1
|
Liu Y, Li L, Wang Z, Yang L. A comprehensive profiling of renin-angiotensin system in mouse and human plasma by a rapid quantitative analysis of 14 angiotensin peptides using ultrahigh-performance liquid chromatography with tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9637. [PMID: 37953545 DOI: 10.1002/rcm.9637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The renin-angiotensin system produces a series of biologically active angiotensin (Ang) peptides. These Ang peptides are the major regulators of blood pressure and Na homeostasis, and play a critical role in maintaining cardiovascular and fluid homeostasis. The concentration of Ang peptides in the body is at trace levels, making their detection and quantification a challenge. In this study, a rapid and sensitive analytical method using mass spectrometry coupled with ultrahigh-performance liquid chromatography (UHPLC/MS) was developed to simultaneously quantify 14 Ang peptides. METHODS UHPLC/MS was employed to quantify 14 Ang peptides in mouse and human plasma. An HSS T3 column (2.1 × 100 mm, 1.8 μm) with an HSS T3 precolumn and triple-quadrupole mass spectrometer combined with an electrospray ionization source were utilized. Sample pretreatment involved a one-step protein precipitation using methanol. The total analysis time was within 7.5 min and the target peptides were detected in positive ion mode and quantified by selected reaction monitoring mode. RESULTS The method was validated for linearity, detection and quantification limits, precision, stability, recovery and matrix effect. The limits of detection of Ang II, Ang III, Ang-(1-7), Ang-(2-7), Ang-(3-7), Ang-(1-9), bradykinin, Asn1 and Val5 -Ang II are all less than 1 pg mL-1 , indicating high sensitivity. The intra-day and inter-day precision was within 15%, and the accuracy was between 85% and 115%. Meanwhile, the sample and reference solution were stable within 48 h, and the recovery and matrix effect met the quantitative requirements. CONCLUSIONS The method is currently reported to allow the largest number of Ang peptide species to be detected at one time. In addition, the proposed method offers a fast and reliable approach for comprehensive analysis of Ang metabolism in biological samples, facilitating research on the physiological and pathological states of cardiovascular, kidney and respiratory diseases.
Collapse
Affiliation(s)
- Yamin Liu
- MOE Key Laboratory of Standardization of Chinese Medicines and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- MOE Key Laboratory of Standardization of Chinese Medicines and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- MOE Key Laboratory of Standardization of Chinese Medicines and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
| | - Li Yang
- MOE Key Laboratory of Standardization of Chinese Medicines and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
| |
Collapse
|
2
|
Ferrasi AC, Lima SVG, Galvani AF, Delafiori J, Dias-Audibert FL, Catharino RR, Silva GF, Praxedes RR, Santos DB, Almeida DTDM, Lima EO. Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways. World J Hepatol 2023; 15:1237-1249. [DOI: 10.4254/wjh.v15.i11.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Chronic Hepatitis C (CHC) affects 71 million people globally and leads to liver issues such as fibrosis, cirrhosis, cancer, and death. A better understanding and prognosis of liver involvement are vital to reduce morbidity and mortality. The accurate identification of the fibrosis stage is crucial for making treatment decisions and predicting outcomes. Tests used to grade fibrosis include histological analysis and imaging but have limitations. Blood markers such as molecular biomarkers can offer valuable insights into fibrosis.
AIM To identify potential biomarkers that might stratify these lesions and add information about the molecular mechanisms involved in the disease.
METHODS Plasma samples were collected from 46 patients with hepatitis C and classified into fibrosis grades F1 (n = 13), F2 (n = 12), F3 (n = 6), and F4 (n = 15). To ensure that the identified biomarkers were exclusive to liver lesions (CHC fibrosis), healthy volunteer participants (n = 50) were also included. An untargeted metabolomic technique was used to analyze the plasma metabolites using mass spectrometry and database verification. Statistical analyses were performed to identify differential biomarkers among groups.
RESULTS Six differential metabolites were identified in each grade of fibrosis. This six-metabolite profile was able to establish a clustering tendency in patients with the same grade of fibrosis; thus, they showed greater efficiency in discriminating grades.
CONCLUSION This study suggests that some of the observed biomarkers, once validated, have the potential to be applied as prognostic biomarkers. Furthermore, it suggests that liquid biopsy analyses of plasma metabolites are a good source of molecular biomarkers capable of stratifying patients with CHC according to fibrosis grade.
Collapse
Affiliation(s)
| | | | - Aline Faria Galvani
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, University of Campinas, Campinas 13083-877, Brazil
| | | | | | - Giovanni Faria Silva
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| | | | | | | | - Estela Oliveira Lima
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| |
Collapse
|
3
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Exploring the Role of ACE2 as a Connecting Link between COVID-19 and Parkinson's Disease. Life (Basel) 2023; 13:life13020536. [PMID: 36836893 PMCID: PMC9961012 DOI: 10.3390/life13020536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is frequently accompanied by neurological manifestations such as headache, delirium, and epileptic seizures, whereas ageusia and anosmia may appear before respiratory symptoms. Among the various neurological COVID-19-related comorbidities, Parkinson's disease (PD) has gained increasing attention. Some cases of PD disease have been linked to COVID-19, and both motor and non-motor symptoms in Parkinson's disease patients frequently worsen following SARS-CoV-2 infection. Although it is still unclear whether PD increases the susceptibility to SARS-CoV-2 infection or whether COVID-19 increases the risk of or unmasks future cases of PD, emerging evidence sheds more light on the molecular mechanisms underlying the relationship between these two diseases. Among them, angiotensin-converting enzyme 2 (ACE2), a significant component of the renin-angiotensin system (RAS), seems to play a pivotal role. ACE2 is required for the entry of SARS-CoV-2 to the human host cells, and ACE2 dysregulation is implicated in the severity of COVID-19-related acute respiratory distress syndrome (ARDS). ACE2 imbalance is implicated in core shared pathophysiological mechanisms between PD and COVID-19, including aberrant inflammatory responses, oxidative stress, mitochondrial dysfunction, and immune dysregulation. ACE2 may also be implicated in alpha-synuclein-induced dopaminergic degeneration, gut-brain axis dysregulation, blood-brain axis disruption, autonomic dysfunction, depression, anxiety, and hyposmia, which are key features of PD.
Collapse
|
5
|
A New Perspective on the Renin-Angiotensin System. Diagnostics (Basel) 2022; 13:diagnostics13010016. [PMID: 36611307 PMCID: PMC9818283 DOI: 10.3390/diagnostics13010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. Hypertension is a serious medical problem not only in adults but also in children and adolescents. The renin-angiotensin-aldosterone system (RAAS) is one of the most important mechanisms regulating blood pressure and the balance of water and electrolytes. According to the latest reports, RAAS acts not only on endocrine but also on paracrine, autocrine, and intracrine. Moreover, RAAS has a component associated with hypotension and cardioprotective effects. These components are called alternative pathways of RAAS. The most important peptide of the alternative pathway is Ang 1-7, which is related to the Mas receptor. Mas receptors have widely known antihypertension properties, including vasodilatation, the release of nitric oxide, and increased production of anti-inflammatory cytokines. Another interesting peptide is angiotensin A, which combines the properties of the classical and alternative pathways. No less important components of RAAS are the proteolytic enzymes angiotensin convertase enzyme type 1 and 2. They are responsible for the functioning of the RAAS system and are a hypertension therapeutic target. Also involved are tissue-specific enzymes that form a local renin-angiotensin system. Currently, a combination of drugs is used in hypertension treatment. These drugs have many undesirable side effects that cannot always be avoided. For this reason, new treatments are being sought, and the greatest hope comes from the ACE2/ang 1-7/MasR axis.
Collapse
|
6
|
Fargieva KR, Guseinova RM, Pigarova EA, Dzeranova LK. The role of the apelin/APJ system in water homeostasis regulation. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water balance in the body is achieved by balancing renal and non-renal water losses with corresponding water intake. It is under the control of both the central nervous system, which integrates many parameters of water and electrolyte balance in the body, including inducing important adaptive behavioral responses, and three hormonal systems: vasopressinergic, renin-angiotensin-aldosterone and apelinergic. A lot of research is devoted to the regulation of water-electrolyte metabolism. However, this process is still quite difficult to understand, especially since more and more of its regulators are being discovered over time. One of them is the hormone apelin, an endogenous ligand for the APJ receptor. As is known, the receptor is highly expressed in many organs, such as the brain, heart, liver and kidneys, lungs, and has multidirectional effects.This literature review discusses the main characteristics and features of the regulation of these systems in relation to water-electrolyte metabolism, as well as issues of intersystem interaction and modulation of the effects of apelin.
Collapse
|
7
|
Lo SW, Segal JP, Lubel JS, Garg M. What do we know about the renin angiotensin system and inflammatory bowel disease? Expert Opin Ther Targets 2022; 26:897-909. [PMID: 36484415 DOI: 10.1080/14728222.2022.2157261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is an important homeostatic pathway, with emerging evidence for the impact of its components on inflammation and fibrosis in gastrointestinal tissues. This review aims to review current knowledge of the physiological mechanism of RAS in inflammatory bowel disease (IBD), and potential therapeutic implications. AREAS COVERED An extensive online literature review including Pubmed, Medline, and Google Scholar was undertaken. Discussion on the components of the RAS, localization, and physiological functions in the gastrointestinal tract, preclinical, and clinical data in IBD, and the relation with SARS-Cov-2 are covered in this review. EXPERT OPINION RAS inhibition may have a role as anti-fibrotic adjunct therapy. Targeting the local gastrointestinal RAS with novel modes of delivery may be a target for future therapeutics for IBD, given the widespread availability and safety of current options as utilized in other diseases. Further insight into the mechanism and downstream effects of gastrointestinal ACE2 may lead to a better understanding of the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sheng Wei Lo
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia
| | - Jonathan P Segal
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, Monash University
| | - Mayur Garg
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| |
Collapse
|
8
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
9
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
10
|
Ibarz-Blanch N, Morales D, Calvo E, Ros-Medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022; 14:nu14091920. [PMID: 35565887 PMCID: PMC9103085 DOI: 10.3390/nu14091920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a major public health problem. Numerous approaches have been developed to lower blood pressure (BP) in hypertensive patients, most of them involving pharmacological treatments. Within this context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive compounds, but also their efficacy depending on consumption time. Although a plethora of studies has investigated food-derived compounds, such as phenolic compounds or peptides and their impact on BP, only a few addressed the relevance of time consumption. However, it is known that BP and its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic compounds can interact with clock genes, which regulate the biological rhythm followed by many physiological processes. Therefore, further research might be carried out to completely elucidate the interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.
Collapse
Affiliation(s)
| | | | - Enrique Calvo
- Correspondence: (E.C.); (F.I.B.); Tel.: +34-977558837 (E.C.)
| | | | | | | | | |
Collapse
|
11
|
Antlanger M, Domenig O, Kaltenecker CC, Kovarik JJ, Rathkolb V, Müller MM, Schwaiger E, Hecking M, Poglitsch M, Säemann MD, Kopecky C. Combined sodium glucose co-transporter-2 inhibitor and angiotensin-converting enzyme inhibition upregulates the renin-angiotensin system in chronic kidney disease with type 2 diabetes: Results of a randomized, double-blind, placebo-controlled exploratory trial. Diabetes Obes Metab 2022; 24:816-826. [PMID: 34984822 PMCID: PMC9305250 DOI: 10.1111/dom.14639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 01/01/2022] [Indexed: 01/10/2023]
Abstract
AIM Sodium glucose co-transporter-2 inhibitors (SGLT-2i) improve cardiorenal outcomes in patients with chronic kidney disease (CKD), with and without type 2 diabetes. The molecular mechanisms underlying these pleiotropic effects remain unclear, yet it is speculated that SGLT-2i elicit a neurohormonal modulation resulting in renin-angiotensin system (RAS) activation. We hypothesized that combined SGLT-2 and angiotensin-converting enzyme inhibition (ACEi) favours RAS regulation towards the beneficial angiotensin-(1-7)-driven axis. MATERIALS AND METHODS This randomized controlled prospective study investigated the effect of 12 weeks treatment with the SGLT-2i empagliflozin on top of ACEi on the molecular RAS dynamics in 24 diabetic and 24 non-diabetic patients with CKD. Systemic RAS peptides were quantified by mass spectrometry. RESULTS In patients with type 2 diabetes, combined SGLT-2i and ACEi significantly upregulated plasma renin activity [pre-treatment median and interquartile range 298.0 (43.0-672.0) pmol/L versus post-treatment 577.0 (95.0-1543.0) pmol/L; p = .037] and angiotensin I levels [pre-treatment 289.0 (42.0-668.0) pmol/L versus post-treatment 573.0 (93.0-1522.0) pmol/L; p = .037], together with a significant increase of angiotensin-(1-7) levels [pre-treatment 14.0 (2.1-19.0) pmol/L versus post-treatment 32.0 (5.7-99.0) pmol/L; p = .012]. Empagliflozin treatment resulted in a 1.5 to 2-fold increase in main RAS peptides in patients with diabetes compared with placebo. No significant effect of empagliflozin on top of ACEi on RAS peptides was found in patients with CKD without diabetes. CONCLUSION A distinct RAS modulation by SGLT-2i occurs in diabetic kidney disease reflected by enhancement of the beneficial angiotensin-(1-7) providing a molecular background for this renoprotective therapeutic approach.
Collapse
Affiliation(s)
- Marlies Antlanger
- Department of Internal Medicine IIKepler University HospitalLinzAustria
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | | | - Christopher C. Kaltenecker
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | - Johannes J. Kovarik
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | - Vincent Rathkolb
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | - Martin M. Müller
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | - Elisabeth Schwaiger
- Department of Internal Medicine IIKepler University HospitalLinzAustria
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | - Manfred Hecking
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
| | | | - Marcus D. Säemann
- 6th Medical Department with Nephrology and DialysisWilhelminenhospital Clinic OttakringViennaAustria
- Medical FacultySigmund Freud UniversityViennaAustria
| | - Chantal Kopecky
- Department of Internal Medicine III, Division of Nephrology and DialysisMedical University of ViennaViennaAustria
- Faculty of Medicine, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| |
Collapse
|
12
|
Poor Performance of Angiotensin II Enzyme-Linked Immuno-Sorbent Assays in Mostly Hypertensive Cohort Routinely Screened for Primary Aldosteronism. Diagnostics (Basel) 2022; 12:diagnostics12051124. [PMID: 35626280 PMCID: PMC9139787 DOI: 10.3390/diagnostics12051124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Primary aldosteronism (PA) is the most common, but broadly underdiagnosed, form of hormonal hypertension. To improve screening procedures, current biochemical approaches aim to determine newly appreciated angiotensin II (Ang II) and calculate the aldosterone-to-angiotensin II ratio (AA2R). Thus, the aim of this study was to assess the diagnostic performance of these screening tests in comparison to the aldosterone-to-direct renin ratio (ADRR), which is routinely used. Cheap and available ELISA was used for Ang II measurement. To our knowledge, this is the first study of this laboratory method’s usage in PA. The study cohort included 20 PA patients and 80 controls. Ang II concentrations were comparable between PA and non-PA patients (773.5 vs. 873.2 pg/mL, p = 0.23, respectively). The AA2R was statistically significantly higher in PA group when compared with non-PA (0.024 vs. 0.012 ng/dL/pg/mL, p < 0.001). However, the diagnostic performance of the AA2R was significantly worse than that of the ADRR (AUROC 0.754 vs. 0.939, p < 0.01). The sensitivity and specificity of the AA2R were 70% and 76.2%, respectively. Thus, the AA2R was not effective as a screening tool for PA. Our data provide important arguments in the discussion on the unsatisfactory accuracy of renin−angiotensin system evaluation by recently repeatedly used ELISA tests.
Collapse
|
13
|
Annoni F, Moro F, Caruso E, Zoerle T, Taccone FS, Zanier ER. Angiotensin-(1-7) as a Potential Therapeutic Strategy for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage. Front Immunol 2022; 13:841692. [PMID: 35355989 PMCID: PMC8959484 DOI: 10.3389/fimmu.2022.841692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a substantial cause of mortality and morbidity worldwide. Moreover, survivors after the initial bleeding are often subject to secondary brain injuries and delayed cerebral ischemia, further increasing the risk of a poor outcome. In recent years, the renin-angiotensin system (RAS) has been proposed as a target pathway for therapeutic interventions after brain injury. The RAS is a complex system of biochemical reactions critical for several systemic functions, namely, inflammation, vascular tone, endothelial activation, water balance, fibrosis, and apoptosis. The RAS system is classically divided into a pro-inflammatory axis, mediated by angiotensin (Ang)-II and its specific receptor AT1R, and a counterbalancing system, presented in humans as Ang-(1-7) and its receptor, MasR. Experimental data suggest that upregulation of the Ang-(1-7)/MasR axis might be neuroprotective in numerous pathological conditions, namely, ischemic stroke, cognitive disorders, Parkinson's disease, and depression. In the presence of SAH, Ang-(1-7)/MasR neuroprotective and modulating properties could help reduce brain damage by acting on neuroinflammation, and through direct vascular and anti-thrombotic effects. Here we review the role of RAS in brain ischemia, with specific focus on SAH and the therapeutic potential of Ang-(1-7).
Collapse
Affiliation(s)
- Filippo Annoni
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.,Department of Intensive Care, Erasme Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| |
Collapse
|
14
|
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. ENDOCRINOLOGIA, DIABETES Y NUTRICION 2022; 69:52-62. [PMID: 35232560 PMCID: PMC8882059 DOI: 10.1016/j.endien.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
The renin–angiotensin system (RAS) is one of the most complex hormonal regulatory systems, involving several organs that interact to regulate multiple body functions. The study of this system initially focused on investigating its role in the regulation of both cardiovascular function and related pathologies. From this approach, pharmacological strategies were developed for the treatment of cardiovascular diseases. However, new findings in recent decades have suggested that the RAS is much more complex and comprises two subsystems, the classic RAS and an alternative RAS, with antagonistic effects that are usually in equilibrium. The classic system is involved in pathologies where inflammatory, hypertrophic and fibrotic phenomena are common and is related to the development of chronic diseases that affect various body systems. This understanding has been reinforced by the evidence that local renin–angiotensin systems exist in many tissue types and by the role of the RAS in the spread and severity of COVID-19 infection, where it was discovered that viral entry into cells of the respiratory system is accomplished through binding to angiotensin-converting enzyme 2, which is present in the alveolar epithelium and is overexpressed in patients with chronic cardiometabolic diseases. In this narrative review, preclinical and clinical aspects of the RAS are presented and topics for future research are discussed some aspects are raised that should be clarified in the future and that call for further investigation of this system.
Collapse
Affiliation(s)
- Rafael Antonio Vargas Vargas
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia; Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia.
| | - Jesús María Varela Millán
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia; Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | | |
Collapse
|
15
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
16
|
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. ACTA ACUST UNITED AC 2021; 69:52-62. [PMID: 34723133 PMCID: PMC8547789 DOI: 10.1016/j.endinu.2021.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The renin–angiotensin system (RAS) is one of the most complex hormonal regulatory systems, involving several organs that interact to regulate multiple body functions. The study of this system initially focused on investigating its role in the regulation of both cardiovascular function and related pathologies. From this approach, pharmacological strategies were developed for the treatment of cardiovascular diseases. However, new findings in recent decades have suggested that the RAS is much more complex and comprises two subsystems, the classic RAS and an alternative RAS, with antagonistic effects that are usually in equilibrium. The classic system is involved in pathologies where inflammatory, hypertrophic and fibrotic phenomena are common and is related to the development of chronic diseases that affect various body systems. This understanding has been reinforced by the evidence that local renin–angiotensin systems exist in many tissue types and by the role of the RAS in the spread and severity of COVID-19 infection, where it was discovered that viral entry into cells of the respiratory system is accomplished through binding to angiotensin-converting enzyme 2, which is present in the alveolar epithelium and is overexpressed in patients with chronic cardiometabolic diseases. In this narrative review, preclinical and clinical aspects of the RAS are presented and topics for future research are discussed some aspects are raised that should be clarified in the future and that call for further investigation of this system.
Collapse
Affiliation(s)
- Rafael Antonio Vargas Vargas
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia.,Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | - Jesús María Varela Millán
- Universidad Militar Nueva Granada, Facultad de medicina, Bogotá, Colombia.,Universidad Santo Tomás, Maestría en actividad física para la salud, Bogotá, Colombia
| | | |
Collapse
|
17
|
Pucci F, Annoni F, dos Santos RAS, Taccone FS, Rooman M. Quantifying Renin-Angiotensin-System Alterations in COVID-19. Cells 2021; 10:2755. [PMID: 34685735 PMCID: PMC8535134 DOI: 10.3390/cells10102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.
Collapse
Affiliation(s)
- Fabrizio Pucci
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | - Marianne Rooman
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
18
|
The Level and Significance of Circulating Angiotensin-III in Patients with Coronary Atherosclerosis. J Renin Angiotensin Aldosterone Syst 2021; 2021:1704762. [PMID: 34603502 PMCID: PMC8478585 DOI: 10.1155/2021/1704762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 01/17/2023] Open
Abstract
Objective Angiotensin-III (Ang-III) is the downstream product of angiotensin-II (Ang-II) metabolized by aminopeptidase A (APA). At present, the research of Ang-III mainly concentrates on hypertension and the central renin-angiotensin system (RAS). However, few studies have focused on the relationship between Ang-III and coronary atherosclerosis (CAS). Methods and Results Plasma Ang-III and APA levels were measured by the enzyme-linked immunosorbent assay (ELISA) in 44 normal subjects and 84 patients confirmed as having CAS by coronary angiography. Circulating Ang-III levels were significantly lower in patients with CAS than in normal controls (P = 0.013). APA levels were slightly lower in the CAS group (P = 0.324). According to the severity of atherosclerosis, CAS patients were divided into two groups. Compared with the controls, the APA and Ang-III levels were lower in the high scoring group and APA decreased significantly. Conclusions Circulating Ang-III levels were reduced in patients with CAS, and the possible reason may be related to the decrease in the APA level.
Collapse
|
19
|
Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin-Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021; 9:biomedicines9101332. [PMID: 34680449 PMCID: PMC8533592 DOI: 10.3390/biomedicines9101332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Placental development and function implicate important morphological and physiological adaptations to thereby ensure efficient maternal–fetal exchanges, as well as pregnancy-specific hormone secretion and immune modulation. Incorrect placental development can lead to severe pregnancy disorders, such as preeclampsia (PE), which endangers both the mother and the infant. The implication of the systemic renin–angiotensin system (RAS) in the pregnancy-related physiological changes is now well established. However, despite the fact that the local uteroplacental RAS has been described for several decades, its role in placental development and function seems to have been underestimated. In this review, we provide an overview of the multiple roles of the uteroplacental RAS in several cellular processes of placental development, its implication in the regulation of placental function during pregnancy, and the consequences of its dysregulation in PE pathogenesis.
Collapse
Affiliation(s)
- Lucile Yart
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
- Correspondence:
| |
Collapse
|
20
|
Aimo A, Vergaro G, Passino C, Clerico A. Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 2021; 58:530-545. [PMID: 34196254 DOI: 10.1080/10408363.2021.1942782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the progressive improvements in diagnosis and therapy during the first 20 years of this century, the morbidity and mortality of patients with heart failure (HF) remain high, resulting in an enormous health and economic burden. Only a further improvement in understanding the pathophysiological mechanisms related to the development of cardiac injury and dysfunction can allow more innovative and personalized approaches to HF management. The renin-angiotensin system (RAS) has a critical role in cardiovascular physiology by regulating blood pressure and electrolyte balance. The RAS is mainly regulated by both angiotensin converting enzyme (ACE) and type 2 angiotensin converting enzyme (ACE2). However, the balance between the various peptides and peptidases constituting the RAS/ACE pathway remains in great part unraveled in patients with HF. This review summarizes the role of the RAS/ACE axis in cardiac physiology and HF pathophysiology as well as some analytical issues relevant to the clinical and laboratory assessment of inter-relationships between these two systems. There is evidence that RAS peptides represent a dynamic network of peptides, which are altered in different HF states and influenced by medical therapy. However, the mechanisms of signal transduction have not been fully elucidated under physiological and pathophysiological conditions. Further investigations are necessary to explore novel molecular mechanisms related to the RAS, which will provide alternative therapeutic agents. Moreover, monitoring the circulating levels of active RAS peptides in HF patients may enable a personalized approach by facilitating assessment of the pathophysiological status of several cardiovascular diseases and thus better selection of therapies for HF patients.
Collapse
Affiliation(s)
- Alberto Aimo
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Aldo Clerico
- Fondazione CNR - Regione Toscana G. Monasterio, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
21
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
22
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
23
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
24
|
Pavo N, Prausmüller S, Spinka G, Goliasch G, Bartko PE, Wurm R, Arfsten H, Strunk G, Poglitsch M, Domenig O, Mascherbauer J, Uyanik-Ünal K, Hengstenberg C, Zuckermann A, Hülsmann M. Myocardial Angiotensin Metabolism in End-Stage Heart Failure. J Am Coll Cardiol 2021; 77:1731-1743. [PMID: 33832600 DOI: 10.1016/j.jacc.2021.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND The myocardium exhibits an adaptive tissue-specific renin-angiotensin system (RAS), and local dysbalance may circumvent the desired effects of pharmacologic RAS inhibition, a mainstay of heart failure with reduced ejection fraction (HFrEF) therapy. OBJECTIVES This study sought to investigate human myocardial tissue RAS regulation of the failing heart in the light of current therapy. METHODS Fifty-two end-stage HFrEF patients undergoing heart transplantation (no RAS inhibitor: n = 9; angiotensin-converting enzyme [ACE] inhibitor: n = 28; angiotensin receptor blocker [ARB]: n = 8; angiotensin receptor neprilysin-inhibitor [ARNi]: n = 7) were enrolled. Myocardial angiotensin metabolites and enzymatic activities involved in the metabolism of the key angiotensin peptides angiotensin 1-8 (AngII) and Ang1-7 were determined in left ventricular samples by mass spectrometry. Circulating angiotensin concentrations were assessed for a subgroup of patients. RESULTS AngII and Ang2-8 (AngIII) were the dominant peptides in the failing heart, while other metabolites, especially Ang1-7, were below the detection limit. Patients receiving an ARB component (i.e., ARB or ARNi) had significantly higher levels of cardiac AngII and AngIII (AngII: 242 [interquartile range (IQR): 145.7 to 409.9] fmol/g vs 63.0 [IQR: 19.9 to 124.1] fmol/g; p < 0.001; and AngIII: 87.4 [IQR: 46.5 to 165.3] fmol/g vs 23.0 [IQR: <5.0 to 59.3] fmol/g; p = 0.002). Myocardial AngII concentrations were strongly related to circulating AngII levels. Myocardial RAS enzyme regulation was independent from the class of RAS inhibitor used, particularly, a comparable myocardial neprilysin activity was observed for patients with or without ARNi. Tissue chymase, but not ACE, is the main enzyme for cardiac AngII generation, whereas AngII is metabolized to Ang1-7 by prolyl carboxypeptidase but not to ACE2. There was no trace of cardiac ACE2 activity. CONCLUSIONS The failing heart contains considerable levels of classical RAS metabolites, whereas AngIII might be an unrecognized mediator of detrimental effects on cardiovascular structure. The results underline the importance of pharmacologic interventions reducing circulating AngII actions, yet offer room for cardiac tissue-specific RAS drugs aiming to limit myocardial AngII/AngIII peptide accumulation and actions.
Collapse
Affiliation(s)
- Noemi Pavo
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Suriya Prausmüller
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Spinka
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Philipp E Bartko
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Strunk
- Complexity Research, Vienna, Austria; Department of Statistics, Complexity Research, FH Campus Vienna, Vienna, Austria; Department of Entrepreneurship and Economic Education, Faculty of Business and Economics, Technical University Dortmund, Dortmund, Germany
| | | | | | - Julia Mascherbauer
- Karl Landsteiner University of Health Sciences, Department of Internal Medicine 3, University Hospital St. Pölten, Krems, Austria
| | - Keziban Uyanik-Ünal
- Clinical Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas Zuckermann
- Clinical Division of Cardiac Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Postlethwait JH, Massaquoi MS, Farnsworth DR, Yan YL, Guillemin K, Miller AC. The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biol Open 2021; 10:bio058172. [PMID: 33757938 PMCID: PMC8015242 DOI: 10.1242/bio.058172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
People with underlying conditions, including hypertension, obesity, and diabetes, are especially susceptible to negative outcomes after infection with coronavirus SARS-CoV-2, which causes COVID-19. Hypertension and respiratory inflammation are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from rapidly dropping blood pressure via Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II, counteracting its chronic effects, and serves as the SARS-CoV-2 receptor. Ace, the coronavirus, and COVID-19 comorbidities all regulate Ace2, but we do not yet understand how. To exploit zebrafish (Danio rerio) to help understand the relationship of the RAAS to COVID-19, we must identify zebrafish orthologs and co-orthologs of human RAAS genes and understand their expression patterns. To achieve these goals, we conducted genomic and phylogenetic analyses and investigated single cell transcriptomes. Results showed that most human RAAS genes have one or more zebrafish orthologs or co-orthologs. Results identified a specific type of enterocyte as the specific site of expression of zebrafish orthologs of key RAAS components, including Ace, Ace2, Slc6a19 (SARS-CoV-2 co-receptor), and the Angiotensin-related peptide cleaving enzymes Anpep (receptor for the common cold coronavirus HCoV-229E), and Dpp4 (receptor for the Middle East Respiratory Syndrome virus, MERS-CoV). Results identified specific vascular cell subtypes expressing Ang II receptors, apelin, and apelin receptor genes. These results identify genes and cell types to exploit zebrafish as a disease model for understanding mechanisms of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
26
|
Molina-Van den Bosch M, Jacobs-Cachá C, Vergara A, Serón D, Soler MJ. [The renin-angiotensin system and the brain]. HIPERTENSION Y RIESGO VASCULAR 2021; 38:125-132. [PMID: 33526381 DOI: 10.1016/j.hipert.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin-aldosterone (RAAS) system and its effects on blood pressure and the regulation of water and electrolyte balance have been studied focusing on the cardiovascular and renal system. The activation of RAAS in other organs has local and systemic repercussions by modeling the macro- and microvasculture of peripheral organs. The brain RAAS influence on systemic blood pressure through the sympathetic nervous system. The angiotensin converting enzyme/angiotensin II/angiotensin 1 receptor axis (ACE/AngII/AT1), classical pathway, and angiotensin converting enzyme type 2/angiotensin (1-7)/Mas receptor (ACE2/Ang (1-7)/MasR), non-classical pathway, are involved in the modulation of the sympathetic response. The imbalance of these two axes with subsequently Ang II accumulation promote neurogenic hypertension and other vascular pathologies. The aminopeptidase/angiotensin IV/angiotensin 4 receptor (AMN/Ang IV/AT4) axis, which is exclusive of the brain, acts on cerebral microvasculature and participates in cognition, memory, and learning. The aim of this review is to decipher the major central RAAS mechanisms involved in blood pressure regulation. In addition, paracrine functions of brain RAAS and its role in neuroprotection and cognition are also described in this review.
Collapse
Affiliation(s)
- M Molina-Van den Bosch
- Grup de Nefrología, Vall d'Hebron Institut de Recerca (VHIR), Servei de Nefrología, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital, Barcelona, España
| | - C Jacobs-Cachá
- Grup de Nefrología, Vall d'Hebron Institut de Recerca (VHIR), Servei de Nefrología, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital, Barcelona, España
| | - A Vergara
- Grup de Nefrología, Vall d'Hebron Institut de Recerca (VHIR), Servei de Nefrología, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital, Barcelona, España
| | - D Serón
- Grup de Nefrología, Vall d'Hebron Institut de Recerca (VHIR), Servei de Nefrología, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital, Barcelona, España
| | - M J Soler
- Grup de Nefrología, Vall d'Hebron Institut de Recerca (VHIR), Servei de Nefrología, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital, Barcelona, España.
| |
Collapse
|
27
|
Simões e Silva AC, Lanza K, Palmeira VA, Costa LB, Flynn JT. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 2021; 36:1407-1426. [PMID: 32995920 PMCID: PMC7524035 DOI: 10.1007/s00467-020-04759-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The last decade was crucial for our understanding of the renin-angiotensin-aldosterone system (RAAS) as a two-axis, counter-regulatory system, divided into the classical axis, formed by angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and the angiotensin type 1 receptor (AT1R), and the alternative axis comprising angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) (Ang-(1-7)), and the Mas receptor. Breakthrough discoveries also took place, with other RAAS endopeptides being described, including alamandine and angiotensin A. In this review, we characterize the two RAAS axes and the role of their components in pediatric kidney diseases, including childhood hypertension (HTN), pediatric glomerular diseases, congenital abnormalities of the kidney and urinary tract (CAKUT), and chronic kidney disease (CKD). We also present recent findings on potential interactions between the novel coronavirus, SARS-CoV-2, and components of the RAAS, as well as potential implications of coronavirus disease 2019 (COVID-19) for pediatric kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil ,grid.8430.f0000 0001 2181 4888Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Katharina Lanza
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Vitória Andrade Palmeira
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Larissa Braga Costa
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Joseph T. Flynn
- grid.34477.330000000122986657Pediatric Nephrology, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, WA 98105 USA
| |
Collapse
|
28
|
Kenarkoohi A, Maleki M, Safari T, Kafashian M, Saljoughi F, Sohrabipour S. Angiotensin-converting Enzyme 2 roles in the Pathogenesis of COVID-19. Curr Hypertens Rev 2020; 17:207-216. [PMID: 32778033 DOI: 10.2174/1573402116666200810134702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
The new pandemic Coronavirus Disease 2019 (COVID-19) causes a wide range of clinical consequences, from asymptomatic infection to acute respiratory failure and it is very heterogeneous. The renin-angiotensin system (RAS) is well recognized as a key regulating system in circulatory homeostasis that play prominent roles in pathophysiological processes in abnormal activation for instance renal and cardiovascular diseases, obesity, and stroke. Angiotensin converting enzyme 2(ACE2) as a component of the RAS system. However, unlike the ACE, its activity is not inhibited by the ACE inhibitors. The major product of ACE2 is Ang1-7, known as a vasodilator peptide and part of the depressant arm of the RAS. There are two form of ACE2. Coronavirus cover with some proteins in order to help viral attachment to the cell membrane ACE2 as a receptor and then fuse and enter the cells. ACE2 was expressed in oral Cavity, salivary glands of the mouth, esophagus, myocardial cells, kidney, and enterocytes, along all the respiratory tract, intestine, and blood vessels. In this article, we explain the renin-angiotensin system and its components. Also, we shortly explain the organs involved in COVID-19 disease and we will talk about the possible causes of damage to these organs. We also reviewed the probable mechanism of using ACE2 in viral attachment and the probable treatment processes will also be discussed based on the surface proteins of the virus and ACE2. In addition, we briefly discuss the anti-angiotensin drugs and why patients with chronic disease are more susceptible to COVID-19 infection and show worse progression.
Collapse
Affiliation(s)
- Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam. Iran
| | - Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam. Iran
| | - Tahereh Safari
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan. Iran
| | - Mohamadreza Kafashian
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam. Iran
| | - Fateme Saljoughi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas. Iran
| | - Shahla Sohrabipour
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas. Iran
| |
Collapse
|
29
|
Braga CL, Silva‐Aguiar RP, Battaglini D, Peruchetti DB, Robba C, Pelosi P, Rocco PRM, Caruso‐Neves C, Silva PL. The renin-angiotensin-aldosterone system: Role in pathogenesis and potential therapeutic target in COVID-19. Pharmacol Res Perspect 2020; 8:e00623. [PMID: 32658389 PMCID: PMC7357286 DOI: 10.1002/prp2.623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 novel coronavirus, has spread worldwide causing high fatality rates. Neither a vaccine nor specific therapeutic approaches are available, hindering the fight against this disease and making better understanding of its pathogenesis essential. Despite similarities between SARS-CoV-2 and SARS-CoV, the former has unique characteristics which represent a great challenge to physicians. The mechanism of COVID-19 infection and pathogenesis is still poorly understood. In the present review, we highlight possible pathways involved in the pathogenesis of COVID-19 and potential therapeutic targets, focusing on the role of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Cássia L. Braga
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Rodrigo P. Silva‐Aguiar
- Laboratory of Biochemistry and Cell SignallingCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Denise Battaglini
- Anesthesia and Intensive CareOspedale Policlinico San MartinoIRCCS for Oncology and NeuroscienceGenoaItaly
| | - Diogo B. Peruchetti
- Laboratory of Biochemistry and Cell SignallingCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Chiara Robba
- Anesthesia and Intensive CareOspedale Policlinico San MartinoIRCCS for Oncology and NeuroscienceGenoaItaly
| | - Paolo Pelosi
- Anesthesia and Intensive CareOspedale Policlinico San MartinoIRCCS for Oncology and NeuroscienceGenoaItaly
- Department of Surgical Sciences and Integrated Diagnostic (DISC)University of GenoaGenoaItaly
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineRio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/FAPERJRio de JaneiroBrazil
- COVID‐19 Virus NetworkMinistry of Science and Technology, Innovation and CommunicationRio de JaneiroBrazil
| | - Celso Caruso‐Neves
- Laboratory of Biochemistry and Cell SignallingCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineRio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/FAPERJRio de JaneiroBrazil
- COVID‐19 Virus NetworkMinistry of Science and Technology, Innovation and CommunicationRio de JaneiroBrazil
| | - Pedro L. Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineRio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/FAPERJRio de JaneiroBrazil
- COVID‐19 Virus NetworkMinistry of Science and Technology, Innovation and CommunicationRio de JaneiroBrazil
| |
Collapse
|
30
|
Suessenbach FK, Burckhardt BB. Levels of angiotensin peptides in healthy and cardiovascular/renal-diseased paediatric population-an investigative review. Heart Fail Rev 2020; 24:709-723. [PMID: 31104255 DOI: 10.1007/s10741-019-09797-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a major role in the regulation of blood pressure and homeostasis. Therefore, it is a commonly used target for pharmacotherapy of cardiovascular diseases in adults. However, the efficacy of this pharmacotherapy can only be limitedly derived into children. Comprehensive knowledge of the humoral parameters acting in the paediatric RAAS (e.g. angiotensin I, angiotensin II, angiotensin 1-7, angiotensin III, and angiotensin IV) might facilitate a more effective and rational pharmacotherapy in children. Therefore, this review aims to provide an overview of the maturing RAAS. Out of 925 identified records, 35 publications were classified as relevant. Physiological and pathophysiological concentrations of angiotensin peptides were compiled and categorised according to European Medicines Agency age groups. Age has a major impact on circulating angiotensin I, angiotensin II, and angiotensin 1-7, which is reflected in an age-dependent decrease during childhood. In contrast to data obtained in adults, no gender-related differences in angiotensin levels were identified. The observed increase in peptide concentrations regarding cardiac- and renal-diseased children is influenced by surgical repair, while evidence for a pharmacological impact is conflicting. A comprehensive set of angiotensin I, angiotensin II, and angiotensin 1-7 values from neonates up to adolescents was compiled. Indicating age as a strong effector. However, evidence about potential promising targets of the RAAS like angiotensin III and angiotensin IV is still lacking in children.
Collapse
Affiliation(s)
- F K Suessenbach
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, 40225, Dusseldorf, Germany
| | - B B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, 40225, Dusseldorf, Germany.
| |
Collapse
|
31
|
The Vasoactive Mas Receptor in Essential Hypertension. J Clin Med 2020; 9:jcm9010267. [PMID: 31963731 PMCID: PMC7019597 DOI: 10.3390/jcm9010267] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
The renin–angiotensin–aldosterone system (RAAS) has been studied extensively, and with the inclusion of novel components, it has become evident that the system is much more complex than originally anticipated. According to current knowledge, there are two main axes of the RAAS, which counteract each other in terms of vascular control: The classical vasoconstrictive axis, renin/angiotensin-converting enzyme/angiotensin II/angiotensin II receptor type 1 (AT1R), and the opposing vasorelaxant axis, angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor (MasR). An abnormal activity within the system constitutes a hallmark in hypertension, which is a global health problem that predisposes cardiovascular and renal morbidities. In particular, essential hypertension predominates in the hypertensive population of more than 1.3 billion humans worldwide, and yet, the pathophysiology behind this multifactorial condition needs clarification. While commonly applied pharmacological strategies target the classical axis of the RAAS, discovery of the vasoprotective effects of the opposing, vasorelaxant axis has presented encouraging experimental evidence for a new potential direction in RAAS-targeted therapy based on the G protein-coupled MasR. In addition, the endogenous MasR agonist angiotensin-(1-7), peptide analogues, and related molecules have become the subject of recent studies within this field. Nevertheless, the clinical potential of MasR remains unclear due to indications of physiological-biased activities of the RAAS and interacting signaling pathways.
Collapse
|
32
|
Angiotensin III induces p38 Mitogen-activated protein kinase leading to proliferation of vascular smooth muscle cells. Pharmacol Rep 2020; 72:246-253. [PMID: 32016850 DOI: 10.1007/s43440-019-00035-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) are essential molecular transducers of extracellular stimuli into intracellular responses. MAPKs are crucial in mediating actions of the renin-angiotensin-aldosterone system (RAAS), in particular, functions mediated by Angiotensin (Ang) II, the main biological peptide produced by this system. We have shown that another biologically active heptapeptide Ang III also induces MAPKs in the central nervous system. The ability of Ang III to induce MAPKs in the periphery is unknown and was the focus of this study. METHODS We determined whether Ang III induced p38 MAPK in vascular smooth cells (VSMCs) isolated from Wistar and spontaneously hypertensive rats (SHRs) and compared these actions to those of Ang II. Further, the role of this MAPK in Ang III-mediated VSMC proliferation was also determined. RESULTS Both Ang peptides similarly induced p38 MAPK phosphorylation in VSMCs of Wistar VSMCs in a concentration- and time-dependent manner. SHR VSMCs were less sensitive to Ang III, which caused less of an effect on p38 MAPK phosphorylation in these cells. The Ang III effect was specific and occurred by activation of the Ang type 1 (AT1) receptor. The p38 MAPK pathway was also involved in Ang III-induced VSMC growth, as measured by DNA synthesis. CONCLUSIONS These findings suggest that the p38 MAPK signaling pathway is an important cascade in regulating the actions of Ang III in VSMCs. Most importantly, dysregulation of Ang III actions in these cells are apparent and may contribute to pathological conditions associated with dysfunctions in VSMCS.
Collapse
|
33
|
Alanazi AZ, Clark MA. Effects of angiotensin III on c-Jun N terminal kinase in Wistar and hypertensive rat vascular smooth muscle cells. Peptides 2020; 123:170204. [PMID: 31738968 DOI: 10.1016/j.peptides.2019.170204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) and inflammation are well known actions associated with hypertension. Angiotensin (Ang) II mediates these physiological actions through the c-Jun N terminal Kinase (JNK), mitogen-activated proteins kinase (MAPK) pathway. Ang III effects on this pathway in VSMCs are unknown. The aim of this study was to determine whether Ang III activates JNK MAPK in Wistar VSMCs and determined whether the response was different in spontaneously hypertensive rat (SHR) VSMCs. We also ascertained whether this effect leads to VSMC proliferation. Western blots were used to determine the time and concentration effects of Ang II on JNK MAPK phosphorylation in Wistar VSMCs. Similar studies were conducted for Ang III in Wistar and SHR VSMCs. Both peptides induced JNK phosphorylation in a concentration- and time-dependent manner in Wistar VSMCs. Ang III also increased JNK phosphorylation in a concentration- and time-dependent fashion in SHR VSMCs as well. However, the ability of Ang III to induce JNK MAPK was different in SHR VSMCs as the phosphorylation levels of JNK were significantly higher in Wistar VSMCs as compared to SHR VSMCs at several time points and concentrations. Further, Ang III-mediated DNA synthesis, a measure of VSMC proliferation, occurred through activation of JNK MAPK. This study is the first to show Ang III effects on the JNK MAPK pathway in VSMCs and the role of JNK in Ang III-mediated cellular proliferation. These findings impart key information for the understanding of Ang III functions, especially in VSMCs and possible cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
34
|
He C, Hu S, Zhou W. Development of a novel nanoflow liquid chromatography-parallel reaction monitoring mass spectrometry-based method for quantification of angiotensin peptides in HUVEC cultures. PeerJ 2020; 8:e9941. [PMID: 32983648 PMCID: PMC7500351 DOI: 10.7717/peerj.9941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to develop an analytical method using liquid chromatography tandem mass spectrometry (LC-MS/MS) for the determination of angiotensin (Ang) I, Ang (1-9), Ang II, Ang (1-7), Ang (1-5), Ang III, Ang IV in human umbilical vein endothelial cell (HUVEC) culture supernatant. METHODS HUVEC culture supernatant was added with gradient concentrations (0.05-1,000 ng/ml) of standard solutions of the Ang peptides. These samples underwent C18 solid-phase extraction and separation using a preconcentration nano-liquid chromatography mass spectrometry system. The target peptides were detected by a Q Exactive quadrupole orbitrap high-resolution mass spectrometer in the parallel reaction monitoring mode. Ang converting enzyme (ACE) in HUVECs was silenced to examine Ang I metabolism. RESULTS The limit of detection was 0.1 pg for Ang II and Ang III, and 0.5 pg for Ang (1-9), Ang (1-7), and Ang (1-5). The linear detection range was 0.1-2,000 pg (0.05-1,000 ng/ml) for Ang II and Ang III, and 0.5-2,000 pg (0.25-1,000 ng/ml) for Ang (1-9) and Ang (1-5). Intra-day and inter-day precisions (relative standard deviation) were <10%. Ang II, Ang III, Ang IV, and Ang (1-5) were positively correlated with ACE expression by HUVECs, while Ang I, Ang (1-7), and Ang (1-9) were negatively correlated. CONCLUSION The nanoflow liquid chromatography-parallel reaction monitoring mass spectrometry-based methodology established in this study can evaluate the Ang peptides simultaneously in HUVEC culture supernatant.
Collapse
|
35
|
Alanazi AZ, Clark MA. Angiotensin III Induces JAK2/STAT3 Leading to IL-6 Production in Rat Vascular Smooth Muscle Cells. Int J Mol Sci 2019; 20:ijms20225551. [PMID: 31703282 PMCID: PMC6888423 DOI: 10.3390/ijms20225551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
The Janus kinase-2/ signal transducer and activators of transcription-3 (JAK2/STAT3) pathway and interleukin-6 (IL-6) are pleiotropic signal transduction systems that are responsible for induction of many cytokines and growth factors. It is unknown whether the renin angiotensin aldosterone system (RAAS) peptide, angiotensin (Ang) III induces JAK2/STAT3 and IL-6 in vascular smooth muscle cells (VSMCs). Thus, the purpose of this study was to investigate whether Ang III induces the JAK2/STAT3 pathway leading to IL-6 production in cultured VSMCs isolated from Wistar rats and determine whether differences exist in spontaneously hypertensive rat (SHR) VSMCs. We gauged Ang III’s effects on this pathway by measuring its action on STAT3 as well as IL-6 production. Ang III behaved similarly as Ang II in stimulation of STAT3 phosphorylation in Wistar and SHR VSMCs. Moreover, there were no differences in this Ang III effect in SHR versus Wistar VSMCs. In Wistar VSMCs, Ang II and Ang III significantly induced IL-6 protein secretion and mRNA expression. However, IL-6 protein secretions mediated by these peptides were significantly greater in SHR VSMCs. Ang III induced the JAK2/STAT3 pathway, leading to IL-6 protein secretion and IL-6 mRNA expression via actions on AT1Rs. Moreover, the actions of Ang III to induce IL-6 production was dysregulated in SHR VSMCs. These findings suggest that Ang III acts on AT1Rs to induce JAK2/STAT3, leading to an increase in IL-6 in cultured VSMCs. These findings are important in establishing Ang III as an important physiologically relevant peptide in VSMCs.
Collapse
|
36
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
37
|
Larouche‐Lebel É, Loughran KA, Oyama MA, Solter PF, Laughlin DS, Sánchez MD, Assenmacher C, Fox PR, Fries RC. Plasma and tissue angiotensin-converting enzyme 2 activity and plasma equilibrium concentrations of angiotensin peptides in dogs with heart disease. J Vet Intern Med 2019; 33:1571-1584. [PMID: 31254308 PMCID: PMC6639469 DOI: 10.1111/jvim.15548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is a homologue of angiotensin-converting enzyme (ACE) and produces angiotensin peptides (APs), such as angiotensin 1-9 and 1-7 that are vasodilatory and natriuretic, and act to counterbalance angiotensin II. HYPOTHESIS Evidence of ACE2 can be found in tissues and plasma of dogs. Equilibrium concentrations of renin angiotensin aldosterone system (RAAS) APs differ in dogs with heart disease compared to healthy dogs and recombinant human ACE2 (rhACE2) alters relative concentrations of APs. ANIMALS Forty-nine dogs with and 34 dogs without heart disease. METHODS Immunohistochemistry and assays for tissue and plasma ACE2 activity and equilibrium concentrations of plasma RAAS APs were performed. RESULTS Immunolabeling for ACE2 was present in kidney and myocardial tissue. Median plasma ACE2 activity was significantly increased in dogs with congestive heart failure (CHF; 6.9 mU/mg; interquartile range [IQR], 5.1-12.1) as compared to control (2.2 mU/mg; IQR, 1.8-3.0; P = .0003). Plasma equilibrium analysis of RAAS APs identified significant increases in the median concentrations of beneficial APs, such as angiotensin 1-7, in dogs with CHF (486.7 pg/mL; IQR, 214.2-1168) as compared to those with preclinical disease (41.0 pg/mL; IQR, 27.4-45.1; P < .0001) or control (11.4 pg/mL; IQR, 7.1-25.3; P = .01). Incubation of plasma samples from dogs with CHF with rhACE2 increased beneficial APs, such as angiotensin 1-9 (preincubation, 10.3 pg/mL; IQR, 4.4-37.2; postincubation, 2431 pg/mL; IQR, 1355-3037; P = .02), while simultaneously decreasing maladaptive APs, such as angiotensin II (preincubation, 53.4 pg/mL; IQR, 28.6-226.4; postincubation, 2.4 pg/mL; IQR, 0.50-5.8; P = .02). CONCLUSIONS AND CLINICAL IMPORTANCE Recognition of the ACE2 system expands the conventional view of the RAAS in the dog and represents an important potential therapeutic target.
Collapse
Affiliation(s)
- Éva Larouche‐Lebel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Kerry A. Loughran
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Mark A. Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Phil F. Solter
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Danielle S. Laughlin
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Melissa D. Sánchez
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | | | | | - Ryan C. Fries
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignIllinois
| |
Collapse
|
38
|
A microanalytical capillary electrophoresis mass spectrometry assay for quantifying angiotensin peptides in the brain. Anal Bioanal Chem 2019; 411:4661-4671. [PMID: 30953113 DOI: 10.1007/s00216-019-01771-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/23/2019] [Accepted: 03/08/2019] [Indexed: 01/04/2023]
Abstract
The renin-angiotensin system (RAS) of the brain produces a series of biologically active angiotensinogen-derived peptides involved in physiological homeostasis and pathophysiology of disease. Despite significant research efforts to date, a comprehensive understanding of brain RAS physiology is lacking. A significant challenge has been the limited set of bioanalytical assays capable of detecting angiotensin (Ang) peptides at physiologically low concentrations (2-15 fmol/g of wet tissue) and sufficient chemical specificity for unambiguous molecular identifications. Additionally, a complex brain anatomy calls for microanalysis of specific tissue regions, thus further taxing sensitivity requirements for identification and quantification in studies of the RAS. To fill this technology gap, we here developed a microanalytical assay by coupling a laboratory-built capillary electrophoresis (CE) nano-electrospray ionization (nano-ESI) platform to a high-resolution mass spectrometer (HRMS). Using parallel reaction monitoring, we demonstrated that this technology achieved confident identification and quantification of the Ang peptides at approx. 5 amol to 300 zmol sensitivity. This microanalytical assay revealed differential Ang peptide profiles between tissues that were micro-sampled from the subfornical organ and the paraventricular nucleus of the hypothalamus, important brain regions involved in thirst and water homeostasis and neuroendocrine regulation to stress. Microanalytical CE-nano-ESI-HRMS extends the analytical toolbox of neuroscience to help better understand the RAS.
Collapse
|
39
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
40
|
The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 2018; 29:231-243. [PMID: 30413906 DOI: 10.1007/s10286-018-0572-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
Abstract
Complex and bidirectional interactions between the renin-angiotensin system (RAS) and autonomic nervous system have been well established for cardiovascular regulation under both physiological and pathophysiological conditions. Most research to date has focused on deleterious effects of components of the vasoconstrictor arm of the RAS on cardiovascular autonomic control, such as renin, angiotensin II, and aldosterone. The recent discovery of prorenin and the prorenin receptor have further increased our understanding of RAS interactions in autonomic brain regions. Therapies targeting these RAS components, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are commonly used for treatment of hypertension and cardiovascular diseases, with blood pressure-lowering effects attributed in part to sympathetic inhibition and parasympathetic facilitation. In addition, a vasodilatory arm of the RAS has emerged that includes angiotensin-(1-7), ACE2, and alamandine, and promotes beneficial effects on blood pressure in part by reducing sympathetic activity and improving arterial baroreceptor reflex function in animal models. The role of the vasodilatory arm of the RAS in cardiovascular autonomic regulation in clinical populations, however, has yet to be determined. This review will summarize recent developments in autonomic mechanisms involved in the effects of the RAS on cardiovascular regulation, with a focus on newly discovered pathways and therapeutic targets for this hormone system.
Collapse
|
41
|
O’Connor AT, Clark MA. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem Res 2018; 43:1297-1307. [DOI: 10.1007/s11064-018-2557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
|
42
|
Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018; 20:19. [PMID: 29556787 PMCID: PMC5859051 DOI: 10.1007/s11906-018-0823-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In many instances, the renin-angiotensin system (RAS) and the vasopressinergic system (VPS) are jointly activated by the same stimuli and engaged in the regulation of the same processes. Recent Findings Angiotensin II (Ang II) and arginine vasopressin (AVP), which are the main active compounds of the RAS and the VPS, interact at several levels. Firstly, Ang II, acting on AT1 receptors (AT1R), plays a significant role in the release of AVP from vasopressinergic neurons and AVP, stimulating V1a receptors (V1aR), regulates the release of renin in the kidney. Secondly, Ang II and AVP, acting on AT1R and V1aR, respectively, exert vasoconstriction, increase cardiac contractility, stimulate the sympathoadrenal system, and elevate blood pressure. At the same time, they act antagonistically in the regulation of blood pressure by baroreflex. Thirdly, the cooperative action of Ang II acting on AT1R and AVP stimulating both V1aR and V2 receptors in the kidney is necessary for the appropriate regulation of renal blood flow and the efficient resorption of sodium and water. Furthermore, both peptides enhance the release of aldosterone and potentiate its action in the renal tubules. Summary In this review, we (1) point attention to the role of the cooperative action of Ang II and AVP for the regulation of blood pressure and the water-electrolyte balance under physiological conditions, (2) present the subcellular mechanisms underlying interactions of these two peptides, and (3) provide evidence that dysregulation of the cooperative action of Ang II and AVP significantly contributes to the development of disturbances in the regulation of blood pressure and the water-electrolyte balance in cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
43
|
Antlanger M, Domenig O, Kovarik JJ, Kaltenecker CC, Kopecky C, Poglitsch M, Säemann MD. Molecular remodeling of the renin-angiotensin system after kidney transplantation. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317705232. [PMID: 28490223 PMCID: PMC5843863 DOI: 10.1177/1470320317705232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: We aimed at assessing the molecular adaptation of the renin-angiotensin system (RAS) after successful kidney transplantation (KTX). Materials and methods: In this prospective, exploratory study we analyzed 12 hemodialysis (HD) patients, who received a KTX and had excellent graft function six to 12 months thereafter. The concentrations of plasma Angiotensin (Ang) peptides (Ang I, Ang II, Ang-(1–7), Ang-(1–5), Ang-(2–8), Ang-(3–8)) were simultaneously quantified with a novel mass spectrometry-based method. Further, renin and aldosterone concentrations were determined by standard immunoassays. Results: Ang values showed a strong inter-individual variability among HD patients. Yet, despite a continued broad dispersion of Ang values after KTX, a substantial improvement of the renin/Ang II correlation was observed in patients without RAS blockade or on angiotensin receptor blocker (HD: renin/Ang II R2 = 0.660, KTX: renin/Ang II R2 = 0.918). Ang-(1–7) representing the alternative RAS axis was only marginally detectable both on HD and after KTX. Conclusions: Following KTX, renin-dependent Ang II formation adapts in non-ACE inhibitor-treated patients. Thus, a largely normal RAS regulation is reconstituted after successful KTX. However, individual Ang concentration variations and a lack of potentially beneficial alternative peptides after KTX call for individualized treatment. The long-term post-transplant RAS regulation remains to be determined.
Collapse
Affiliation(s)
- Marlies Antlanger
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Oliver Domenig
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Johannes J Kovarik
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Christopher C Kaltenecker
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | - Chantal Kopecky
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| | | | - Marcus D Säemann
- 1 Medical University of Vienna, Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Austria
| |
Collapse
|
44
|
Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens 2017; 40:344-352. [PMID: 29190205 DOI: 10.1080/10641963.2017.1377218] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Renin angiotensin system (RAS) is an endogenous hormone system involved in the control of blood pressure and fluid volume. Dysregulation of RAS has a pathological role in causing cardiovascular diseases through hypertension. Among several key components of RAS, angiotensin peptides, varying in amino acid length and biological function, have important roles in preventing or promoting hypertension, cardiovascular diseases, stroke, vascular remodeling etc. These peptides are generated by the metabolism of inactive angiotensinogen or its derived peptides by hydrolyzing action of certain enzymes. Angiotensin II, angiotensin (1-12), angiotensin A and angiotensin III bind primarily to angiotensin II type 1 receptor and cause vasoconstriction, accumulation of inflammatory markers to sub-endothelial region of blood vessels and activate smooth muscle cell proliferation. Moreover, when bound to angiotensin II type 2 receptor, angiotensin II works as cardio-protective peptide and halt pathological cell signals. Other peptides like angiotensin (1-9), angiotensin (1-7), alamandine and angiotensin IV also help in protecting from cardiovascular diseases by binding to their respective receptors.
Collapse
Affiliation(s)
- Misbah Hussain
- a Diabetes and Cardio-Metabolic disorders Lab, Health Biotechnology Division , National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan.,b Pakistan Institute of Engineering and Applied Sciences (PIEAS) , Nilore , Islamabad , Pakistan
| | - Fazli Rabbi Awan
- a Diabetes and Cardio-Metabolic disorders Lab, Health Biotechnology Division , National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan.,b Pakistan Institute of Engineering and Applied Sciences (PIEAS) , Nilore , Islamabad , Pakistan
| |
Collapse
|
45
|
Antlanger M, Bernhofer S, Kovarik JJ, Kopecky C, Kaltenecker CC, Domenig O, Poglitsch M, Säemann MD. Effects of direct renin inhibition versus angiotensin II receptor blockade on angiotensin profiles in non-diabetic chronic kidney disease. Ann Med 2017; 49:525-533. [PMID: 28358246 DOI: 10.1080/07853890.2017.1313447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Direct renin inhibition (DRI) is clinically inferior to other blockers of the renin-angiotensin system (RAS). Thus far, the underlying molecular causes of this finding remain unknown. METHODS Twenty four patients with non-diabetic chronic kidney disease (CKD) stages III-IV and albuminuria were randomized to DRI or angiotensin receptor blocker (ARB). Employing a novel mass-spectrometry method, the concentrations of renin, aldosterone and plasma angiotensin peptides [Ang I, Ang II, Ang-(1-7), Ang-(1-5), Ang-(2-8), Ang-(3-8)] were quantified before and after an 8-week treatment. RESULTS While blood pressure, renal function and albuminuria decreased comparably in both groups, profound RAS component differences were observed: DRI led to a massive renin increase, while suppressing both vasoconstrictive (Ang I and Ang II) and vasodilatory RAS metabolites (Ang-(1-7) and Ang-(1-5)). In contrast, ARB led to a four-fold increase of Ang I and Ang II, while Ang-(1-7) and Ang-(1-5) increased moderately but significantly. With ARB treatment, a decreased aldosterone-to-Ang II ratio suggested efficacy in blocking AT1 receptor. CONCLUSIONS DRI therapy abolishes all RAS effector peptides. ARB increases both vasoconstrictive and vasodilative angiotensins, while this is accompanied by efficient blockade of vasoconstrictive effects. These differential molecular regulations should be considered when selecting optimal antihypertensive and disease-modifying therapy in CKD patients. Key messages Direct renin inhibition leads to a complete and lasting abolition of both classical and alternative RAS components. Angiotensin receptor blockade leads to effective receptor blockade and up-regulation of alternative RAS components. Differential molecular regulations of the RAS should be considered when selecting optimal antihypertensive and disease-modifying therapy in CKD patients.
Collapse
Affiliation(s)
- Marlies Antlanger
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria
| | - Sebastian Bernhofer
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria
| | - Johannes J Kovarik
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria
| | - Chantal Kopecky
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria
| | - Christopher C Kaltenecker
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria
| | - Oliver Domenig
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria
| | | | - Marcus D Säemann
- a Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis , Medical University of Vienna , Vienna , Austria.,c Department of Internal Medicine VI, Division of Nephrology , Wilhelminenspital , Vienna , Austria
| |
Collapse
|
46
|
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125:21-38. [PMID: 28619367 DOI: 10.1016/j.phrs.2017.06.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is undisputedly one of the most prominent endocrine (tissue-to-tissue), paracrine (cell-to-cell) and intracrine (intracellular/nuclear) vasoactive systems in the physiological regulation of neural, cardiovascular, blood pressure, and kidney function. The importance of the RAS in the development and pathogenesis of cardiovascular, hypertensive and kidney diseases has now been firmly established in clinical trials and practice using renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, type 1 (AT1) angiotensin II (ANG II) receptor blockers (ARBs), or aldosterone receptor antagonists as major therapeutic drugs. The major mechanisms of actions for these RAS inhibitors or receptor blockers are mediated primarily by blocking the detrimental effects of the classic angiotensinogen/renin/ACE/ANG II/AT1/aldosterone axis. However, the RAS has expanded from this classic axis to include several other complex biochemical and physiological axes, which are derived from the metabolism of this classic axis. Currently, at least five axes of the RAS have been described, with each having its key substrate, enzyme, effector peptide, receptor, and/or downstream signaling pathways. These include the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor, the ANG II/APA/ANG III/AT2/NO/cGMP, the ANG I/ANG II/ACE2/ANG (1-7)/Mas receptor, the prorenin/renin/prorenin receptor (PRR or Atp6ap2)/MAP kinases ERK1/2/V-ATPase, and the ANG III/APN/ANG IV/IRAP/AT4 receptor axes. Since the roles and therapeutic implications of the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor axis have been extensively reviewed, this article will focus primarily on reviewing the roles and therapeutic implications of the vasoprotective axes of the RAS in cardiovascular, hypertensive and kidney diseases.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Jianfeng Zhang
- Department of Emergency Medicine, The 2nd Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| |
Collapse
|
47
|
Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect. Int J Hypertens 2017; 2017:3967595. [PMID: 28421141 PMCID: PMC5380851 DOI: 10.1155/2017/3967595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response.
Collapse
|
48
|
Lobo MD, Sobotka PA, Pathak A. Interventional procedures and future drug therapy for hypertension. Eur Heart J 2017; 38:1101-1111. [PMID: 27406184 PMCID: PMC5400047 DOI: 10.1093/eurheartj/ehw303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hypertension management poses a major challenge to clinicians globally once non-drug (lifestyle) measures have failed to control blood pressure (BP). Although drug treatment strategies to lower BP are well described, poor control rates of hypertension, even in the first world, suggest that more needs to be done to surmount the problem. A major issue is non-adherence to antihypertensive drugs, which is caused in part by drug intolerance due to side effects. More effective antihypertensive drugs are therefore required which have excellent tolerability and safety profiles in addition to being efficacious. For those patients who either do not tolerate or wish to take medication for hypertension or in whom BP control is not attained despite multiple antihypertensives, a novel class of interventional procedures to manage hypertension has emerged. While most of these target various aspects of the sympathetic nervous system regulation of BP, an additional procedure is now available, which addresses mechanical aspects of the circulation. Most of these new devices are supported by early and encouraging evidence for both safety and efficacy, although it is clear that more rigorous randomized controlled trial data will be essential before any of the technologies can be adopted as a standard of care.
Collapse
Affiliation(s)
- Melvin D. Lobo
- Barts BP Centre of Excellence, Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Paul A. Sobotka
- The Ohio State University, Columbus, OH, USA
- ROX Medical, San Clemente, CA, USA
| | - Atul Pathak
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Unit, Health Innovation Lab (Hi-Lab) Clinique Pasteur, Toulouse, France
| |
Collapse
|
49
|
Ismail MAM, Mateos L, Maioli S, Merino-Serrais P, Ali Z, Lodeiro M, Westman E, Leitersdorf E, Gulyás B, Olof-Wahlund L, Winblad B, Savitcheva I, Björkhem I, Cedazo-Mínguez A. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation. J Exp Med 2017; 214:699-717. [PMID: 28213512 PMCID: PMC5339669 DOI: 10.1084/jem.20160534] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/17/2016] [Accepted: 10/28/2016] [Indexed: 01/23/2023] Open
Abstract
Ismail et al. show that 27-hydroxycholesterol, a peripheral cholesterol metabolite capable of passing the blood–brain barrier, reduces brain glucose uptake by upregulating the renin-angiotensin system and inhibiting GLUT4. This alteration affects memory processes and is likely to have implications on neurodegenerative diseases. Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders.
Collapse
Affiliation(s)
- Muhammad-Al-Mustafa Ismail
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Laura Mateos
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Paula Merino-Serrais
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Zeina Ali
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Lodeiro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Eran Leitersdorf
- Center for Research, Prevention, and Treatment of Atherosclerosis, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Balázs Gulyás
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Olof-Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Irina Savitcheva
- Department of Radiology, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Angel Cedazo-Mínguez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
50
|
Gomez JDC, Hagenbach A, Gerling-Driessen UIM, Koksch B, Beindorff N, Brenner W, Abram U. Thiourea derivatives as chelating agents for bioconjugation of rhenium and technetium. Dalton Trans 2017; 46:14602-14611. [DOI: 10.1039/c7dt01834g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A99mTc complex with a tetradentate thiocarbamoylbenzamidine group was used for the conjugation of angiotensin-II. The resulting bioconjugate is stablein vivoandin vitro.
Collapse
Affiliation(s)
- J. D. Castillo Gomez
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | - A. Hagenbach
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | | | - B. Koksch
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| | - N. Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC)
- D-13353 Berlin
- Germany
| | - W. Brenner
- Department of Nuclear Medicine
- Charité
- Campus Virchow Klinikum
- D-13353 Berlin
- Germany
| | - U. Abram
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- D-14195 Berlin
- Germany
| |
Collapse
|