1
|
Guo Q, Zhang G, Ren J, Li J, Wang Z, Ba H, Ye Z, Wang Y, Zheng J, Li C. Systemic factors associated with antler growth promote complete wound healing. NPJ Regen Med 2025; 10:4. [PMID: 39833274 PMCID: PMC11756403 DOI: 10.1038/s41536-025-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Deer antlers are the only mammalian appendages that can fully regenerate from periosteum of pedicles (PP). This regeneration process starts from regenerative healing of wounds. Removal of PP abolishes antler regeneration, however, the regenerative cutaneous wound healing proceeds, indicating that some factors in the circulation contribute to this healing. In this study, we produced a wound in the scalp of deer either in antler regeneration period (ARP) (n = 3) or in non-ARP (n = 3). Results showed full regeneration took place only when the wound was created during ARP. Interestingly, topical application of systemic factors from ARP (n = 9) promoted regenerative wound healing in rats. Comparative proteomics analysis (n = 3) revealed that PRG4 and IGF-1 were high during ARP, and topical application of PRG4 + IGF-1 promoted restoration in rat FTE wounds. We believe that, ultimately, incorporating systemic factors into advanced wound care modalities could offer new opportunities for regenerative healing in the clinical setting.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Zihao Ye
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjun Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Hunyenyiwa T, Kyi P, Scheer M, Joshi M, Gasparri M, Mammoto T, Mammoto A. Inhibition of angiogenesis and regenerative lung growth in Lepob/ob mice through adiponectin-VEGF/VEGFR2 signaling. Front Cardiovasc Med 2024; 11:1491971. [PMID: 39479393 PMCID: PMC11521822 DOI: 10.3389/fcvm.2024.1491971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Obesity is associated with impairment of wound healing and tissue regeneration. Angiogenesis, the formation of new blood capillaries, plays a key role in regenerative lung growth after unilateral pneumonectomy (PNX). We have reported that obesity inhibits angiogenesis. The effects of obesity on post-PNX lung vascular and alveolar regeneration remain unclear. Methods Unilateral PNX is performed on Lep o b / o b obese mice to examine vascular and alveolar regeneration. Results Regenerative lung growth and expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR2 induced after PNX are inhibited in Lep o b / o b obese mice. The levels of adiponectin that exhibits pro-angiogenic and vascular protective properties increase after unilateral PNX, while the effects are attenuated in Lep o b / o b obese mice. Post-PNX regenerative lung growth and increases in the levels of VEGF and VEGFR2 are inhibited in adiponectin knockout mice. Adiponectin stimulates angiogenic activities in human lung endothelial cells (ECs), which is inhibited by decreasing the levels of transcription factor Twist1. Adiponectin agonist, AdipoRon restores post-PNX lung growth and vascular and alveolar regeneration in Lep o b / o b obese mice. Discussion These findings suggest that obesity impairs lung vascular and alveolar regeneration and adiponectin is one of the key factors to improve lung regeneration in obese people.
Collapse
Affiliation(s)
- Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mikaela Scheer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mrudula Joshi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mario Gasparri
- Department of Thoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Mccauley KB, Kukreja K, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.21.521460. [PMID: 36597531 PMCID: PMC9810218 DOI: 10.1101/2022.12.21.521460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of all epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal-cell and secretory-cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses.
Collapse
Affiliation(s)
- Katherine B Mccauley
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aron B Jaffe
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
- Current address: Chroma Medicine, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Wang Y, Hu C. Leptin and Asthma: What Are the Interactive Correlations? Biomolecules 2022; 12:biom12121780. [PMID: 36551211 PMCID: PMC9775505 DOI: 10.3390/biom12121780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Leptin is an adipokine directly correlated with the proinflammatory obese-associated phenotype. Leptin has been demonstrated to inhibit adipogenesis, promote fat demarcation, promote a chronic inflammatory state, increase insulin sensitivity, and promote angiogenesis. Leptin, a regulator of the immune response, is implicated in the pathology of asthma. Studies involved in the key cell reaction and animal models of asthma have provided vital insights into the proinflammatory role of leptin in asthma. Many studies described the immune cell and related cellular pathways activated by leptin, which are beneficial in asthma development and increasing exacerbations. Subsequent studies relating to animal models support the role of leptin in increasing inflammatory cell infiltration, airway hyperresponsiveness, and inflammatory responses. However, the conclusive effects of leptin in asthma are not well elaborated. In the present study, we explored the general functions and the clinical cohort study supporting the association between leptin and asthma. The main objective of our review is to address the knowns and unknowns of leptin on asthma. In this perspective, the arguments about the different faces of leptin in asthma are provided to picture the potential directions, thus yielding a better understanding of asthma development.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
5
|
Logan C, Lyzogubov V, Bora N, Bora P. Role of Adiponectin Peptide I (APNp1) in Age-Related Macular Degeneration. Biomolecules 2022; 12:biom12091232. [PMID: 36139070 PMCID: PMC9496372 DOI: 10.3390/biom12091232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that can cause central vision loss, particularly in the elderly population. There are 2 classes of AMD, wet-type and dry-type. Wet-type involves excess angiogenesis around the macula, referred to as choroidal neovascularization (CNV). This can result in leaky vessels, often causing more severe vision loss than dry-type AMD. Adiponectin peptide 1 (APNp1) has been shown to slow the progression of CNV. Here, we used a mouse model and FITC-labeled APNp1 to determine if APNp1 could be delivered effectively as an eye drop. Our experiment revealed that topically applied FITC-APNp1 could reach the macula of the eye, which is crucial for treating wet-type AMD. We also tested delivery of APNp1 via injection of an adeno-associated virus (AAV) vector in a mouse model of CNV. AAV is a harmless virus easy to manipulate and is very often used for protein or peptide deliveries. Results revealed an increase in the expression of APNp1 in the retina and choroid over a 28-day period. Finally, we investigated the mechanism by which APNp1 affects CNV by examining the expression of adiponectin receptor 1 (AdipoR1) and proliferating cell nuclear antigen (PCNA) in the retinal and choroidal tissue of the mouse eyes. AdipoR1 and PCNA were overexpressed in these tissues in mice with laser-induced CNV compared to naïve mice. Based on our data shown here, we think it will enhance our understanding of APNp1 as a therapeutic agent for wet-type AMD and possible treatment alternatives that could be more beneficial for patients.
Collapse
Affiliation(s)
| | | | | | - Puran Bora
- Correspondence: ; Tel.: +1-(501)-352-7191
| |
Collapse
|
6
|
Yang Y, Wang L, Liu J, Fu S, Zhou L, Wang Y. Obesity or increased body mass index and the risk of severe outcomes in patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e28499. [PMID: 35029905 PMCID: PMC8735775 DOI: 10.1097/md.0000000000028499] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To assess the effect of obesity or a high body mass index (BMI) on the risk of severe outcomes in patients with coronavirus disease 2019 (COVID-19). METHODS Studies on the relationship between BMI or obesity and COVID-19 since December 2019. The odds ratio (OR) and weighted mean difference (WMD) with their 95% confidence intervals (CIs) were used to assess the effect size. RESULTS BMI was significantly increased in COVID-19 patients with severe illness (WMD: 1.18; 95% CI: 0.42-1.93), who were admitted to an intensive care unit (ICU) (WMD: 1.46; 95% CI: 0.96-1.97), who required invasive mechanical ventilation (IMV) (WMD: 2.70, 95% CI: 1.05-4.35) and who died (WMD: 0.91, 95% CI: 0.02-1.80). In Western countries, obesity (BMI of ≥30 kg/m2) increased the risk of hospitalization (OR: 2.08; 95% CI: 1.22-3.54), admission to an ICU (OR: 1.54; 95% CI: 1.29-1.84), need for IMV (OR: 1.73, 95% CI: 1.38-2.17), and mortality (OR: 1.43; 95% CI: 1.17-1.74) of patients with COVID-19. In the Asian population, obesity (BMI of ≥28 kg/m2) increased the risk of severe illness (OR: 3.14; 95% CI: 1.83-5.38). Compared with patients with COVID-19 and a BMI of <25 kg/m2, those with a BMI of 25-30 kg/m2 and ≥30 kg/m2 had a higher risk of need for IMV (OR: 2.19, 95% CI: 1.30-3.69 and OR: 3.04; 95% CI: 1.76-5.28, respectively). The risk of ICU admission in patients with COVID-19 and a BMI of ≥30 kg/m2 was significantly higher than in those with a BMI of 25-30 kg/m2 (OR: 1.49; 95% CI: 1.00-2.21). CONCLUSION As BMI increased, the risks of hospitalization, ICU admission, and need for IMV increased, especially in COVID-19 patients with obesity. ETHICS AND DISSEMINATION This systematic review and meta-analysis does not require an ethics approval as it does not collect any primary data from patients.
Collapse
Affiliation(s)
- Yaxian Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Liting Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Liyuan Zhou
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Yan Wang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
7
|
Alarcon PC, Damen MSMA, Madan R, Deepe GS, Spearman P, Way SS, Divanovic S. Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunol 2021; 14:1224-1234. [PMID: 33958704 PMCID: PMC8100369 DOI: 10.1038/s41385-021-00404-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological evidence establishes obesity as an independent risk factor for increased susceptibility and severity to viral respiratory pneumonias associated with H1N1 influenza and SARS-CoV-2 pandemics. Given the global obesity prevalence, a better understanding of the mechanisms behind obese susceptibility to infection is imperative. Altered immune cell metabolism and function are often perceived as a key causative factor of dysregulated inflammation. However, the contribution of adipocytes, the dominantly altered cell type in obesity with broad inflammatory properties, to infectious disease pathogenesis remains largely ignored. Thus, skewing of adipocyte-intrinsic cellular metabolism may lead to the development of pathogenic inflammatory adipocytes, which shape the overall immune responses by contributing to either premature immunosenescence, delayed hyperinflammation, or cytokine storm in infections. In this review, we discuss the underappreciated contribution of adipocyte cellular metabolism and adipocyte-produced mediators on immune system modulation and how such interplay may modify disease susceptibility and pathogenesis of influenza and SARS-CoV-2 infections in obese individuals.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, Cincinnati, OH, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Medical Scientist Training Program, Cincinnati, OH, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
9
|
Womble JT, McQuade VL, Ihrie MD, Ingram JL. Imbalanced Coagulation in the Airway of Type-2 High Asthma with Comorbid Obesity. J Asthma Allergy 2021; 14:967-980. [PMID: 34408442 PMCID: PMC8364356 DOI: 10.2147/jaa.s318017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common, chronic airway inflammatory disease marked by airway hyperresponsiveness, inflammation, and remodeling. Asthma incidence has increased rapidly in the past few decades and recent multicenter analyses have revealed several unique asthma endotypes. Of these, type-2 high asthma with comorbid obesity presents a unique clinical challenge marked by increased resistance to standard therapies and exacerbated disease development. The extrinsic coagulation pathway plays a significant role in both type-2 high asthma and obesity. The type-2 high asthma airway is marked by increased procoagulant potential, which is readily activated following damage to airway tissue. In this review, we summarize the current understanding of the role the extrinsic coagulation pathway plays in the airway of type-2 high asthma with comorbid obesity. We propose that asthma control is worsened in obesity as a result of a systemic and local airway shift towards a procoagulant and anti-fibrinolytic environment. Lastly, we hypothesize bariatric surgery as a treatment for improved asthma management in type-2 high asthma with comorbid obesity, facilitated by normalization of systemic procoagulant and pro-inflammatory mediators. A better understanding of attenuated coagulation parameters in the airway following bariatric surgery will advance our knowledge of biomolecular pathways driving asthma pathobiology in patients with obesity.
Collapse
Affiliation(s)
- Jack T Womble
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Victoria L McQuade
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mark D Ihrie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
10
|
Vezir E, Civelek E, Dibek Misirlioglu E, Toyran M, Capanoglu M, Karakus E, Kahraman T, Ozguner M, Demirel F, Gursel I, Kocabas CN. Effects of Obesity on Airway and Systemic Inflammation in Asthmatic Children. Int Arch Allergy Immunol 2021; 182:679-689. [PMID: 33752210 DOI: 10.1159/000513809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Obese asthma is a complex syndrome with certain phenotypes that differ in children and adults. There is no clear evidence regarding the presence of additive or synergistic pathological interaction between obesity and asthma in children. OBJECTIVES Our aim was to demonstrate the interaction of obesity and asthma in children in terms of airway and systemic inflammation by a controlled observational study. METHODS Four groups were formed: asthma obese (AO), asthma nonobese (ANO), non-AO (NAO), nonasthma nonobese (NANO). Spirometry test, fractional exhaled nitric oxide (FeNO) test, skin prick test, serum inflammatory biomarkers (C-reactive protein, C3, C4, adiponectin, leptin, resistin, periostin, YKL-40, Type 1, and Type 2 cytokines) were conducted and evaluated in all participants. Sputum inflammatory cells (sputum eosinophils and neutrophils) were evaluated in patients who could produce induced sputum and obesity-asthma interactions were determined. RESULTS A total of 153 participants aged 6-18 years were included in the study, including the AO group (n = 46), the ANO group (n = 45), the NAO group (n = 30), and the NANO group (n = 32). IL-4 (p < 0.001), IL-5 (p < 0.001), IL-13 (p < 0.001), resistin (p < 0.001), and YKL-40 (p < 0.001) levels were higher in patients with asthma independent of obesity. The lowest adiponectin level was found in the AO group and obesity-asthma interaction was detected (p < 0.001). Sputum eosinophilia (p < 0.01), sputum neutrophilia (p < 0.01), and FeNO levels (p = 0.07) were higher in asthmatic patients independent of obesity. In the group with paucigranulocytic inflammation, resistin and YKL-40 levels were significantly lower than in the group without paucigranulocytic inflammation (p < 0.01). CONCLUSION No interaction was found between obesity and asthma in terms of airway inflammation. Interaction between obesity and asthma was shown in terms of adiponectin level and resistin/adiponectin and leptin/adiponectin ratios. It was found that serum YKL-40 and resistin levels could be associated with airway inflammation.
Collapse
Affiliation(s)
- Emine Vezir
- Department of Pediatric Allergy and Clinical Immunology, Ankara Health Research and Application Center, University of Health Sciences, Ankara, Turkey,
| | - Ersoy Civelek
- Department of Pediatric Allergy and Clinical Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Emine Dibek Misirlioglu
- Department of Pediatric Allergy and Clinical Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Muge Toyran
- Department of Pediatric Allergy and Clinical Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Murat Capanoglu
- Department of Pediatric Allergy and Clinical Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Esra Karakus
- Department of Pathology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Tamer Kahraman
- Department of Molecular Biology and Genetics, Science Faculty, Ihsan Dogramacı Bilkent University, Ankara, Turkey
| | - Meltem Ozguner
- Department of Histology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Fatma Demirel
- Department of Pediatric Endocrinology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Science Faculty, Ihsan Dogramacı Bilkent University, Ankara, Turkey
| | - Can Naci Kocabas
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
11
|
Liu H, Tang HY, Wang RY, Xu JY. Adiponectin antagonises LPS-regulated secretion of inflammatory factors in airway epithelial cells, and its expression is regulated by many factors. Cell Biochem Funct 2020; 39:139-147. [PMID: 33164256 DOI: 10.1002/cbf.3603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
Many studies have shown that adiponectin is closely related to chronic obstructive pulmonary disease (COPD), but the specific role of adiponectin in COPD is still not well understood. Adiponectin and IL-6 expression in patients with acute exacerbation of COPD (AECOPD) was detected by ELISA. Human bronchial epithelial cells (HBECs) were stimulated with TNF-α, IL-6, apoptotic cells or LPS. Then, the expression of adiponectin was detected by qRT-PCR and western blotting, and pro- and anti-inflammatory factors were detected by ELISA. Adiponectin expression in AECOPD patients increased after treatment. TNF-α and apoptotic cells promoted adiponectin expression in HBECs in a dose-dependent manner, and apoptotic cells significantly promoted adiponectin secretion. IL-6 also promoted adiponectin expression, but it inhibited adiponectin expression at high doses and with long treatment times. LPS inhibited adiponectin expression, but when HBECs were pretreated with anti-TNF-α and then treated with LPS, the expression and secretion of adiponectin increased significantly with increasing anti-TNF-α concentrations. Adiponectin stimulated the secretion of pro-inflammatory factors in HBECs, but this effect was not concentration dependent. Adiponectin promoted the secretion of anti-inflammatory factors in a dose-dependent manner. Although LPS also stimulated HBECs to secrete pro-inflammatory and anti-inflammatory factors, adiponectin inhibited LPS-induced pro-inflammatory factor secretion and enhanced anti-inflammatory factor secretion. Many factors regulate the expression and secretion of adiponectin, and adiponectin regulates the balance of the inflammatory response and inhibits further expansion of inflammation. SIGNIFICANCE OF THE STUDY: Many studies have shown that adiponectin is closely related to chronic obstructive pulmonary disease (COPD), but the specific role of adiponectin in COPD is still not well understood. Adiponectin expression in AECOPD patients increased after treatment. TNF-α, IL-6 and apoptotic cells promoted adiponectin expression in HBECs. Adiponectin stimulated the secretion of pro-inflammatory factors in HBECs, but this effect was not concentration dependent. Adiponectin promoted the secretion of anti-inflammatory factors in a dose-dependent manner. Adiponectin inhibited LPS-induced pro-inflammatory factor secretion and enhanced anti-inflammatory factor secretion. Therefore, many factors regulate the expression and secretion of adiponectin, and adiponectin regulates the balance of the inflammatory response and inhibits further expansion of inflammation.
Collapse
Affiliation(s)
- Hu Liu
- Department of Respiratory Medicine, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Huo-Yan Tang
- Respiratory medicine, Shanxi Medical University, Taiyuan, China
| | - Rui-Ying Wang
- Department of Respiratory Medicine, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jian-Ying Xu
- Department of Respiratory Medicine, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Salvator H, Grassin-Delyle S, Naline E, Brollo M, Fournier C, Couderc LJ, Devillier P. Contrasting Effects of Adipokines on the Cytokine Production by Primary Human Bronchial Epithelial Cells: Inhibitory Effects of Adiponectin. Front Pharmacol 2020; 11:56. [PMID: 32132922 PMCID: PMC7040162 DOI: 10.3389/fphar.2020.00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Obesity is associated with an elevated risk of respiratory infections and inflammatory lung diseases. The objective was to investigate (i) the effects of adipokines (adiponectin (APN), leptin, chemerin, and visfatin) on the production of cytokines by unstimulated and poly(I:C)- and TNF-α-activated human primary bronchial epithelial cells (hBECs), (ii) the cells’ expression of the APN receptors (AdipoR1 and AdipoR2), and (iii) the cells' production of APN. Methods The hBECs were isolated from patients undergoing surgery for lung carcinoma. The cells were then cultured with human recombinant adipokines in the absence or presence of TNF-α or poly(I:C) for 24 h. Supernatant levels of cytokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8) and APN were measured using ELISAs. The mRNA levels of AdipoR1 and AdipoR2 in hBECs were determined using a real-time quantitative PCR. Results Of the four adipokines tested, only APN significantly influenced the basal production and the TNF-α poly(I:C)-induced production of cytokines by hBECs. APN (3-30 µg.ml-1) was associated with greater basal production of IL-6, CCL20, and CXCL8, lower basal production of CCL2 and CXCL1 and no difference in CCL5 production. APN inhibited the poly(I:C)-induced production of these five cytokines and the TNF-α-induced production of CCL2 and CXCL1. AdipoR1 and AdipoR2 were both expressed in hBECs. In contrast to human bronchial explants, isolated hBECs did not produce APN. Conclusions The APN concentrations are abnormally low in obese individuals, and this fall may contribute to the susceptibility to viral lung infections and the severity of these infections in obese individuals.
Collapse
Affiliation(s)
- Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology-UPRES EA220, UFR Sciences de la Santé Simone Veil, Université Paris-Saclay, Suresnes, France.,Department of Respiratory Diseases, Hôpital Foch, Suresnes, France
| | - Stanislas Grassin-Delyle
- Department of Respiratory Diseases, Hôpital Foch, Suresnes, France.,Mass Spectrometry Platform & INSERM UMR1173, UFR Sciences de la Santé Simone Veil, Université Versailles Saint Quentin en Yvelines, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology-UPRES EA220, UFR Sciences de la Santé Simone Veil, Université Paris-Saclay, Suresnes, France.,Department of Respiratory Diseases, Hôpital Foch, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology-UPRES EA220, UFR Sciences de la Santé Simone Veil, Université Paris-Saclay, Suresnes, France
| | - Caroline Fournier
- Laboratory of Research in Respiratory Pharmacology-UPRES EA220, UFR Sciences de la Santé Simone Veil, Université Paris-Saclay, Suresnes, France
| | - Louis-Jean Couderc
- Laboratory of Research in Respiratory Pharmacology-UPRES EA220, UFR Sciences de la Santé Simone Veil, Université Paris-Saclay, Suresnes, France.,Department of Respiratory Diseases, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology-UPRES EA220, UFR Sciences de la Santé Simone Veil, Université Paris-Saclay, Suresnes, France.,Department of Respiratory Diseases, Hôpital Foch, Suresnes, France
| |
Collapse
|
13
|
Potaczek DP, Miethe S, Schindler V, Alhamdan F, Garn H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal 2020; 69:109523. [PMID: 31904412 DOI: 10.1016/j.cellsig.2019.109523] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
The term (bronchial) asthma describes a disorder syndrome that comprises several disease phenotypes, all characterized by chronic inflammation in the bronchial epithelium, with a variety of subsequent functional consequences. Thus, the epithelium in the conducting airways is the main localization of the complex pathological changes in the disease. In this regard, bronchial epithelial cells are not passively affected by inflammatory mechanisms induced by immunological processes but rather actively involved in all steps of disease development from initiation and perpetuation to chronification. In recent years it turned out that bronchial epithelial cells show a high level of structural and functional diversity and plasticity with epigenetic mechanisms playing a crucial role in the regulation of these processes. Thus, it is quite reasonable that differential functional activities of the bronchial epithelium are involved in the development of different asthma phenotypes and/or stages of disease. The current knowledge on this topic will be discussed in this review article.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany; John Paul II Hospital, Krakow, Poland
| | - Sarah Miethe
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Viktoria Schindler
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Fahd Alhamdan
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
14
|
Potential Roles of Adiponectin Isoforms in Human Obesity with Delayed Wound Healing. Cells 2019; 8:cells8101134. [PMID: 31554182 PMCID: PMC6830100 DOI: 10.3390/cells8101134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/28/2023] Open
Abstract
Adiponectin is an adipokine with anti-insulin resistance and anti-inflammatory functions. It exists in serum predominantly in three multimeric complexes: the trimer, hexamer, and high-molecular-weight forms. Although recent studies indicate that adiponectin promotes wound healing in rodents, its role in the wound healing process in humans is unknown. This study investigated the expression levels of adiponectin in adipose tissue and serum of women who experienced either normal or delayed wound healing after abdominal plastic surgery. We found that obese women with delayed healing had slightly lower total adiponectin levels in their adipose tissue compared with women with normal healing rates. Among the different isoforms of adiponectin, levels of the trimer forms were significantly reduced in adipose tissue, but not the serum, of obese women with delayed healing compared to women who healed normally. This study provides clinical evidence for a potential role of low-molecular-weight oligomers of adiponectin in the wound healing process as well as implications for an autocrine and/or paracrine mechanism of adiponectin action in adipose tissues.
Collapse
|
15
|
Immune-Mediated Inflammation in Vulnerable Atherosclerotic Plaques. Molecules 2019; 24:molecules24173072. [PMID: 31450823 PMCID: PMC6749340 DOI: 10.3390/molecules24173072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is a chronic long-lasting vascular disease leading to myocardial infarction and stroke. Vulnerable atherosclerotic (AS) plaques are responsible for these life-threatening clinical endpoints. To more successfully work against atherosclerosis, improvements in early diagnosis and treatment of AS plaque lesions are required. Vulnerable AS plaques are frequently undetectable by conventional imaging because they are non-stenotic. Although blood biomarkers like lipids, C-reactive protein, interleukin-6, troponins, and natriuretic peptides are in pathological ranges, these markers are insufficient in detecting the critical perpetuation of AS anteceding endpoints. Thus, chances to treat the patient in a preventive way are wasted. It is now time to solve this dilemma because clear results indicate a benefit of anti-inflammatory therapy per se without modification of blood lipids (CANTOS Trial, NCT01327846). This fact identifies modulation of immune-mediated inflammation as a new promising point of action for the eradication of fatal atherosclerotic endpoints.
Collapse
|
16
|
Dong X, Yan X, Zhang W, Tang S. Adiponectin enhances biological functions of vascular endothelial progenitor cells through the mTOR-STAT3 signaling pathway. Physiol Res 2018; 67:563-570. [PMID: 29750888 DOI: 10.33549/physiolres.933738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adiponectin (APN), an adipose tissue-excreted adipokine, plays protective roles in metabolic and cardiovascular diseases. In this study, the effects and mechanisms of APN on biological functions of rat vascular endothelial progenitor cells (VEPCs) were investigated in vitro. After administrating APN in rat VEPCs, the proliferation was measured by methyl thiazolyl tetrazolium (MTT) method, the apoptotic rate was test by Flow cytometry assay, mRNA expression of B-cell lymphoma-2 (Bcl-2) and vascular endothelial growth factor (VEGF) was determined by real-time reverse transcriptase polymerase chain reaction (RT-PCR), and protein expression of mechanistic target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 (pSTAT3) was analyzed by Western blot. It was suggested that APN promoted the optical density (OD) value of VEPCs, enhanced mRNA expression of Bcl-2 and VEGF, and inhibited cell apoptotic rate. Furthermore, protein expression of pSTAT3 was also increased in the presence of APN. Moreover, APN changed-proliferation, apoptosis and VEGF expression of VEPCs were partially suppressed after blocking the mTOR-STAT3 signaling pathway by the mTOR inhibitor XL388. It was indicated that APN promoted biological functions of VEPCs through targeting the mTOR-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoying Dong
- College of Yingdong Agricultural Science and Engineering, Shaoguan University, Shaoguan, China.
| | | | | | | |
Collapse
|
17
|
Obesity and Asthma: A Missing Link. Int J Mol Sci 2017; 18:ijms18071490. [PMID: 28696379 PMCID: PMC5535980 DOI: 10.3390/ijms18071490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity and asthma are two chronic conditions that affect millions of people. Genetic and lifestyle factors such as diet, physical activity, and early exposure to micro-organisms are important factors that may contribute to the escalating prevalence of both conditions. The prevalence of asthma is higher in obese individuals. Recently, two major phenotypes of asthma with obesity have been described: one phenotype of early-onset asthma that is aggravated by obesity, and a second phenotype of later-onset asthma that predominantly affects women. Systemic inflammation and mechanical effect, both due to the expansion of the adipose tissue, have been proposed as the main reasons for the association between obesity and asthma. However, the mechanisms involved are not yet fully understood. Moreover, it has also been suggested that insulin resistance syndrome can have a role in the association between these conditions. The intestinal microbiota is an important factor in the development of the immune system, and can be considered a link between obesity and asthma. In the obese state, higher lipopolysaccharide (LPS) serum levels as a consequence of a microbiota dysbiosis have been found. In addition, changes in microbiota composition result in a modification of carbohydrate fermentation capacity, therefore modifying short chain fatty acid (SCFA) levels. The main objective of this review is to summarize the principal findings that link obesity and asthma.
Collapse
|
18
|
Zhu Y, Yang Q, Yang M, Zhan X, Lan F, He J, Gu Z, Wu Y. Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. ACS NANO 2017; 11:3690-3704. [PMID: 28314099 DOI: 10.1021/acsnano.6b08193] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The beneficial effect of magnetic scaffolds on the improvement of cell proliferation has been well documented. Nevertheless, the underlying mechanisms about the magnetic scaffolds stimulating cell proliferation remain largely unknown. Once the scaffold enters into the biological fluids, a protein corona forms and directly influences the biological function of scaffold. This study aimed at investigating the formation of protein coronas on hydroxyapatite (HA) and magnetic hydroxyapatite (MHA) scaffolds in vitro and in vivo, and consequently its effect on regulating cell proliferation. The results demonstrated that magnetic nanoparticles (MNP)-infiltrated HA scaffolds altered the composition of protein coronas and ultimately contributed to increased concentration of proteins related to calcium ions, G-protein coupled receptors (GPCRs), and MAPK/ERK cascades as compared with pristine HA scaffolds. Noticeably, the enriched functional proteins on MHA samples could efficiently activate of the MAPK/ERK signaling pathway, resulting in promoting MC3T3-E1 cell proliferation, as evidenced by the higher expression levels of the key proteins in the MAPK/ERK signaling pathway, including mitogen-activated protein kinase kinases1/2 (MEK1/2) and extracellular signal regulated kinase 1/2 (ERK1/2). Artificial down-regulation of MEK expression can significantly down-regulate the MAPK/ERK signaling and consequently suppress the cell proliferation on MHA samples. These findings not only provide a critical insight into the molecular mechanism underlying cellular proliferation on magnetic scaffolds, but also have important implications in the design of magnetic scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Minggang Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| |
Collapse
|
19
|
Nigro E, Matteis M, Roviezzo F, Mattera Iacono V, Scudiero O, Spaziano G, Tartaglione G, Urbanek K, Filosa R, Daniele A, D'Agostino B. Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. Pharmacol Res 2015; 103:114-22. [PMID: 26462929 DOI: 10.1016/j.phrs.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Epidemiological data suggest that obesity represent an important risk factor for asthma, but the link between excess fat and airway hyperresponsiveness (AHR) and inflammation is not fully understood. Recently, a key role in physiopathologic conditions of lungs has been given to adiponectin (Acrp30). Acrp30 is one of the most expressed adipokines produced and secreted by adipose tissue, showing an intriguing relationship with metabolism of sphingolipids. Sphingosine-1-phosphate (S1P) has been proposed as an important inflammatory mediator implicated in the pathogenesis of airway inflammation and asthma. In the present study we analyze the effects of recombinant Acrp30 administration in an experimental model of S1P-induced AHR and inflammation. The results show that S1P is able to reduce endogenous Acrp30 serum levels and that recombinant Acrp30 treatment significantly reduce S1P-induced AHR and inflammation. Moreover, we observed a reduction of Adiponectin receptors (AdipoR1, AdipoR2 and T-cadherin) expression in S1P treated mice. Treatment with recombinant Acrp30 was able to restore Acrp30 serum levels and adiponectin receptors expression. These results could indicate the ability of S1P to modulate the Acrp30 action, by modulating not only the serum levels of the protein, but also its receptors. Taken together, these data suggest that adiponectin could represent a possible biomarker in obesity-associated asthma.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Advanced Biotechnology s.c.ar.l, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Fiorentina Roviezzo
- Department of Experimental Pharmacology, University Federico II of Naples, Naples, Italy
| | | | - Olga Scudiero
- CEINGE-Advanced Biotechnology s.c.ar.l, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Gioia Tartaglione
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Rosanna Filosa
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Aurora Daniele
- CEINGE-Advanced Biotechnology s.c.ar.l, Naples, Italy; Department of Environmental Sciences and Technologies Biological and Pharmaceutical, Second University of Naples, Caserta, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine, Second University of Naples, Naples, Italy.
| |
Collapse
|
20
|
Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: Current knowledge and future perspectives. World J Clin Cases 2015; 3:285-292. [PMID: 25789301 PMCID: PMC4360500 DOI: 10.12998/wjcc.v3.i3.285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Asthma and obesity are epidemiologically linked; however, similar relationships are also observed with other markers of the metabolic syndrome, such as insulin resistance and dyslipidemia, which cannot be accounted for by increased body mass alone. Obesity appears to be a predisposing factor for the asthma onset, both in adults and in children. In addition, obesity could make asthma more difficult to control and to treat. Although obesity may predispose to increased Th2 inflammation or tendency to atopy, other mechanisms need to be considered, such as those mediated by hyperglycaemia, hyperinsulinemia and dyslipidemia in the context of metabolic syndrome. The mechanisms underlying the association between asthma and metabolic syndrome are yet to be determined. In the past, these two conditions were believed to occur in the same individual without any pathogenetic link. However, the improvement in asthma symptoms following weight reduction indicates a causal relationship. The interplay between these two diseases is probably due to a bidirectional interaction. The purpose of this review is to describe the current knowledge about the possible link between metabolic syndrome and asthma, and explore potential application for future studies and strategic approaches.
Collapse
|
21
|
Leiria LOS, Martins MA, Saad MJA. Obesity and asthma: beyond T(H)2 inflammation. Metabolism 2015; 64:172-81. [PMID: 25458831 DOI: 10.1016/j.metabol.2014.10.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022]
Abstract
Obesity is a major risk factor for asthma. Likewise, obesity is known to increase disease severity in asthmatic subjects and also to impair the efficacy of first-line treatment medications for asthma, worsening asthma control in obese patients. This concept is in agreement with the current understanding that some asthma phenotypes are not accompanied by detectable inflammation, and may not be ameliorated by classical anti-inflammatory therapy. There are growing evidences suggesting that the obesity-related asthma phenotype does not necessarily involve the classical T(H)2-dependent inflammatory process. Hormones involved in glucose homeostasis and in the pathogeneses of obesity likely directly or indirectly link obesity and asthma through inflammatory and non-inflammatory pathways. Furthermore, the endocrine regulation of the airway-related pre-ganglionic nerves likely contributes to airway hyperreactivity (AHR) in obese states. In this review, we focused our efforts on understanding the mechanism underlying obesity-related asthma by exploring the T(H)2-independent mechanisms leading to this disease.
Collapse
Affiliation(s)
- Luiz O S Leiria
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Milton A Martins
- Department of Medicine, School of Medicine, University de São Paulo, São Paulo, SP, Brazil
| | - Mário J A Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
22
|
Sood A, Shore SA. Adiponectin, Leptin, and Resistin in Asthma: Basic Mechanisms through Population Studies. J Allergy (Cairo) 2013; 2013:785835. [PMID: 24288549 PMCID: PMC3832971 DOI: 10.1155/2013/785835] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/12/2022] Open
Abstract
Adipokines, factors produced by adipose tissue, may be proinflammatory (such as leptin and resistin) or anti-inflammatory (such as adiponectin). Effects of these adipokines on the lungs have the potential to evoke or exacerbate asthma. This review summarizes basic mechanistic data through population-based and clinical studies addressing the potential role of adipokines in asthma. Augmenting circulating concentrations of adiponectin attenuates allergic airway inflammation and airway hyperresponsiveness in mice. Murine data is supported by human data that suggest that low serum adiponectin is associated with greater risk for asthma among women and peripubertal girls. Further, higher serum total adiponectin may be associated with lower clinical asthma severity among children and women with asthma. In contrast, exogenous administration of leptin results in augmented allergic airway hyperresponsiveness in mice. Alveolar macrophages obtained from obese asthmatics are uniquely sensitive to leptin in terms of their potential to augment inflammation. Consistent with this basic mechanistic data, epidemiologic studies demonstrate that higher serum leptin is associated with greater asthma prevalence and/or severity and that these associations may be stronger among women, postpubertal girls, and prepubertal boys. The role of adipokines in asthma is still evolving, and it is not currently known whether modulation of adipokines may be helpful in asthma prevention or treatment.
Collapse
Affiliation(s)
- Akshay Sood
- School of Medicine, Department of Medicine, University of New Mexico, MSC 10 5550, Albuquerque, NM 87131, USA
| | - Stephanie A. Shore
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Building I, Room 307, Boston, MA 02115, USA
| |
Collapse
|