1
|
Ye D, Liu J, Lin L, Hou P, Feng T, Wang S. The Ang-(1-7)/MasR axis ameliorates neuroinflammation in hypothermic traumatic brain injury in mice by modulating phenotypic transformation of microglia. PLoS One 2024; 19:e0303150. [PMID: 38728304 PMCID: PMC11086881 DOI: 10.1371/journal.pone.0303150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
The Ang-(1-7)/MasR axis is critically involved in treating several diseases; For example, Ang-(1-7) improves inflammatory response and neurological function after traumatic brain injury and inhibits post-inflammatory hypothermia. However, its function in traumatic brain injury (TBI) combined with seawater immersion hypothermia remains unclear. Here, we used a mice model of hypothermic TBI and a BV2 cell model of hypothermic inflammation to investigate whether the Ang-(1-7)/MasR axis is involved in ameliorating hypothermic TBI. Quantitative reverse transcription PCR, western blotting assay, and immunofluorescence assay were performed to confirm microglia polarization and cytokine regulation. Hematoxylin-eosin staining, Nissl staining, and immunohistochemical assay were conducted to assess the extent of hypothermic TBI-induced damage and the ameliorative effect of Ang-(1-7) in mice. An open field experiment and neurological function scoring with two approaches were used to assess the degree of recovery and prognosis in mice. After hypothermic TBI establishment in BV2 cells, the Ang-(1-7)/MasR axis induced phenotypic transformation of microglia from M1 to M2, inhibited IL-6 and IL-1β release, and upregulated IL-4 and IL-10 levels. After hypothermic TBI development in mice, intraperitoneally administered Ang-(1-7) attenuated histological damage and promoted neurological recovery. These findings suggest that hypothermia exacerbates TBI-induced damage and that the Ang-(1-7)/MasR axis can ameliorate hypothermic TBI and directly affect prognosis.
Collapse
Affiliation(s)
- Dan Ye
- Department of Neurosurgery, Fuzong Teaching Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiamin Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Long Lin
- Department of Neurosurgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Pengwei Hou
- Department of Neurosurgery, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Tianshun Feng
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shousen Wang
- Department of Neurosurgery, 900th Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Echeverría-Rodríguez O, Godínez-Chaparro B, Gómez-García MV, Mata-Bermúdez A, Del Valle-Mondragón L, Gallardo-Ortíz IA, Villalobos-Molina R. Participation of angiotensin-(1-7) in exercise-induced analgesia in rats with neuropathic pain. Peptides 2021; 146:170670. [PMID: 34634392 DOI: 10.1016/j.peptides.2021.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022]
Abstract
Exercise reduces neuropathic pain in animals and humans. Recent studies indicate that training exercise favors the synthesis and action of angiotensin-(1-7) (Ang-(1-7)), a vasoactive peptide of the renin-angiotensin system (RAS), in various tissues. Interestingly, Ang-(1-7) also relieves neuropathic pain; however, it remains to be elucidated whether exercise mitigates this type of pain through Ang-(1-7). In this study, we investigated the role of Ang-(1-7) in exercise-induced analgesia in a neuropathic pain model. Male Wistar rats were ligated of lumbar spinal nerves (L5 and L6) or sham-operated. Then, they were subjected to acute (2-h) or chronic (4-week) exercise protocols. Tactile allodynia was evaluated before and after each exercise intervention. Microosmotic pumps were implanted subcutaneously for the release of Ang-(1-7) or A779 (selective Mas receptor (MasR; Ang-(1-7) receptor) antagonist). Plasma levels of Ang II and Ang-(1-7) were quantified by HPLC. Spinal nerve ligation (SNL) produced tactile allodynia. Both acute and chronic exercise reversed this neuropathic behavior. A779 treatment prevented the antiallodynic effect induced by each exercise protocol. SNL increased the plasma Ang II/Ang-(1-7) ratio; however, exercise did not modify it. Acute treatment with Ang-(1-7) via MasR mimicked exercise-mediated antinociception. Collectively, these results suggest that activation of the Ang-(1-7)/MasR axis of the RAS represents a potential novel mechanism by which exercise attenuates neuropathic pain in rats.
Collapse
Affiliation(s)
- Omar Echeverría-Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico; Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico.
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico
| | - María V Gómez-García
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico
| | - Alfonso Mata-Bermúdez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, Ciudad de México, Mexico
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología "Ignacio Chávez", Tlalpan, Ciudad de México, Mexico
| | - Itzell A Gallardo-Ortíz
- Unidad de Investigación en Biomedicina y Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Investigación en Biomedicina y Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
3
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
4
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Li X, Xuan W, Chen D, Gao H, Wang G, Guo Q, Wang Y, Song H, Cai B. Research Progress of Alzheimer's Disease Therapeutic Drugs: Based on Renin-Angiotensin System Axis. J Alzheimers Dis 2020; 78:1315-1338. [PMID: 33164932 DOI: 10.3233/jad-200770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is widely recognized that Alzheimer's disease (AD) has a complicate link to renin-angiotensin system (RAS). It is known that cerebrovascular disease has some connections with AD, but most of the studies are still conducted in parallel or independently. Although previous research came up with large number of hypotheses about the pathogenesis of AD, it does not include the mechanism of RAS-related regulation of AD. It has been found that many components of RAS have been changed in AD. For example, the multifunctional and high-efficiency vasoconstrictor Ang II and Ang III with similar effects are changed under the action of other RAS signal peptides; these signal peptides are believed to help improve nerve injury and cognitive function. These changes may lead to neuropathological changes of AD, and progressive defects of cognitive function, which are association with some hypotheses of AD. The role of RAS in AD gradually attracts our attention, and RAS deserved to be considered carefully in the pathogenesis of AD. This review discusses the mechanisms of RAS participating in the three current hypotheses of AD: neuroinflammation, oxidative stress and amyloid-β protein (Aβ) hypothesis, as well as the drugs that regulate RAS systems already in clinical or in clinical trials. It further demonstrates the importance of RAS in the pathogenesis of AD, not only because of its multiple aspects of participation, which may be accidental, but also because of the availability of RAS drugs, which can be reused as therapies of AD.
Collapse
Affiliation(s)
- Xinquan Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Weiting Xuan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Dabao Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Huawu Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Guangyun Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
6
|
Assis AD, Mascarenhas FNADP, Araújo FDA, Santos RAS, Zanon RG. Angiotensin-(1-7) receptor Mas antagonist (A779) influenced gliosis and reduced synaptic density in the spinal cord after peripheral axotomy. Peptides 2020; 129:170329. [PMID: 32437718 DOI: 10.1016/j.peptides.2020.170329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
The peptide angiotensin-(1-7) [Ang (1-7)] and its receptor Mas are involved in controlling arterial pressure and display actions on the nervous system. In a previous study, our laboratory showed that A779 [(peptidyl antagonist of the Ang-(1-7)] treatment had a negative effect following a lesion of the sciatic nerve, possibly by delaying the responses of Schwann cells, resulting in a decreased axonal organization along with a slowed functional return. In the present work, we investigated the central cellular changes after sciatic nerve injury in rodents treated with A779 after two weeks. In the lumbar spinal cords, where the neuronal bodies that make up the sciatic are, the treatment with A779 showed reduced reactivity of astrocytes (p = 0.004, Mann-Whitney U test) and less synaptic density (p = 0.004, Mann-Whitney U test) after injury. Also, the treatment upregulated microglia activity in both sides (p = 0.004, Mann-Whitney U test), ipsilateral and contralateral to the lesion, of the spinal cord. In addition, the Mas expression in spine neurons was increased in response to axotomy especially after two weeks (p = 0.03, Mann-Whitney U test) following the nerve lesion in comparison to earlier stages after injury. Therefore, we can conclude that Ang-(1-7)/Mas axis plays a role during spinal cord recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Alex Dias Assis
- Department of Human Anatomy, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | - Fernanda de Assis Araújo
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | - Renata Graciele Zanon
- Department of Human Anatomy, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil.
| |
Collapse
|