4A1, CD19, FKBP10, C1S and HTRA1, among others, were identified as hub genes. Our results shed light on the potential genetic mechanisms underlying the pathogenesis of the emphysema phenotype of COPD. However, further research will be needed to confirm the involvement of the identified genes and to determine their therapeutic relevance.
Collapse
Affiliation(s)
- Qiunan Zuo
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, China
- Respiratory Ward, Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Youyu Wang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Deqing Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, China
| | - Shujin Guo
- Respiratory Ward, Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaohui Li
- Respiratory Ward, Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiajia Dong
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, China
| | - Chun Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu 610041, China
| |
Collapse
|
11
|
Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R. Expression and Function of Host Defense Peptides at Inflammation Sites. Int J Mol Sci 2019; 21:ijms21010104. [PMID: 31877866 PMCID: PMC6982121 DOI: 10.3390/ijms21010104] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
There is a growing interest in the complex role of host defense peptides (HDPs) in the pathophysiology of several immune-mediated inflammatory diseases. The physicochemical properties and selective interaction of HDPs with various receptors define their immunomodulatory effects. However, it is quite challenging to understand their function because some HDPs play opposing pro-inflammatory and anti-inflammatory roles, depending on their expression level within the site of inflammation. While it is known that HDPs maintain constitutive host protection against invading microorganisms, the inducible nature of HDPs in various cells and tissues is an important aspect of the molecular events of inflammation. This review outlines the biological functions and emerging roles of HDPs in different inflammatory conditions. We further discuss the current data on the clinical relevance of impaired HDPs expression in inflammation and selected diseases.
Collapse
|
12
|
Sun Y, Chen C, Di T, Yang J, Wang K, Zhu Y, Zhu R, Zhou A, Qian Y. Human β-Defensin-2 Improves Hyperoxia-Induced Lung Structural and Functional Injury in Neonatal Rats. Med Sci Monit 2019; 25:6074-6084. [PMID: 31411185 PMCID: PMC6705181 DOI: 10.12659/msm.915814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a major complication of extreme prematurity, characterized by alveolar simplification and pulmonary malfunction. Hyperoxia-induced lung injury in neonatal rats has been used as a model of BPD, as indicated by lung architectural change and alveolar simplification that resembles clinical feature of BPD. β-defensin-2 (BD2) plays an important role in lung diseases by inhibiting inflammation response. However, little is known about its role in BPD. The aim of this study was to determine the effect of human BD2 (hBD2) gene on hyperoxia-induced animal model of BPD. Material/Methods The neonatal rats were exposed to 90% oxygen (O2) continuously for 14 days to mimic the BPD-like lung injury. These rats were then randomly assigned to the following four groups: in room air (air), in 90% O2, in 90% O2 with null adenovirus vector infection (O2+Ad), and in 90% O2 with gene therapy through adenovirus transfected hBD2 (O2+Ad-hBD2). Morphology of lungs, pulmonary function and expression of inflammatory cytokines on P7, P10, P14, and P21 were documented and compared across the 4 groups. Results The overexpression of hBD2 mediated by the adenovirus vector was successfully constructed. hBD2 gene therapy increased hBD2 mRNA expression, increased radial alveolar count (RAC), lung volume and compliance, decreased mean linear intercept (MLI), tissue damping, and elastance. Furthermore, pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were inhibited and anti-inflammatory cytokines IL-10 was increased in the lungs of rats in O2+Ad-hBD2 group. Conclusions In hyperoxia-induced rat models of BPD, hBD2 promotes alveolarization and improves pulmonary function. The mechanism may contribute in alleviating inflammation response and inhibiting pro-inflammatory factors including IL-1β, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Cuie Chen
- Department of Pediatrics, Yiwu Maternity and Children Health Care Hospital, Jinhua, Zhejiang, China (mainland)
| | - Tianwei Di
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Jiaojiao Yang
- Department of Pediatrics, Cangnan People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yanke Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Ronghe Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Aihua Zhou
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yan Qian
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
13
|
Mattar EH, Almehdar HA, Uversky VN, Redwan EM. Virucidal activity of human α- and β-defensins against hepatitis C virus genotype 4. MOLECULAR BIOSYSTEMS 2017; 12:2785-97. [PMID: 27327492 DOI: 10.1039/c6mb00283h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is the major etiological agent of human non-A and non-B hepatitis affecting about 180 million people worldwide. The goal of the current study was to find effective anti-HCV proteins. As a result, defensins were selected as promising candidates due to their well-known anti-viral potential and small size. We conducted in vitro evaluation of two kinds of defensins (human α- and β-defensins and synthetic linear avian α-defensins) using tissue culture combined with reverse transcription nested PCR (RT-nested-PCR) and real-time PCR. Human α- and β-defensins showed strong anti-HCV activity in experiments on cellular protection, neutralization, and treatment at all concentrations used (10, 20 and 50 μg). The synthetic linear defensins could reach similar anti-HCV potential only at a noticeably higher concentration (250 μg) and do not show noticeable activity at 10 and 20 μg. This study suggests that defensins are potent anti-HCV agents.
Collapse
Affiliation(s)
- Ehab H Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Hussein A Almehdar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|
14
|
Hiemstra PS, Amatngalim GD, van der Does AM, Taube C. Antimicrobial Peptides and Innate Lung Defenses: Role in Infectious and Noninfectious Lung Diseases and Therapeutic Applications. Chest 2016; 149:545-551. [PMID: 26502035 DOI: 10.1378/chest.15-1353] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 11/01/2022] Open
Abstract
Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics. These peptides display a range of activities, including not only direct antimicrobial activity, but also immunomodulation and wound repair. In the lung, airway epithelial cells and neutrophils in particular contribute to their synthesis. The relevance of antimicrobial peptides for host defense against infection has been demonstrated in animal models and is supported by observations in patient studies, showing altered expression and/or unfavorable circumstances for their action in a variety of lung diseases. Importantly, antimicrobial peptides are active against microorganisms that are resistant against conventional antibiotics, including multidrug-resistant bacteria. Several strategies have been proposed to use these peptides in the treatment of infections, including direct administration of antimicrobial peptides, enhancement of their local production, and creation of more favorable circumstances for their action. In this review, recent developments in antimicrobial peptides research in the lung and clinical applications for novel therapies of lung diseases are discussed.
Collapse
Affiliation(s)
- Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Gimano D Amatngalim
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Aoshiba K, Tsuji T, Itoh M, Yamaguchi K, Nakamura H. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 2015; 89:243-52. [PMID: 25677028 DOI: 10.1159/000369861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.
Collapse
Affiliation(s)
- Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Inashiki, Japan
| | | | | | | | | |
Collapse
|
16
|
Wain LV, Odenthal-Hesse L, Abujaber R, Sayers I, Beardsmore C, Gaillard EA, Chappell S, Dogaru CM, McKeever T, Guetta-Baranes T, Kalsheker N, Kuehni CE, Hall IP, Tobin MD, Hollox EJ. Copy number variation of the beta-defensin genes in europeans: no supporting evidence for association with lung function, chronic obstructive pulmonary disease or asthma. PLoS One 2014; 9:e84192. [PMID: 24404154 PMCID: PMC3880289 DOI: 10.1371/journal.pone.0084192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/13/2013] [Indexed: 12/23/2022] Open
Abstract
Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02-1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72-1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed.
Collapse
Affiliation(s)
- Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Razan Abujaber
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Beardsmore
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Erol A. Gaillard
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Sally Chappell
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Cristian M. Dogaru
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Tricia McKeever
- School of Community Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Noor Kalsheker
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Claudia E. Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ian P. Hall
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- Institute for Lung Health, National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Edward J. Hollox
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Jaspers I. Cigarette smoke effects on innate immune mechanisms in the nasal mucosa. Potential effects on the microbiome. Ann Am Thorac Soc 2014; 11 Suppl 1:S38-42. [PMID: 24437404 DOI: 10.1513/annalsats.201306-154mg] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is well established that exposure to cigarette smoke (CS), through active smoking and through exposure to secondhand smoke, has immunosuppressive effects, yet how this might affect the microbiome is not known. In this manuscript we focus on the effects of CS on innate host defense response, with particular emphasis on the role of epithelial cells and mucosal immune responses in the nose and the potential effects on the microbiome. The studies described here briefly summarize the effects of CS on specific innate immune cells, such as neutrophils, macrophages/monocytes, natural killer cells, and dendritic cells. A detailed description of how CS affects epithelial cells and why we consider this to be a central defect in the overall immunosuppressive effects of CS in the lung is provided. We summarize data on the role of the "epimmunome" in the context of CS exposure, including the effects on soluble mediator production, such as cytokines, chemokines, and antimicrobial defense mediators. Separate emphasis is put on the expression of ligands on epithelial cells, which directly interact with receptors on immune cells, and the effects of CS on these interactions. We introduce the nose and nasal mucosa as a model to study the effects of CS exposure on host defense responses and changes in the microbiome in humans in vivo. Understanding the dynamics of a healthy microbiome and how CS affects this balance is important to uncovering the mechanisms of CS-induced disease.
Collapse
Affiliation(s)
- Ilona Jaspers
- 1 Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Dong J, Guo L, Liao Z, Zhang M, Zhang M, Wang T, Chen L, Xu D, Feng Y, Wen F. Increased expression of heat shock protein 70 in chronic obstructive pulmonary disease. Int Immunopharmacol 2013; 17:885-93. [PMID: 24095952 DOI: 10.1016/j.intimp.2013.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/24/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Heat shock protein 70 (HSP70) plays a critical role in the process of inflammation and innate immunity response under environmental stress. OBJECTIVES This study was to investigate HSP70 expression in the peripheral lung tissues of chronic obstructive pulmonary disease (COPD) patients and in human bronchial epithelial cells (16-HBE) exposed to cigarette smoke extract (CSE). METHODS Peripheral lung tissues were collected after lung cancer resection from 26 patients without COPD, 20 with mild COPD and 15 with advanced COPD, classified by lung function criteria. Among these cases, 37 were smokers and 24 non-smokers. Lung tissues were examined for histopathological changes and levels of HSP70 and IL-8. Cultured 16-HBE cells were stimulated with CSE in the absence or presence of HSP70 neutralizing antibody and the expressions of IL-8 and phospho-EGFR protein were determined. RESULTS Compared to patients without COPD, the levels of HSP70 and IL-8 were significantly increased in the lung tissues of COPD patients and positively correlated with the severity of the disease. The HSP70 expression was significantly higher in current smokers than that in non-smokers. Moreover, CSE-induced HSP70 significantly enhanced IL-8 production and EGFR phosphorylation in 16-HBE cells. The increases in IL-8 and phospho-EGFR were blocked by anti-HSP70 antibody. CONCLUSIONS Our study clarified that increased expression of HSP70 is closely related to COPD disease severity and smoking status. Extracellular HSP70 regulated chemokine productions and EGFR phosphorylation and plays an important role in the CSE-induced inflammatory and innate immunity responses in bronchial epithelia cells.
Collapse
Affiliation(s)
- Jiajia Dong
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Westman J, Hansen FC, Olin AI, Mörgelin M, Schmidtchen A, Herwald H. p33 (gC1q Receptor) Prevents Cell Damage by Blocking the Cytolytic Activity of Antimicrobial Peptides. THE JOURNAL OF IMMUNOLOGY 2013; 191:5714-21. [DOI: 10.4049/jimmunol.1300596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Pierson T, Learmonth-Pierson S, Pinto D, van Hoek ML. Cigarette smoke extract induces differential expression levels of beta-defensin peptides in human alveolar epithelial cells. Tob Induc Dis 2013; 11:10. [PMID: 23627872 PMCID: PMC3648470 DOI: 10.1186/1617-9625-11-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
Background The damaging effects of cigarette smoke on the lungs are well known in terms of cancer risks. Additional molecular changes within the lung tissue can also occur as a result of exposure to cigarette smoke. The human β-defensin (hBD) class of antimicrobial peptides is the focus of our research. In addition to antimicrobial activity, β-defensins also have immunomodulatory functions. Over 30 previously unrecognized β-defensin genes have recently been identified in the human genome, many with yet to be determined functions. We postulated that altered β-defensin production may play a role in the pathogenesis observed in the lungs of smokers. Our hypothesis is that cigarette smoke exposure will affect the expression of β-defensins in human lung alveolar epithelial cells (A549). Methods We exposed A549 cells to cigarette smoke extract (CSE) and measured the changes in mRNA levels of several antimicrobial peptides by quantitative real-time PCR, and directly observed peptide expression in cells by immunofluorescence (IF) microscopy. Results We found that hBD3, hBD5, and hBD9 gene expression was upregulated in A549 cells exposed to CSE. HBD1, hBD8, hBD18 and LL-37 gene expression did not significantly change upon exposure to CSE. Expression of hBD3 and hBD4 peptides was visualized by IF. Conclusions This differential expression suggests that hBD3, hBD5, and hBD9 may play a role in the changes to the lung tissue observed in smokers. Establishing differential β-defensin expression following CSE treatment will add to our understanding of the molecular response of the lung alveolar epithelium to cigarette smoke exposure.
Collapse
Affiliation(s)
- Tony Pierson
- School of Systems Biology, George Mason University, Manassas, VA, USA.
| | | | | | | |
Collapse
|