1
|
Channuwong P, Speight V, Yuan Y, Yao S, Yoshimura M, Bauermann FV, Ranjan A, Adisakwattana S, Cheng H. Hyperglycemia from Diabetes Potentiates Uncarboxylated Osteocalcin-Stimulated Insulin Secretion in Rat INS-1 Pancreatic β-Cells. Nutrients 2024; 16:2384. [PMID: 39125265 PMCID: PMC11313777 DOI: 10.3390/nu16152384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Uncarboxylated osteocalcin (ucOC) is a hormone secreted by osteoblasts that strengthens bone during mineralization and is a biomarker for ongoing bone formation. It also regulates glucose homeostasis by stimulating insulin secretion from pancreatic β-cells. However, its effect on β-cells under hyperglycemic diabetic conditions is unclear. The objective of this study was to investigate ucOC's effect on insulin secretion in β-cells maintained under high glucose conditions. We hypothesized that hyperglycemia potentiates insulin secretion in response to ucOC stimulation. Using INS-1 cells, we performed insulin secretion experiments, intracellular calcium recordings, and RT-qPCR to determine ucOC's effect on glucose-stimulated insulin secretion (GSIS)-related genes. The results reveal that ucOC significantly increased insulin secretion under hyperglycemic conditions compared to lower glucose levels. High glucose conditions also potentiated the effect of ucOC on calcium signals, which enhanced insulin secretion. The increase in intracellular calcium was due to an influx from the extracellular space via voltage-dependent calcium channels (VDCCs). Interestingly, the treatment of cells with NPS-2143, a GPRC6A blocker, failed to abolish the calcium signals. Uncarboxylated osteocalcin upregulated the expression of GSIS-related genes under high glucose conditions (450 mg/dL) compared to cells under standard culture conditions (200 mg/dL). In conclusion, hyperglycemia potentiates ucOC-induced insulin secretion in β-cells by opening VDCCs and upregulating GSIS genes. These findings provide a better understanding of ucOC's mechanism in the diabetic state and could lead to alternative treatments to stimulate insulin secretion.
Collapse
Affiliation(s)
- Pilailak Channuwong
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Victoria Speight
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yuanying Yuan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Masami Yoshimura
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fernando V. Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashish Ranjan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sirichai Adisakwattana
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Henrique Cheng
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Kurgan N, Skelly LE, Ludwa IA, Klentrou P, Josse AR. Twelve weeks of a diet and exercise intervention alters the acute bone response to exercise in adolescent females with overweight/obesity. Front Physiol 2023; 13:1049604. [PMID: 36685198 PMCID: PMC9846109 DOI: 10.3389/fphys.2022.1049604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Exercise and consumption of dairy foods have been shown to improve bone mineralization. However, little is known about the magnitude and timing of their synergistic effects on markers and regulators of bone metabolism in response to acute exercise in adolescent females with obesity, a population susceptible to altered bone metabolism and mineral properties. This study examined the influence of twelve weeks of exercise training and nutritional counselling on the bone biochemical marker response to acute exercise and whether higher dairy consumption could further influence the response. Methods: Thirty adolescent females (14.3 ± 2.0 years) with overweight/obesity (OW/OB) completed a 12-week lifestyle modification intervention involving exercise training and nutritional counselling. Participants were randomized into two groups: higher dairy intake (RDa; 4 servings/day; n = 14) or low dairy intake (LDa; 0-2 servings/d; n = 16). Participants performed one bout of plyometric exercise (5 circuits; 120 jumps) both pre- and post-intervention. Blood samples were taken at rest, 5 min and 1 h post-exercise. Serum sclerostin, osteocalcin (OC), osteoprotegerin (OPG), receptor activator nuclear factor kappa B ligand (RANKL), and C-terminal telopeptide of type 1 collagen (βCTX) concentrations were measured. Results: While there was an overall increase in sclerostin pre-intervention from pre to 5 min post-exercise (+11% p = 0.04), this response was significantly decreased post-intervention (-25%, p = 0.03) independent of dairy intake. The OPG:RANKL ratio was unresponsive to acute exercise pre-intervention but increased 1 h post-exercise (+2.6 AU; p < 0.001) post-intervention. Dairy intake did not further influence these absolute responses. However, after the 12-week intervention, the RDa group showed a decrease in the relative RANKL post-exercise response (-21.9%; p < 0.01), leading to a consistent increase in the relative OPG:RANKL ratio response, which was not the case in the LDa group. There was no influence of the intervention or dairy product intake on OC, OPG, or βCTX responses to acute exercise (p > 0.05). Conclusion: A lifestyle modification intervention involving exercise training blunts the increase in sclerostin and can augment the increase in OPG:RANKL ratio to acute exercise in adolescent females with OW/OB, while dairy product consumption did not further influence these responses.
Collapse
Affiliation(s)
- Nigel Kurgan
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Lauren E. Skelly
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Izabella A. Ludwa
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Andrea R. Josse
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Liu Z, Yang H, Zhi L, Xue H, Lu Z, Zhao Y, Cui L, Liu T, Ren S, He P, Liu Y, Zhang Y. Sphingosine 1-phosphate Stimulates Insulin Secretion and Improves Cell Survival by Blocking Voltage-dependent K + Channels in β Cells. Front Pharmacol 2021; 12:683674. [PMID: 34322019 PMCID: PMC8313013 DOI: 10.3389/fphar.2021.683674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies suggest that Sphingosine 1-phosphate (S1P) plays an important role in regulating glucose metabolism in type 2 diabetes. However, its effects and mechanisms of promoting insulin secretion remain largely unknown. Here, we found that S1P treatment decreased blood glucose level and increased insulin secretion in C57BL/6 mice. Our results further showed that S1P promoted insulin secretion in a glucose-dependent manner. This stimulatory effect of S1P appeared to be irrelevant to cyclic adenosine monophosphate signaling. Voltage-clamp recordings showed that S1P did not influence voltage-dependent Ca2+ channels, but significantly blocked voltage-dependent potassium (Kv) channels, which could be reversed by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Calcium imaging revealed that S1P increased intracellular Ca2+ levels, mainly by promoting Ca2+ influx, rather than mobilizing intracellular Ca2+ stores. In addition, inhibition of PLC and PKC suppressed S1P-induced insulin secretion. Collectively, these results suggest that the effects of S1P on glucose-stimulated insulin secretion (GSIS) depend on the inhibition of Kv channels via the PLC/PKC signaling pathway in pancreatic β cells. Further, S1P improved β cell survival; this effect was also associated with Kv channel inhibition. This work thus provides new insights into the mechanisms whereby S1P regulates β cell function in diabetes.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanli Zhao
- Department of Emergency Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Gao L, Gong FZ, Ma LY, Yang JH. Uncarboxylated osteocalcin promotes osteogenesis and inhibits adipogenesis of mouse bone marrow-derived mesenchymal stem cells via the PKA-AMPK-SIRT1 axis. Exp Ther Med 2021; 22:880. [PMID: 34194558 PMCID: PMC8237271 DOI: 10.3892/etm.2021.10312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is a bone disease characterized by reduced bone density, thin cortical bone and large gaps in the bone's honeycomb structure, which increases the risk of bone fragility. Uncarboxylated osteocalcin (unOC), a vitamin K-dependent bone protein, is known to regulate carbohydrate and energy metabolism. A previous study demonstrated that unOC promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs) into osteoblasts, but inhibits their differentiation into adipocytes. However, the underlying mechanism remains unknown. The present study showed that unOC regulated the differentiation potential of BMSCs via protein kinase A (PKA)/AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signaling. SIRT1, a member of the sirtuin family with deacetylation functions, was upregulated by unOC in BMSCs. Transfection analyses with SIRT1 small interfering RNA indicated that the unOC-induced differentiation shift in BMSCs required SIRT1. Examination of SIRT1 downstream targets revealed that unOC regulated the acetylation levels of runt-related transcription factor (RUNX) 2 and peroxisome proliferator-activated receptor γ (PPARγ). Therefore, unOC inhibited adipogenic differentiation by PPARγ acetylation and promoted osteogenic differentiation by RUNX2 deacetylation. Moreover, phosphorylated PKA and AMPK protein levels increased after unOC treatment, which led to the upregulation of SIRT1. Western blot analysis with PKA and AMPK inhibitors indicated that the PKA-AMPK signaling pathway functioned upstream of SIRT1 and positively regulated SIRT1 expression. These findings led us to propose a model in which unOC regulated BMSC osteogenic differentiation through the PKA-AMPK-SIRT1 axis, giving evidence towards the therapeutic potential of unOC in osteoporosis treatment.
Collapse
Affiliation(s)
- Le Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fang-Zi Gong
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lu-Yao Ma
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian-Hong Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
5
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
6
|
Cui LJ, Bai T, Zhi LP, Liu ZH, Liu T, Xue H, Yang HH, Yang XH, Zhang M, Niu YR, Liu YF, Zhang Y. Analysis of long noncoding RNA-associated competing endogenous RNA network in glucagon-like peptide-1 receptor agonist-mediated protection in β cells. World J Diabetes 2020; 11:374-390. [PMID: 32994866 PMCID: PMC7503504 DOI: 10.4239/wjd.v11.i9.374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) and mRNAs are widely involved in various physiological and pathological processes. The use of glucagon-like peptide-1 receptor agonists (GLP-1RAs) is a novel therapeutic strategy that could promote insulin secretion and decrease the rate of β-cell apoptosis in type 2 diabetes mellitus (T2DM) patients. However, the specific lncRNAs and mRNAs and their functions in these processes have not been fully identified and elucidated.
AIM To identify the lncRNAs and mRNAs that are involved in the protective effect of GLP-1RA in β cells, and their roles.
METHODS Rat gene microarray was used to screen differentially expressed (DE) lncRNAs and mRNAs in β cells treated with geniposide, a GLP-1RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to assess the underlying functions of DE mRNAs. Hub mRNAs were filtered using the STRING database and the Cytoscape plugin, CytoHubba. In order to reveal the regulatory relationship between lncRNAs and hub mRNAs, their co-expression network was constructed based on the Pearson coefficient of DE lncRNAs and mRNAs, and competing endogenous RNA (ceRNA) mechanism was explored through miRanda and TargetScan databases.
RESULTS We identified 308 DE lncRNAs and 128 DE mRNAs with a fold change filter of ≥ 1.5 and P value < 0.05. GO and KEGG pathway enrichment analyses indicated that the most enriched terms were G-protein coupled receptor signaling pathway, inflammatory response, calcium signaling pathway, positive regulation of cell proliferation, and ERK1 and ERK2 cascade. Pomc, Htr2a, and Agtr1a were screened as hub mRNAs using the STRING database and the Cytoscape plugin, CytoHubba. This result was further verified using SwissTargetPrediction tool. Through the co-expression network and competing endogenous (ceRNA) mechanism, we identified seven lncRNAs (NONRATT027738, NONRATT027888, NONRATT030038, etc.) co-expressed with the three hub mRNAs (Pomc, Htr2a, and Agtr1a) based on the Pearson coefficient of the expression levels. These lncRNAs regulated hub mRNA functions by competing with six miRNAs (rno-miR-5132-3p, rno-miR-344g, rno-miR-3075, etc.) via the ceRNA mechanism. Further analysis indicated that lncRNA NONRATT027738 interacts with all the three hub mRNAs, suggesting that it is at a core position within the ceRNA network.
CONCLUSION We have identified key lncRNAs and mRNAs, and highlighted here how they interact through the ceRNA mechanism to mediate the protective effect of GLP-1RA in β cells.
Collapse
Affiliation(s)
- Li-Juan Cui
- Department of Pharmacology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Tao Bai
- Department of Endocrinology, The First Clinical Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Lin-Ping Zhi
- Department of Pharmacology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zhi-Hong Liu
- Department of Respiratory Medicine, The First Clinical Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Tao Liu
- Department of General Surgery, Shanxi Bethune Hospital, Taiyuan 030006, Shanxi Province, China
| | - Huan Xue
- Department of Pharmacology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Huan-Huan Yang
- Department of Pharmacology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiao-Hua Yang
- Department of Pharmacology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Min Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ya-Ru Niu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yun-Feng Liu
- Department of Endocrinology, The First Clinical Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
7
|
Chen MW, Zhu H, Xiong CH, Li JB, Zhao LX, Chen HZ, Qiu Y. PKC and Ras are Involved in M1 Muscarinic Receptor-Mediated Modulation of AMPA Receptor GluA1 Subunit. Cell Mol Neurobiol 2020; 40:547-554. [PMID: 31721013 DOI: 10.1007/s10571-019-00752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
M1 muscarinic acetylcholine receptors (M1 mAChRs) have long been an attractive target for the treatment of Alzheimer's disease (AD), the most common cause of dementia in the elderly. M1 mAChR agonists show desirably preclinical activities; however, most have not gone further into late clinical trials due to ineffectiveness or side effects. Thus, to understand the signaling pathways involved in M1 mAChR-mediated memory improvement may be important for design of biased agonists with on-target therapeutic effects. M1 mAChRs are classically coupled to Gαq or ectopically to Gαs to activate multiple kinases such as protein kinase C (PKC), Ras and protein kinase A (PKA). Our previous studies have found that M1 mAChRs could improve learning and memory through modulating AMPA receptor GluA1 subunit via PKA-PI3K-Akt signaling. Here, we further investigated whether PKC and Ras were involved in M1 mAChR-mediated modulation of GluA1. We demonstrated the role of PKC and Ras in the signaling pathway, as both PKC inhibitors Ro-31-8425 or Gö6983 and Ras inhibitor salirasib abolished the membrane insertion of GluA1 and enhancement of its phosphorylation at Ser845 induced by M1 mAChRs in the primary cultured neurons and hippocampus in vivo. We further showed that PKC and Ras modulated PKA-PI3K-Akt signaling since the increases of PKA, Akt and mTOR activities by M1 mAChR activation were blocked by PKC and Ras inhibitors. These data demonstrated the detailed mechanism underlying M1 mAChR-mediated modulation of GluA1 through Gαq/11 coupling, broadening the knowledge of the downstream signaling after M1 mAChR-Gαq/11 coupling.
Collapse
Affiliation(s)
- Mu-Wen Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Han Zhu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Cai-Hong Xiong
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jia-Bing Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201210, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Bai T, Yang H, Wang H, Zhi L, Liu T, Cui L, Liu W, Wang Y, Zhang M, Liu Y, Zhang Y. Inhibition of voltage-gated K+ channels mediates docosahexaenoic acid-stimulated insulin secretion in rat pancreatic β-cells. Food Funct 2020; 11:8893-8904. [DOI: 10.1039/d0fo01891k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kv channels play a vital role in DHA-augmented insulin secretion through GPR40/AC/cAMP/PLC signaling pathway in rat pancreatic β-cells.
Collapse
|
9
|
Lin X, Parker L, McLennan E, Hayes A, McConell G, Brennan-Speranza TC, Levinger I. Undercarboxylated Osteocalcin Improves Insulin-Stimulated Glucose Uptake in Muscles of Corticosterone-Treated Mice. J Bone Miner Res 2019; 34:1517-1530. [PMID: 30908701 DOI: 10.1002/jbmr.3731] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/05/2023]
Abstract
Short-term administration of glucocorticoids (GCs) impairs muscle insulin sensitivity at least in part via the reduction of undercarboxylated osteocalcin (ucOC). However, whether ucOC treatment reverses the GC-induced muscle insulin resistance remains unclear. To test the hypothesis that ucOC directly ameliorates impaired insulin-stimulated glucose uptake (ISGU) induced by short-term GC administration in mice muscle and to identify the molecular mechanisms, mice were implanted with placebo or corticosterone (CS) slow-release pellets. Two days post-surgery, insulin-tolerance tests (ITTs) were performed. On day 3, serum was collected and extensor digitorum longus (EDL) and soleus muscles were isolated and treated ex vivo with vehicle, ucOC (30 ng/mL), insulin (60 µU/mL), or both. Circulating hormone levels, muscle glucose uptake, and muscle signaling proteins were assessed. CS administration reduced both serum osteocalcin and ucOC levels, whole-body insulin sensitivity, and muscle ISGU in EDL. Ex vivo ucOC treatment restored ISGU in CS-affected muscle, without increasing non-insulin-stimulated glucose uptake. In CS-affected EDL muscle, ucOC enhanced insulin action on phosphorylated (p-)protein kinase B (Akt)Ser473 and the p-extracellular signal-regulated kinase isoform 2 (ERK2)Thr202/Tyr204 /total (t)ERK2 ratio, which correlated with ISGU. In CS-affected soleus muscle, ucOC enhanced insulin action on p-mammalian target of rapamycin (mTOR)Ser2481 , the p-mTORSer2481 /tmTOR ratio, p-Akt substrate of 160kD (AS160)Thr642 , and p-protein kinase C (PKC) (pan)Thr410 , which correlated with ISGU. Furthermore, p-PKC (pan)Thr410 correlated with p-AktSer473 and p-AS160Thr642 . ucOC exerts direct insulin-sensitizing effects on CS-affected mouse muscle, likely through an enhancement in activity of key proteins involved in both insulin and ucOC signaling pathways. Furthermore, these effects are muscle type-dependent. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xuzhu Lin
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Lewan Parker
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Emma McLennan
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Alan Hayes
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Glenn McConell
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Tara C Brennan-Speranza
- Department of Physiology and Bosch Institute for Medical Research, University of Sydney, Australia
| | - Itamar Levinger
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Australia.,Department of Medicine-Western Health, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Mera P, Ferron M, Mosialou I. Regulation of Energy Metabolism by Bone-Derived Hormones. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031666. [PMID: 28778968 DOI: 10.1101/cshperspect.a031666] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like many other organs, bone can act as an endocrine organ through the secretion of bone-specific hormones or "osteokines." At least two osteokines are implicated in the control of glucose and energy metabolism: osteocalcin (OCN) and lipocalin-2 (LCN2). OCN stimulates the production and secretion of insulin by the pancreatic β-cells, but also favors adaptation to exercise by stimulating glucose and fatty acid (FA) utilization by the muscle. Both of these OCN functions are mediated by the G-protein-coupled receptor GPRC6A. In contrast, LCN2 influences energy metabolism by activating appetite-suppressing signaling in the brain. This action of LCN2 occurs through its binding to the melanocortin 4 receptor (MC4R) in the paraventricular nucleus of the hypothalamus (PVN) and ventromedial neurons of the hypothalamus.
Collapse
Affiliation(s)
- Paula Mera
- Columbia University Medical Center, New York, New York 10032
| | - Mathieu Ferron
- Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Ioanna Mosialou
- Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
11
|
Obri A, Khrimian L, Karsenty G, Oury F. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol 2018; 14:174-182. [PMID: 29376523 PMCID: PMC5958904 DOI: 10.1038/nrendo.2017.181] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A remarkable, unexpected aspect of the bone-derived hormone osteocalcin is that it is necessary for both brain development and brain function in the mouse, as its absence results in a profound deficit in spatial learning and memory and an exacerbation of anxiety-like behaviour. The regulation of cognitive function by osteocalcin, together with the fact that its circulating levels decrease in midlife compared with adolescence in all species tested, raised the prospect that osteocalcin might be an anti-geronic hormone that could prevent age-related cognitive decline. As presented in this Review, recent data indicate that this is indeed the case and that osteocalcin is necessary for the anti-geronic activity recently ascribed to the plasma of young wild-type mice. The diversity and amplitude of the functions of osteocalcin in the brain, during development and postnatally, had long called for the identification of its receptor in the brain, which was also recently achieved. This Review presents our current understanding of the biology of osteocalcin in the brain, highlighting the bony vertebrate specificity of the regulation of cognitive function and pointing toward where therapeutic opportunities might exist.
Collapse
Affiliation(s)
- Arnaud Obri
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th St. Rm 1602, New York City, New York 10032, USA
| | - Lori Khrimian
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th St. Rm 1602, New York City, New York 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th St. Rm 1602, New York City, New York 10032, USA
| | - Franck Oury
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
12
|
Levinger I, Brennan-Speranza TC, Zulli A, Parker L, Lin X, Lewis JR, Yeap BB. Multifaceted interaction of bone, muscle, lifestyle interventions and metabolic and cardiovascular disease: role of osteocalcin. Osteoporos Int 2017; 28:2265-2273. [PMID: 28289780 DOI: 10.1007/s00198-017-3994-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Undercarboxylated osteocalcin (ucOC) may play a role in glucose homeostasis and cardiometabolic health. This review examines the epidemiological and interventional evidence associating osteocalcin (OC) and ucOC with metabolic risk and cardiovascular disease. The complexity in assessing such correlations, due to the observational nature of human studies, is discussed. Several studies have reported that higher levels of ucOC and OC are correlated with lower fat mass and HbA1c. In addition, improved measures of glycaemic control via pharmacological and non-pharmacological (e.g. exercise or diet) interventions are often associated with increased circulating levels of OC and/or ucOC. There is also a relationship between lower circulating OC and ucOC and increased measures of vascular calcification and cardiovascular disease. However, not all studies have reported such relationship, some with contradictory findings. Equivocal findings may arise because of the observational nature of the studies and the inability to directly assess the relationship between OC and ucOC on glycaemic control and cardiovascular health in humans. Studying OC and ucOC in humans is further complicated due to numerous confounding factors such as sex differences, menopausal status, vitamin K status, physical activity level, body mass index, insulin sensitivity (normal/insulin resistance/T2DM), tissue-specific effects and renal function among others. Current observational and indirect interventional evidence appears to support a relationship between ucOC with metabolic and cardiovascular disease. There is also emerging evidence to suggest a direct role of ucOC in human metabolism. Further mechanistic studies are required to (a) clarify causality, (b) explore mechanisms involved and
Collapse
Affiliation(s)
- I Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia.
| | - T C Brennan-Speranza
- Department of Physiology and Bosch Institute for Medical Research, University of Sydney, Sydney, Australia
| | - A Zulli
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - L Parker
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - X Lin
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC, 8001, Australia
| | - J R Lewis
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - B B Yeap
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| |
Collapse
|
13
|
De Toni L, Di Nisio A, Rocca MS, De Rocco Ponce M, Ferlin A, Foresta C. Osteocalcin, a bone-derived hormone with important andrological implications. Andrology 2017; 5:664-670. [PMID: 28395130 DOI: 10.1111/andr.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/19/2017] [Indexed: 01/01/2023]
Abstract
Increasing evidence disclosed the existence of a novel multi-organ endocrine pathway, involving bone, pancreas and testis, of high penetrance in energy metabolism and male fertility. The main mediator of this axis is undercarboxylated osteocalcin (ucOC), a bone-derived protein-exerting systemic effects on tissues expressing the metabotropic receptor GPRC6A. The recognized effects of ucOC are the improvement of insulin secretion from the pancreas, the amelioration of systemic insulin sensitivity, in particular in skeletal muscle, and the stimulation of the global endocrine activity of the Leydig cell, including vitamin D 25-hydroxylation and testosterone production. The supporting evidence of this circuit in both animal and human models is here reviewed, with particular emphasis on the role of ucOC on testis function. The possible pharmacological modulation of this hormonal circuit for therapeutic aims is also discussed.
Collapse
Affiliation(s)
- L De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - M S Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - M De Rocco Ponce
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - A Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - C Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|