1
|
Bhargava A. Unraveling corticotropin-releasing factor family-orchestrated signaling and function in both sexes. VITAMINS AND HORMONES 2023; 123:27-65. [PMID: 37717988 DOI: 10.1016/bs.vh.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Stress responses to physical, psychological, environmental, or cellular stressors, has two arms: initiation and recovery. Corticotropin-releasing factor (CRF) is primarily responsible for regulating and/or initiating stress responses via, whereas urocortins (UCNs) are involved in the recovery response to stress via feedback inhibition. Stress is a loaded, polysemous word and is experienced in a myriad of ways. Some stressors are good for an individual, in fact essential, whereas other stressors are associated with bad outcomes. Perceived stress, like beauty, lies in the eye of the beholder, and hence the same stressor can result in individual-specific outcomes. In mammals, there are two main biological sexes with reproduction as primary function. Reproduction and nutrition can also be viewed as stressors; based on a body of work from my laboratory, we propose that the functions of all other organs have co-evolved to optimize and facilitate an individual's nutritional and reproductive functions. Hence, sex differences in physiologically relevant outcomes are innate and occur at all levels- molecular, endocrine, immune, and (patho)physiological. CRF and three UCNs are peptide hormones that mediate their physiological effects by binding to two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Expression and function of CRF family of hormones and their receptors is likely to be sexually dimorphic in all organs. In this chapter, based on the large body of work from others and my laboratory, an overview of the CRF family with special emphasis on sex-specific actions of peripherally expressed CRF2 receptor in health and disease is provided.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
2
|
Sex Differences in the Exocrine Pancreas and Associated Diseases. Cell Mol Gastroenterol Hepatol 2021; 12:427-441. [PMID: 33895424 PMCID: PMC8255941 DOI: 10.1016/j.jcmgh.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Differences in pancreatic anatomy, size, and function exist in men and women. The anatomical differences could contribute to the increase in complications associated with pancreatic surgery in women. Although diagnostic criteria for pancreatitis are the same in men and women, major sex differences in etiology are reported. Alcohol and tobacco predominate in men, whereas idiopathic and obstructive etiologies predominate in women. Circulating levels of estrogens, progesterone, and androgens contribute significantly to overall health outcomes; premenopausal women have lower prevalence of cardiovascular and pancreatic diseases suggesting protective effects of estrogens, whereas androgens promote growth of normal and cancerous cells. Sex chromosomes and gonadal and nongonadal hormones together determine an individual's sex, which is distinct from gender or gender identity. Human pancreatic disease etiology, outcomes, and sex-specific mechanisms are largely unknown. In rodents of both sexes, glucocorticoids and estrogens from the adrenal glands influence pancreatic secretion and acinar cell zymogen granule numbers. Lack of corticotropin-releasing factor receptor 2 function, a G protein-coupled receptor whose expression is regulated by both estrogens and glucocorticoids, causes sex-specific changes in pancreatic histopathology, zymogen granule numbers, and endoplasmic reticulum ultrastructure changes in acute pancreatitis model. Here, we review existing literature on sex differences in the normal exocrine pancreas and mechanisms that operate at homeostasis and diseased states in both sexes. Finally, we review pregnancy-related pancreatic diseases and discuss the effects of sex differences on proposed treatments in pancreatic disease.
Collapse
|
3
|
Xu H, Shi X, Li X, Zou J, Zhou C, Liu W, Shao H, Chen H, Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation 2020; 17:356. [PMID: 33239034 PMCID: PMC7691095 DOI: 10.1186/s12974-020-02029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
Collapse
Affiliation(s)
- Huaping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Li
- School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Jiexin Zou
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chunyan Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
4
|
Corticotropin-Releasing Factor Family: A Stress Hormone-Receptor System's Emerging Role in Mediating Sex-Specific Signaling. Cells 2020; 9:cells9040839. [PMID: 32244319 PMCID: PMC7226788 DOI: 10.3390/cells9040839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
No organ in the body is impervious to the effects of stress, and a coordinated response from all organs is essential to deal with stressors. A dysregulated stress response that fails to bring systems back to homeostasis leads to compromised function and ultimately a diseased state. The components of the corticotropin-releasing factor (CRF) family, an ancient and evolutionarily conserved stress hormone-receptor system, helps both initiate stress responses and bring systems back to homeostasis once the stressors are removed. The mammalian CRF family comprises of four known agonists, CRF and urocortins (UCN1–3), and two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Evolutionarily, precursors of CRF- and urocortin-like peptides and their receptors were involved in osmoregulation/diuretic functions, in addition to nutrient sensing. Both CRF and UCN1 peptide hormones as well as their receptors appeared after a duplication event nearly 400 million years ago. All four agonists and both CRF receptors show sex-specific changes in expression and/or function, and single nucleotide polymorphisms are associated with a plethora of human diseases. CRF receptors harbor N-terminal cleavable peptide sequences, conferring biased ligand properties. CRF receptors have the ability to heteromerize with each other as well as with other GPCRs. Taken together, CRF receptors and their agonists due to their versatile functional adaptability mediate nuanced responses and are uniquely positioned to orchestrate sex-specific signaling and function in several tissues.
Collapse
|
5
|
Kavalakatt S, Khadir A, Madhu D, Hammad M, Devarajan S, Abubaker J, Al-Mulla F, Tuomilehto J, Tiss A. Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise. Front Endocrinol (Lausanne) 2019; 10:762. [PMID: 31781037 PMCID: PMC6851015 DOI: 10.3389/fendo.2019.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Urocortin3 (UCN3) regulates metabolic functions and is involved in cellular stress response. Although UCN3 is expressed in human adipose tissue, the association of UCN3 with obesity and diabetes remains unclear. This study investigated the effects of Type 2 diabetes (T2D) and increased body weight on the circulatory and subcutaneous adipose tissue (SAT) levels of UCN3 and assessed UCN3 modulation by a regular physical exercise. Normal-weight (n = 37) and overweight adults with and without T2D (n = 98 and n = 107, respectively) were enrolled in the study. A subset of the overweight subjects (n = 39 for each group) underwent a supervised 3-month exercise program combining both moderate intensity aerobic exercise and resistance training with treadmill. UCN3 levels in SAT were measured by immunofluorescence and RT-PCR. Circulatory UCN3 in plasma was assessed by ELISA and was correlated with various clinical and metabolic markers. Our data revealed that plasma UCN3 levels decreased in overweight subjects without T2D compared with normal-weight controls [median; 11.99 (0.78-86.07) and 6.27 (0.64-77.04), respectively; p < 0.001], whereas plasma UCN3 levels increased with concomitant T2D [median; 9.03 (0.77-104.92) p < 0.001]. UCN3 plasma levels were independently associated with glycemic index; fasting plasma glucose and hemoglobin A1c (r = 0.16 and r = 0.20, p < 0.05, respectively) and were significantly different between both overweight, with and without T2D, and normal-weight individuals (OR = 2.11 [1.84-4.11, 95% CI] and OR = 2.12 [1.59-3.10, 95% CI], p < 0.01, respectively). Conversely, the UCN3 patterns observed in SAT were opposite to those in circulation; UCN3 levels were significantly increased with body weight and decreased with T2D. After a 3-month supervised exercise protocol, UCN3 expression showed a significant reduction in SAT of both overweight groups (2.3 and 1.6-fold change; p < 0.01, respectively). In conclusion, UCN levels are differentially dysregulated in obesity in a tissue-dependent manner and can be mitigated by regular moderate physical exercise.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelkrim Khadir
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dhanya Madhu
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha Hammad
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ali Tiss
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Ali Tiss
| |
Collapse
|
6
|
D'Costa S, Ayyadurai S, Gibson AJ, Mackey E, Rajput M, Sommerville LJ, Wilson N, Li Y, Kubat E, Kumar A, Subramanian H, Bhargava A, Moeser AJ. Mast cell corticotropin-releasing factor subtype 2 suppresses mast cell degranulation and limits the severity of anaphylaxis and stress-induced intestinal permeability. J Allergy Clin Immunol 2018; 143:1865-1877.e4. [PMID: 30439403 DOI: 10.1016/j.jaci.2018.08.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Psychological stress and heightened mast cell (MC) activation are linked with important immunologic disorders, including allergy, anaphylaxis, asthma, and functional bowel diseases, but the mechanisms remain poorly defined. We have previously demonstrated that activation of the corticotropin-releasing factor (CRF) system potentiates MC degranulation responses during IgE-mediated anaphylaxis and psychological stress through corticotropin-releasing factor receptor subtype 1 (CRF1) expressed on MCs. OBJECTIVE In this study we investigated the role of corticotropin-releasing factor receptor subtype 2 (CRF2) as a modulator of stress-induced MC degranulation and associated disease pathophysiology. METHODS In vitro MC degranulation assays were performed with bone marrow-derived mast cells (BMMCs) derived from wild-type (WT) and CRF2-deficient (CRF2-/-) mice and RBL-2H3 MCs transfected with CRF2-overexpressing plasmid or CRF2 small interfering RNA. In vivo MC responses and associated pathophysiology in IgE-mediated passive systemic anaphylaxis and acute psychological restraint stress were measured in WT, CRF2-/-, and MC-deficient KitW-sh/W-sh knock-in mice. RESULTS Compared with WT mice, CRF2-/- mice exhibited greater serum histamine levels and exacerbated IgE-mediated anaphylaxis and colonic permeability. In addition, CRF2-/- mice exhibited increased serum histamine levels and colonic permeability after acute restraint stress. Experiments with BMMCs and RBL-2H3 MCs demonstrated that CRF2 expressed on MCs suppresses store-operated Ca2+ entry signaling and MC degranulation induced by diverse MC stimuli. Experiments with MC-deficient KitW-sh/W-sh mice systemically engrafted with WT and CRF2-/- BMMCs demonstrated the functional importance of MC CRF2 in modulating stress-induced pathophysiology. CONCLUSIONS MC CRF2 is a negative global modulator of stimuli-induced MC degranulation and limits the severity of IgE-mediated anaphylaxis and stress-related disease pathogenesis.
Collapse
Affiliation(s)
- Susan D'Costa
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC
| | - Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | | | - Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich; Comparative Biomedical Sciences Program, North Carolina State University, Raleigh, NC
| | - Mrigendra Rajput
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | | | - Neco Wilson
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich
| | - Eric Kubat
- Department of Surgery, East Bay, University of California, San Francisco, Calif
| | - Ananth Kumar
- Department of Physiology, Michigan State University, East Lansing, Mich
| | | | - Aditi Bhargava
- Department of Surgery and Osher Center for Integrative Medicine, University of California, San Francisco, Calif
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, Mich; Department of Physiology, Michigan State University, East Lansing, Mich.
| |
Collapse
|
7
|
Paruthiyil S, Hagiwara SI, Kundassery K, Bhargava A. Sexually dimorphic metabolic responses mediated by CRF 2 receptor during nutritional stress in mice. Biol Sex Differ 2018; 9:49. [PMID: 30400826 PMCID: PMC6218963 DOI: 10.1186/s13293-018-0208-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/21/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic stress is a major contributor in the development of metabolic syndrome and associated diseases, such as diabetes. High-fat diet (HFD) and sex are known modifiers of metabolic parameters. Peptide hormones corticotropin-releasing factor (CRF) and urocortins (UCN) mediate stress responses via activation and feedback to the hypothalamic-pituitary-adrenal (HPA) axis. UCN3 is a marker of pancreatic β-cell differentiation, and UCN2 is known to ameliorate glucose levels in mice rendered diabetic with HFD. CRF receptor 2 (CRF2) is the only known cognate receptor for UCN2/3. Here, we ascertained the role of CRF2 in glucose clearance, insulin sensitivity, and other parameters associated with metabolic syndrome in a mouse model of nutritional stress. METHODS Wild-type (WT) and Crhr2-/- (null) mice of both sexes were fed either normal chow diet or HFD. After 8 weeks, blood glucose levels in response to glucose and insulin challenge were determined. Change in body and fat mass, plasma insulin, and lipid profile were assessed. Histological evaluation of liver sections was performed. RESULTS Here, we show that genotype (Crhr2), sex, and diet were all independent variables in the regulation of blood glucose levels, body and fat mass gain/redistribution, and insulin resistance. Surprisingly, CRF2-deficient mice (Crhr2-/-) male mice showed similarly impaired glucose clearance on HFD and chow. HFD-fed female Crhr2-/- mice redistributed their fat depots that were distinct from wild-type females and male mice on either diet. Blood cholesterol and low-density lipoprotein (LDL) levels were elevated significantly in male Crhr2-/- mice; female Crhr2-/- mice were protected. Male, but not female Crhr2-/- mice developed peripheral insulin resistance. HFD, but not chow-fed wild-type male mice developed hepatic macrovesicular steatosis. In contrast, livers of Crhr2-/- male mice showed microvesicular steatosis on either diet, whereas livers of female mice on this 8-week HFD regimen did not develop steatosis. CONCLUSIONS CRF2 receptor dysregulation is a sexually dimorphic risk factor in development of pre-diabetic and metabolic symptoms.
Collapse
Affiliation(s)
- Sreenivasan Paruthiyil
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA
| | - Shin-Ichiro Hagiwara
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA
| | - Keshav Kundassery
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for reproductive Sciences, and the Osher Center for Integrative Medicine, University of California San Francisco, 513 Parnassus Ave., HSE1645, Box 0556, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
8
|
Hagiwara SI, Kaushal E, Paruthiyil S, Pasricha PJ, Hasdemir B, Bhargava A. Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia. PLoS One 2018; 13:e0203704. [PMID: 30192883 PMCID: PMC6128656 DOI: 10.1371/journal.pone.0203704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by dysregulated gut-brain interactions. Emerging evidence shows that low-grade mucosal inflammation and immune activation contribute to FGIDs, including functional dyspepsia (FD). Stress plays an important role in the onset of FD symptoms. In human subjects with FD, presence of gastric mast cells has been reported, but factors that influence mast cell infiltration remain uncharacterized. Corticotropin-releasing factor (CRF) initiates the body's stress response and is known to degranulate mast cells. In this study, we delineated the role of the CRF system in the pathogenesis of FD in a rat model. Gastric irritation in neonate rat pups with iodoacetamide (IA) was used to induce FD-like symptoms. RNA interference (RNAi) was used to silence gastric CRF expression. Mast cell infiltrate in the stomach increased by 54% in IA-treated rats compared to controls and CRF-RNAi tended to decrease gastric mast cell infiltrate. Sucrose intake decreased in IA-treated rats and mast cell numbers showed a negative association with sucrose intake. IA treatment and transient silencing of gastric CRF increased hypothalamic CRF levels. In IA-treated rats, gastric levels of CRF receptor 2 (CRF2) decreased by ~76%, whereas hypothalamic CRF receptor 1 (CRF1) levels increased. Plasma levels of TNF-α showed a positive correlation with plasma CRF levels. Levels of phosphorylated p38 and ERK1/2 in the stomach showed a positive correlation with gastric CRF levels. Thus, CRF may contribute to low grade inflammation via modulating mast cell infiltration, cytokine levels, MAPK signaling, and the gut-brain axis.
Collapse
Affiliation(s)
- Shin-ichiro Hagiwara
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Esha Kaushal
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Sreenivasan Paruthiyil
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Pankaj J. Pasricha
- Division of Gastroenterology & Hepatology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Burcu Hasdemir
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Aditi Bhargava
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OBGYN, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
9
|
Hasdemir B, Mahajan S, Oses-Prieto J, Chand S, Woolley M, Burlingame A, Grammatopoulos DK, Bhargava A. Actin cytoskeleton-dependent regulation of corticotropin-releasing factor receptor heteromers. Mol Biol Cell 2017; 28:2386-2399. [PMID: 28701349 PMCID: PMC5576902 DOI: 10.1091/mbc.e16-11-0778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023] Open
Abstract
A physical interaction is shown between CRF1R and CRF2R, two class B G protein–coupled receptors that mediate stress and immune responses. Trafficking of CRF2R but not CRF1R is actin dependent, and coexpression of the two receptors alters actin-independent trafficking. Receptor cross-talk alters agonist binding and signaling. Stress responses are highly nuanced and variable, but how this diversity is achieved by modulating receptor function is largely unknown. Corticotropin-releasing factor receptors (CRFRs), class B G protein–coupled receptors, are pivotal in mediating stress responses. Here we show that the two known CRFRs interact to form heteromeric complexes in HEK293 cells coexpressing both CRFRs and in vivo in mouse pancreas. Coimmunoprecipitation and mass spectrometry confirmed the presence of both CRF1R and CRF2βR, along with actin in these heteromeric complexes. Inhibition of actin filament polymerization prevented the transport of CRF2βR to the cell surface but had no effect on CRF1R. Transport of CRF1R when coexpressed with CRF2βR became actin dependent. Simultaneous stimulation of cells coexpressing CRF1R+CRF2βR with their respective high-affinity agonists, CRF+urocortin2, resulted in approximately twofold increases in peak Ca2+ responses, whereas stimulation with urocortin1 that binds both receptors with 10-fold higher affinity did not. The ability of CRFRs to form heteromeric complexes in association with regulatory proteins is one mechanism to achieve diverse and nuanced function.
Collapse
Affiliation(s)
- Burcu Hasdemir
- Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA 94143.,Department of Obstetrics & Gynecology, University of California, San Francisco, San Francisco, CA 94143
| | - Shilpi Mahajan
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Oses-Prieto
- Departments of Pediatrics, Pharmacology, and Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Shreya Chand
- Departments of Pediatrics, Pharmacology, and Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Michael Woolley
- Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Alma Burlingame
- Departments of Pediatrics, Pharmacology, and Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Dimitris K Grammatopoulos
- Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Aditi Bhargava
- Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA 94143 .,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143.,Department of Obstetrics & Gynecology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
10
|
Ayyadurai S, Gibson AJ, D'Costa S, Overman EL, Sommerville LJ, Poopal AC, Mackey E, Li Y, Moeser AJ. Frontline Science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J Leukoc Biol 2017; 102:1299-1312. [PMID: 28684600 DOI: 10.1189/jlb.2hi0317-088rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Life stress is a major risk factor in the onset and exacerbation of mast cell-associated diseases, including allergy/anaphylaxis, asthma, and irritable bowel syndrome. Although it is known that mast cells are highly activated upon stressful events, the mechanisms by which stress modulates mast cell function and disease pathophysiology remains poorly understood. Here, we investigated the role of corticotropin-releasing factor receptor subtype 1 (CRF1) in mast cell degranulation and associated disease pathophysiology. In a mast cell-dependent model of IgE-mediated passive systemic anaphylaxis (PSA), prophylactic administration of the CRF1-antagonist antalarmin attenuated mast cell degranulation and hypothermia. Mast cell-deficient KitW-sh/W-sh mice engrafted with CRF1-/- bone marrow-derived mast cells (BMMCs) exhibited attenuated PSA-induced serum histamine, hypothermia, and clinical scores compared with wild-type BMMC-engrafted KitW-sh/W-sh mice. KitW-sh/W-sh mice engrafted with CRF1-/- BMMCs also exhibited suppressed in vivo mast cell degranulation and intestinal permeability in response to acute restraint stress. Genetic and pharmacologic experiments with murine BMMCs, rat RBL-2H3, and human LAD2 mast cells demonstrated that although CRF1 activation did not directly induce MC degranulation, CRF1 signaling potentiated the degranulation responses triggered by diverse mast cell stimuli and was associated with enhanced release of Ca2+ from intracellular stores. Taken together, our results revealed a prominent role for CRF1 signaling in mast cells as a positive modulator of stimuli-induced degranulation and in vivo pathophysiologic responses to immunologic and psychologic stress.
Collapse
Affiliation(s)
- Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Susan D'Costa
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth L Overman
- Department of Biology, Methodist University, Fayetteville, North Carolina, USA
| | - Laura J Sommerville
- Department of Pathology, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Ashwini C Poopal
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA.,Comparative Biomedical Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; .,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA; and.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Xu WX. Central and Peripheral Modulation of Visceral Pain and Visceral Hypersensitivity by the CRF-CRFR System. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ghoa.2017.06.00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Corticotropin-Releasing Factor and Toll-Like Receptor Gene Expression Is Associated with Low-Grade Inflammation in Irritable Bowel Syndrome Patients with Depression. Gastroenterol Res Pract 2016; 2016:7394924. [PMID: 27478433 PMCID: PMC4960335 DOI: 10.1155/2016/7394924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
The mechanism of low-grade inflammation in irritable bowel syndrome (IBS) is unclear; our research concentrates on the involvement of the corticotropin-releasing factor (CRF) and Toll-like receptor (TLR) gene expression in the process of low-grade inflammation in IBS patients with depression. This study suggests more IBS patients are presenting with the states of depression and anxiety. IBS patients with depression have shown a lower grade inflammatory response and an imbalance of the inflammatory response. CRF1, CRF2, TLR2, and TLR4 in IBS patients with depression are significantly higher than those without depression and controls. Thus, activation of the CRF-TLR associated pathways produces an inflammatory reaction, which can concurrently affect the digestive tract and the CNS and induce the corresponding digestive and psychiatric symptoms.
Collapse
|
13
|
Hasdemir B, Mhaske P, Paruthiyil S, Garnett EA, Heyman MB, Matloubian M, Bhargava A. Sex- and corticotropin-releasing factor receptor 2- dependent actions of urocortin 1 during inflammation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1244-57. [PMID: 27053649 DOI: 10.1152/ajpregu.00445.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/25/2016] [Indexed: 12/20/2022]
Abstract
We investigated whether corticotropin-releasing factor receptor 2 (CRF2) and its high-affinity agonist urocortin 1 (Ucn1) mediate sex-specific signaling and immune responses. Intrarectal trinitrobenzene sulfonic acid was used to induce experimental colitis in wild-type, CRF2 knockout (CRF2KO), and heterozygous (CRF2Ht) mice of both sexes. Changes in plasma extravasation, organ weight, survival, immune cell numbers, inflammatory cytokines, and the MAPK signaling pathway were assessed. Stored intestinal biopsies from patients with Crohn's disease (CD) and age- and sex-matched individuals without inflammatory bowel disease (IBD) were examined by immunofluorescence and confocal microscopy to characterize Ucn1 and CRF receptor expression. CRF2Ht mice of both sexes showed decreased survival during colitis compared with other genotypes. Ucn1 improved survival in male mice alone. Ucn1 restored colon length and spleen and adrenal weight and decreased colonic TNF-α, IL-6, and IL-1β levels in male CRF2Ht mice alone. CRF2Ht mice of both sexes showed decreased phosphorylation of MAPK p38 and heat shock protein 27 (Hsp27) levels. Ucn1 restored p-Hsp27 levels in male CRF2Ht mice alone. Expression of the chaperone protein Hsp90 decreased during colitis, except in male CRF2Ht mice. Taken together, our data indicate that sex shows significant interaction with genotype and Ucn1 during colitis. Human duodenal and colonic biopsies revealed that sex-specific differences exist in levels of CRF receptors and Ucn1 expression in patients with CD compared with the matched non-IBD subjects. To conclude, Ucn1 mediates sex-specific immune and cellular signaling responses via CRF2, emphasizing the need for inclusion of females in preclinical studies.
Collapse
Affiliation(s)
- Burcu Hasdemir
- Department of Surgery, University of California, San Francisco; The Osher Center for Integrative Medicine, University of California, San Francisco
| | - Pallavi Mhaske
- Department of Surgery, University of California, San Francisco
| | | | | | - Melvin B Heyman
- Department of Pediatrics, University of California, San Francisco
| | - Mehrdad Matloubian
- Division of Rheumatology and Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, University of California, San Francisco
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco; The Osher Center for Integrative Medicine, University of California, San Francisco;
| |
Collapse
|
14
|
Yuan PQ, Wu SV, Pothoulakis C, Taché Y. Urocortins and CRF receptor type 2 variants in the male rat colon: gene expression and regulation by endotoxin and anti-inflammatory effect. Am J Physiol Gastrointest Liver Physiol 2016; 310:G387-98. [PMID: 26744472 PMCID: PMC4796293 DOI: 10.1152/ajpgi.00337.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023]
Abstract
Urocortins (Ucns) 1, 2, and 3 and corticotropin-releasing factor receptor 2 (CRF2) mRNA are prominently expressed in various layers of the upper gut. We tested whether Ucns and CRF2 variants are also expressed in the different layers of the rat colon, regulated by LPS (100 μg/kg ip) and play a modulatory role in the colonic immune response to LPS. Transcripts of Ucns and CRF2b, the most common isoform in the periphery, were detected in all laser microdissected layers, including myenteric neurons. LPS increased the mRNA level of Ucn 1, Ucn 2, and Ucn 3 and decreased that of CRF2b in both the colonic mucosa and submucosa + muscle (S+M) layers at 2, 6, and 9 h after injection with a return to basal at 24 h. In addition, CRF2a, another variant more prominent in the brain, and a novel truncated splice variant CRF2a-3 mRNA were detected in all segments of the large intestine. LPS reciprocally regulated the colonic expression of these CRF2 variants by decreasing both CRF2a and CRF2b, while increasing CRF2a-3 in the mucosa and S+M. The CRF2 antagonist astressin2-B further enhanced LPS-induced increase of mRNA level of interleukin (IL)-1β, TNF-α, and inducible nitric oxide synthase in S+M layers and IL-1β in the mucosa and evoked TNF-α expression in the mucosa. These data indicate that Ucns/CRF2 variants are widely expressed in all colonic layers and reciprocally regulated by LPS. CRF2 signaling dampens the CD14/TLR4-mediated acute inflammatory response to Gram-negative bacteria in the colon.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| | - S Vincent Wu
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| | - Yvette Taché
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
15
|
LIU SUMEI, CHANG JEN, LONG NICOLE, BECKWITH KAYLEE, TALHOUARNE GAËLLE, BROOKS JULIAJ, QU MEIHUA, REN WEI, WOOD JACKIED, COOPER SCOTT, BHARGAVA ADITI. Endogenous CRF in rat large intestine mediates motor and secretory responses to stress. Neurogastroenterol Motil 2016; 28:281-91. [PMID: 26611915 PMCID: PMC4727995 DOI: 10.1111/nmo.12725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) mediates our body's overall responses to stress. The role of central CRF in stress-stimulated colonic motility is well characterized. We hypothesized that transient perturbation in expression of enteric CRF is sufficient to change stress-induced colonic motor and secretory responses. METHODS Sprague-Dawley rats (adult, male) were subjected to 1-h partial restraint stress (PRS) and euthanized at 0, 4, 8, and 24 h. CRF mRNA and peptide levels in the colon were quantified by real-time RT-PCR, enzyme immuno-assay and immunohistochemistry. Double-stranded RNA (dsRNA) designed to target CRF (dsCRF) was injected into the colonic wall to attain RNA interference-mediated inhibition of CRF mRNA expression. DsRNA for β-globin was used as a control (dsControl). Four days after dsRNA injection, rats were subjected to 1-h PRS. Fecal output was measured. Ussing chamber techniques were used to assess colonic mucosal ion secretion and transepithelial tissue conductance. KEY RESULTS Exposure to PRS elevated CRF expression and increased CRF release in the rat colon. Injection of dsCRF inhibited basal CRF expression and prevented the PRS-induced increase in CRF expression, whereas CRF expression in dsControl-injected colons remained high after PRS. In rats treated with dsControl, PRS caused a significant increase in fecal pellet output, colonic baseline ion secretion, and transepithelial tissue conductance. Inhibition of CRF expression in the colon prevented PRS-induced increase in fecal output, baseline ion secretion, and transepithelial tissue conductance. CONCLUSIONS & INFERENCES These results provide direct evidence that transient perturbation in peripherally expressed CRF prevents colonic responses to stress.
Collapse
Affiliation(s)
- SUMEI LIU
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA,Corresponding author: Sumei Liu, Ph.D., Address: Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, 3010 Cowley Hall, 1725 State Street, La Crosse, WI 54601, USA, Tel: 1-608-785-6971, Fax: 1-608-785-6959,
| | - JEN CHANG
- Department of Ob-Gyn and Surgery, The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - NICOLE LONG
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - KAYLEE BECKWITH
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - GAËLLE TALHOUARNE
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - JULIA J. BROOKS
- Department of Ob-Gyn and Surgery, The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - MEI-HUA QU
- Departments of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - WEI REN
- Departments of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - JACKIE D. WOOD
- Departments of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - SCOTT COOPER
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - ADITI BHARGAVA
- Department of Ob-Gyn and Surgery, The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Corticotropin-Releasing Hormone Receptor 2 Gene Variants in Irritable Bowel Syndrome. PLoS One 2016; 11:e0147817. [PMID: 26808377 PMCID: PMC4726564 DOI: 10.1371/journal.pone.0147817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Background Corticotropin-releasing hormone (CRH) plays an important role in the pathophysiology of irritable bowel syndrome (IBS) and regulates the stress response through two CRH receptors (R1 and R2). Previously, we reported that a CRHR1 gene polymorphism (rs110402, rs242924, and rs7209436) and haplotypes were associated with IBS. However, the association between the CRHR2 gene and IBS was not investigated. We tested the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are associated with IBS pathophysiology and negative emotion in IBS patients. Methods A total of 142 IBS patients and 142 healthy controls participated in this study. Seven single nucleotide polymorphisms (SNPs) of the CRHR2 gene (rs4722999, rs3779250, rs2240403, rs2267710, rs2190242, rs2284217, and rs2284220) were genotyped. Subjects' psychological states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-Rating Depression Scale. Results We found that rs4722999 and rs3779250, located in intronic region, were associated with IBS in terms of genotype frequency (rs4722999: P = 0.037; rs3779250: P = 0.017) and that the distribution of the major allele was significantly different between patients and controls. There was a significant group effect (controls vs. IBS), and a CRHR2 genotype effect was observed for three psychological scores, but the interaction was not significant. We found a haplotype of four SNPs (rs4722999, rs3779250, rs2240403, and rs2267710) and two SNPs (rs2284217 and rs2284220) in strong linkage disequilibrium (D′ > 0.90). We also found that haplotypes of the CRHR2 gene were significantly different between IBS patients and controls and that they were associated with negative emotion. Conclusion Our findings support the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are related to IBS. In addition, we found associations between CRHR2 genotypes and haplotypes and negative emotion in IBS patients and controls. Further studies on IBS and the CRH system are warranted.
Collapse
|
17
|
Temur M, Yilmaz Ö, Aksun S, Özün Özbay P, Calan M, Küme T, Karakulak M, Korkmaz HA. Increased circulating urocortin-3 levels is associated with polycystic ovary syndrome. Gynecol Endocrinol 2016; 32:218-22. [PMID: 26488073 DOI: 10.3109/09513590.2015.1110135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was aimed to compare serum urocortin-3 (UCN3) levels in women with polycystic ovary syndrome (PCOS) and healthy women, and establish what role UCN3 levels play in PCOS. Fifty-two patients with PCOS and 55 healthy women were included in the study, matched for age and body mass index. Fasting blood glucose (FBG), insulin, hs-CRP, UCN3 and free-testosterone levels of the all participants were measured. HOMA-IR was used to calculate the insulin resistance. Circulating UCN3 levels were significantly increased in women with PCOS than in control subjects (54.49 ± 5.77 versus 51.28 ± 5.86 pmol/l, p = 0.005). Serum insulin, hs-CRP and HOMA-IR levels were higher in women with PCOS than in control group. UCN3 levels positively correlated with hs-CRP in PCOS group (r = 0.391, p = 0.004). Receiver operating characteristic (ROC) curve analysis showed that the area under the ROC curves were 0.732 (95% CI 0.634-0.830, p < 0.001) for UCN3 levels. The optimal cut-off value of UCN3 for detecting PCOS was ≥51.46 pmol/l, at which the sensitivity was 75% and specificity was 68%. Our results suggest that there is a potential link between PCOS and UCN3 levels. The results of this study support the presence of increased UCN3 levels for the association of inflammation with PCOS.
Collapse
Affiliation(s)
- Muzaffer Temur
- a Department of Obstetrics and Gynecology , Manisa Merkezefendi State Hospital , Manisa , Turkey
| | - Özgür Yilmaz
- b Department of Obstetrics and Gynecology , Manisa Merkezefendi State Hospital and Manisa Akhisar State Hospital , Manisa , Turkey
| | - Saliha Aksun
- c Department of Medical Biochemistry , İzmir Katipcelebi University Medical School , İzmir , Turkey
| | - Pelin Özün Özbay
- d Department of Obstetrics and Gynecology , Aydın Obstetrics and Pediatrics Hospital , Aydın , Turkey
| | - Mehmet Calan
- e Department of Endocrinology , İzmir Bozyaka Education and Research Hospital , İzmir , Turkey
| | - Tuncay Küme
- f Department of Medical Biochemistry , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Murat Karakulak
- g Department of Obstetrics and Gynecology , Silivri State Hospital , İstanbul , Turkey , and
| | - Hüseyin Anıl Korkmaz
- h Division of Pediatric Endocrinology , Dr Behçet Uz Children Research and Training Hospital , İzmir , Turkey
| |
Collapse
|
18
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
19
|
Im E. Multi-facets of Corticotropin-releasing Factor in Modulating Inflammation and Angiogenesis. J Neurogastroenterol Motil 2015; 21:25-32. [PMID: 25540945 PMCID: PMC4288099 DOI: 10.5056/jnm14076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/20/2022] Open
Abstract
The family of corticotropin-releasing factor (CRF) composed of 4 ligands including CRF, urocortin (Ucn) 1, Ucn2, and Ucn3 is expressed both in the central nervous system and the periphery including the gastrointestinal tract. Two different forms of G protein coupled receptors, CRF1 and CRF2, differentially recognize CRF family members, mediating various biological functions. A large body of evidence suggests that the CRF family plays an important role in regulating inflammation and angiogenesis. Of particular interest is a contrasting role of the CRF family during inflammatory processes. The CRF family can exert both pro-and anti-inflammatory functions depending on the type of receptors, the tissues, and the disease phases. In addition, there has been a growing interest in a possible role of the CRF family in angiogenesis. Regulation of angiogenesis by the CRF family has been shown to modulate endogenous blood vessel formation, inflammatory neovascularization and cardiovascular function. This review outlines the effect of the CRF family and its receptors on 2 major biological events: inflammation and angiogenesis, and provides a possibility of their application for the treatment of inflammatory vascular diseases.
Collapse
Affiliation(s)
- Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
20
|
Buckinx R, Bagyanszki M, Avula LR, Adriaensen D, Van Nassauw L, Timmermans JP. Expression of corticotropin-releasing factor and urocortins in the normal and Schistosoma mansoni-infected mouse ileum. Cell Tissue Res 2014; 359:453-463. [DOI: 10.1007/s00441-014-2012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
|